waterfall Park Developments Northbrook Retirement Vill-May 2020



#### Waterfall Park Developments td

### Northbrook Retirement Village Water Wastewater and Stormwater Infrastructure and Flood Assessment

| Task                   | Responsibility                                           | Signature                             |
|------------------------|----------------------------------------------------------|---------------------------------------|
| Project Manager:       | Alexis Patrylak                                          | A A A A A A A A A A A A A A A A A A A |
| Prepared By:           | Jayne Richards / Klemens<br>Markiewicz / Alexis Patrylak | Withand. Imagiciewicz Autolite        |
| Reviewed By:           | Anthony Steel / Cary Dent                                | Here Grang bert                       |
| Approved For Issue By: | Jayne Richards / Alexis<br>Patrylak                      | Alihand. Auxatha                      |

| Issue Date    | Revision No. | Author     | Checked    | Approved   |
|---------------|--------------|------------|------------|------------|
| 28 April 2020 | 1            | A Patrylak | A Patrylak | A Patrylak |
| 8 May 2020    | 2            | A Patrylak | A Patrylak | A Patrylak |
| 15 May 2020   | 3            | A Patrylak | A Patrylak | A Patrylak |
| 18 May 2020   | 4            | J Richards | A Patrylak | A Patrylak |
|               |              |            |            |            |

Prepared By: Fluent Infrastructure Solutions Ltd Suite 2, First Floor 23-27 Beach Street Queenstown 9300 Telephone: + 64 3 974 4586 Email: office@fluentsolutions.co.nz Web: www.fluentsolutions.co.nz

Job No.: Date: Reference: Q000492 18 May 2020 RP 20-04-01 JSR Q000492 Rev4 Copy

5 02

Fluent Infrastructure Solutions td

The information contained in this document is intended solely for the use of the client named for the purpose for which it has been prepared and no representation is made or is to be implied as being made to any third party. ther than for the exclusive use of the named client no part of this report may be reproduced stored in a retrieval system or transmitted in any form or by any means.

# Waterfall Park Developments td

# Northbrook Retirement Village Water Wastewater and Stormwater Infrastructure and Flood Assessment

| 1.0        | Executive Summary                                      | <u> </u> |
|------------|--------------------------------------------------------|----------|
| -          |                                                        | $\sim$   |
| 2.0        | Introduction                                           | 2        |
| 2.1        | General                                                |          |
| 2.2        | Site Locality and Features                             | 2        |
| 2.3        | Site Hazards Information                               | 4        |
|            |                                                        | X.       |
| 3.0        | The Proposed Development Plan                          | 5        |
| 4.0        | Wastowator                                             |          |
| <b>4.0</b> | Wastewater Collection and Conveyance System Decign     | 7        |
| 4.1        | Wastewater Flows                                       | 7        |
| 4.2<br>4.3 | Existing OLDC Infrastructure                           | 8        |
| 431        | Capacity of Existing Infrastructure                    | 10       |
| 4.0.1      | Wastewater Servicing for the Proposed Development      | 10       |
| -1         | Wastewater Cervieing for the hopped Development and    |          |
| 5.0        | Water Supply                                           | 12       |
| 5.1        | Water Supply System Design                             | 12       |
| 5.2        | Water Demand Assessment                                | 12       |
| 5.2.1      | Domestic and Irngation Water Demands                   | 12       |
| 5.2.2      | Fire Fighting Demands                                  | 14       |
| 5.3        | Existing Water Supply System                           | 15       |
| 5.3.1      | Capacity of Existing Intrastructure – Peak Hour Demand | 17       |
| 5.4        | Water Servicing for the Proposed Development           | 18       |
|            |                                                        |          |
| 6.         | Stormwater and Flood Management                        | 19       |
| 6.1        | Local Catchment Stormwater and Flood Flows             | 19       |
| 6.1.1      | Analysis Methodology Summary                           | 19       |
| 6.1.2      | Existing Stormwater and Flood Flow Pathways            | 20       |
| 6.2        | Proposed Stormwater Management Concept                 | 21       |
| 6.2.1      | Primary Pipe Conveyance System                         | 23       |
| 6.2.2      | Secondary Overland Flow Paths                          | 23       |
| 6.2.3      | Low Point Overflow Discharge                           | 23       |
| 6.2.4      | Cut–off Drains                                         | 23       |
| 6.2.5      | Culvert Crossings                                      | 23       |
| 6.2.6      | Stormwater Treatment System                            | 24       |
| 6.3        | Stormwater Contaminant Loading Assessment              | 25       |
|            |                                                        |          |

| 6.4   | Pre-versus Post-development Flow Paths Comparison            | 27 |
|-------|--------------------------------------------------------------|----|
| 6.5   | Operations and Maintenance                                   |    |
| 6.6   | Statutory Assessment                                         |    |
| 6.6.1 | Regional Plan: Water for Otago                               |    |
| 6.6.2 | QLDC Land Development and Subdivision Code Practice          |    |
| 6.7   | Recreation Area Flood Assessment                             |    |
| 6.8   | Mobility Scooter Parking and Bus Stop Areas Flood Conveyance |    |

APPENDI A Wastewater Modelling Report

APPENDI

Wastewater Modelling Report Addendum

APPENDI C Water Modelling Report

APPENDI D Cosgrove's Email Concerning Fire Fighting Requirements

**APPENDI E** Hydraulic Calculations

ارمی مرد



#### 1.0 Executive Summary

This report covers a high level three–waters infrastructure overview of the proposed Northbrook (Arrowtown) Retirement Village Development. It finds that all infrastructure requirements for the development can be met by existing and new services.

Wastewater servicing will be met by an internal gravity sewer collection network that will run to a wastewater pump station delivering to existing wastewater reticulation along the Waterfall Park Access Road and the connection point to existing sewer reticulation at Arrowtown–Lake Hayes Road. A small number of residential units will require a small package pump station to convey their wastewater into the gravity reticulation network.

Water demand can be met by gravity supply from the Lake Hayes scheme via a connection point to existing water reticulation installed along the Waterfall Park Access Road.

Stormwater within the Northbrook site will be collected in a pipe conveyance system and treated before being discharged to Mill Creek after undergoing sufficient treatment to reduce contaminant loading through the use of treatment ponds and swales. Flood mitigation has been achieved to ensure floor levels have sufficient freeboard and post–development flows at the downstream boundary of the site are estimated to be less than the pre–development flows or would have minimal effect.

#### 2.0 Introduction

#### 2.1 eneral

Fluent Infrastructure Solutions Limited (FS) has been engaged by Waterfall Park Developments Ltd to undertake a water, wastewater, and stormwater infrastructure assessment and flood hazard assessment for the proposed Northbrook Retirement Village development. Infrastructure and flood mitigation for the Access Road and adjacent Waterfall Park Hotel development were assessed in previous resource consent applications (RM171280, RM17.302.01–02, RM18.088.01–0.5, and RM180584).

This report has been prepared to support an application for resource consent for the Northbrook Retirement Village. Note that this report does not address the ecology of Mill Creek or its tributaries in relation to the proposed works. An ecological assessment is being provided in a separate report prepared by Ryder Environmental.

#### 2.2 Site ocality and Features

The proposed Northbrook Retirement Village development area is located to the north of Lake Hayes and approximately 3km southwest of Arrowtown, as shown in Figure 2.1 below.

The Northbrook Retirement Village is situated on relatively gently sloping land. To the north of the development extent, there is a nill catchment characterised by grassed pastures on a relatively steep slope. To the east, the retirement village is bounded by the main Waterfall Park Access Road and the adjacent Mill Creek. A small, spring–fed tributary to Mill Creek runs through the development site and discharges towards the southeast.



Figure 2.1: Site ocation and Features

# 2.3 Site Ha ards Information

The Mill Creek tributary runs through an area defined as an active debris–dominated alluvial fan according to the Queenstown Lakes District Council (QLDC) hazard maps. Reviewing the topography of the site, the hill slopes to the north of the site do not show visible signs of debris flows. An assessment of the site hazards has been described in the Geosolve Geotechnical Report (February 2020).

Additionally, there is also an indicated flooding hazard located along Mill Creek. The flood hazard has been addressed through the construction of the main Waterfall Park Access Road and was assessed in previous consents.



Figure 2.2: Site Ha ard Map – Q DC IS Mapping (RC Ha ard Data)

### 3.0 The Proposed Development Plan

Figure 3.1 shows the general layout of the proposed retirement village development.

The proposed development on which this infrastructure assessment has been undertake comprises:

- 162 Residential Units
- 36 rooms within an Aged Care Facility
- Clubhouse
- Reception and BoH Facilities
- Active Recreation Building (gym, pool, and fitness)
- Childcare Centre
- Medical Centre
- Mobility Scooter Parking and Bus Stop
- Outdoor Recreation Area and Golf Holes located on the east side of Mill Creek



Figure 3.1: Proposed Northbrook Retirement Village Development Plan





#### 4.0 Wastewater

#### 4.1 Wastewater Collection and Conveyance System Design

The design, sizing, and layout of the wastewater collection and conveyance network to service the proposed Northbrook Retirement Village is related to the population served, the facilities to be provided, and the capacity of the existing QLDC wastewater network. The following aspects have been investigated to assess wastewater collection and conveyance requirements:

- Population (i.e. the number of residential units and aged care residents and the number of patrons of the other proposed facilities);
- Wastewater production both peak wet weather and peak dry weather;
- Capacity of the existing QLDC infrastructure to convey the wastewater loads; and
- Wastewater pumping requirements.

#### 4.2 Wastewater Flows

The following wastewater design flows have been established for the proposed Northbrook Retirement Village as shown in Table 4.1 below.

| Northbrook Village<br>Facility         | No. of<br>Buildings | Max No. of<br>People /<br>Facility/Day | Average Per Capita<br>Daily Wastewater<br>Production (L/p/d) | Daily Wastewater<br>Production<br>(m <sup>3</sup> /d) | Dry Weather<br>Diurnal Peaking<br>Factor | Peak Dry<br>Weather<br>Flow (L/s) | Wet Weather<br>Peaking<br>Factor | Peak Wet<br>Weather<br>Flow (L/s) |
|----------------------------------------|---------------------|----------------------------------------|--------------------------------------------------------------|-------------------------------------------------------|------------------------------------------|-----------------------------------|----------------------------------|-----------------------------------|
| Residential Units                      | 162                 | 2                                      | 250                                                          | 81                                                    | 2.5                                      | 2.34                              | 2                                | 4.69                              |
| Aged Care Rooms                        | 36                  | V                                      | 250                                                          | 9                                                     | 2.5                                      | 0.26                              | 2                                | 0.52                              |
| Aged Care Staff                        | 1                   | 22                                     | 50                                                           | 1.1                                                   | 2.5                                      | 0.03                              | 2                                | 0.06                              |
| Childcare Centre                       | 4                   | 60                                     | 30                                                           | 1.8                                                   | 2.5                                      | 0.05                              | 2                                | 0.10                              |
| Childcare Staff                        | 1                   | 10                                     | 50                                                           | 0.5                                                   | 2.5                                      | 0.01                              | 2                                | 0.03                              |
| Medical-Centre                         | 1                   | 192                                    | 20                                                           | 3.84                                                  | 4                                        | 0.18                              | 2                                | 0.36                              |
| Medical Centre Staff                   | <b>S</b>            | 10                                     | 50                                                           | 0.5                                                   | 4                                        | <mark>0.02</mark>                 | 2                                | 0.05                              |
| Active Recreation<br>(including staff) | 1                   | 330                                    | 40                                                           | 13.2                                                  | 4                                        | 0.61                              | 2                                | 1.22                              |
| Clubhouse<br>(including staff)         | 1                   | 580                                    | 30                                                           | 17.4                                                  | 4                                        | 0.81                              | 2                                | 1.61                              |
| Other Staff                            | 1                   | 14                                     | 50                                                           | 0.7                                                   | 2.5                                      | 0.02                              | 2                                | 0.04                              |
| Total                                  |                     |                                        |                                                              | 129.04                                                |                                          | 4.34                              |                                  | 8.68                              |

# Table 4.1: Wastewater Design Flows

Building occupancies in Table 4.1 above have been selected to reflect maximum estimated daily wastewater production. These design occupancies may vary from building occupancies relevant to fire safety/vehicle numbers etc.



As the Northbrook development is not a conventional residential subdivision, it is not directly covered by QLDC's Land Development and Subdivision Code of Practice 2020 (QLDC COP 2020). The design criteria for the development has therefore generally been established from first principles, but with reference to the QLDC COP 2020 and AS/NZS 1547:2012 *On–site Domestic Wastewater Management*.

Average dry weather design flows are based on 250 litres per person per day (L/p/d) for the residential units and aged care residents, with a peaking factor of 2.5 for the dry weather diurnal and a dilution/infiltration factor of 2 for wet weather. For non–residential facilities and staff, varying wastewater production volumes have been selected based on AS/NZS 1547:2012 as well as estimated water demands. A dry weather diurnal peaking factor of 4 has been applied to the Medical Centre, Active Recreation building, and Clubhouse.

For the purpose of a conservative wastewater assessment this takes into consideration the operating hours of these facilities, estimated to be between 12–16 hours each per day. Like the residential units and Aged Care Centre, these facilities and staff have a dilution/infiltration factor of 2 for wet weather.

The assessment identifies a peak daily wastewater production of just over 129m<sup>3</sup> and a peak wet weather wastewater flow of 8.7L/s.

#### 4.3 Existing Q DC Infrastructure

Wastewater from Arrowtown is currently pumped to a manhole located east of the proposed development on the Arrowtown–Lake Hayes Road (manhole ID SM11784, refer to Figure 4.1). This manhole also receives wastewater from Millbrook. Wastewater is conveyed from this manhole via a 300mm uPVC trunk main that runs along the Arrowtown–Lake Hayes Road to the Bendemeer Wastewater Pump Station, located east of Lake Hayes. Although this main is classified as a rising main, it is understood that the wastewater is conveyed by gravity from manhole SM11784 to the Bendemeer Pump Station.

An existing 150mm mPVC sever main drains wastewater from the properties south of the Waterfall Park development area and north of Lake Hayes to the Lake Hayes Sewer Pump Station #1 (located north or Lake Hayes). From there, the wastewater is pumped to a 150mm mPVC gravity sewer main on the Arrowtown Lake Hayes Road. This gravity main also collects wastewater from properties east of Lake Hayes and drains to the Lakes Hayes Sewer Pump Station #2, which then pumps directly to the Bendemeer Pump Station.

A 160 OD PE100 PN12.5 wastewater rising main has been installed along the Waterfall Park Access Road to service the proposed Waterfall Park Hotel development and proposed Northbrook Retirement Village. A connection of the new rising main to the Arrowtown–Lake Hayes wastewater trunk main has been approved.

Figure 4.1 presents an overview of the main existing sewer infrastructure in the vicinity of the Waterfall Park Development area.





Figure 4.1: Schematic overview of existing sewer services in the vicinity of the Northbrook Retirement Village development with the location of a sewer pump station indicated



#### 4.3.1 Capacity of Existing Infrastructure

The capacity of the existing wastewater infrastructure to carry the additional flows from the proposed Waterfall Park Hotel and an adjacent residential development was modelled by QLDC's modelling consultants, BECA, during February 2018. An Addendum to the report was provided by HAL consultants in January 2019. The reports are provided in the Appendices.

At the time of the wastewater modelling, Waterfall Park Developments Ltd were considering a residential development (referred to as Ayrburn Farm) at the Northbrook Retirement Village site. The residential development was estimated to have a peak wet weather flow of 9L/s. The peak wet weather flow estimated for the proposed Northbrook Retirement Village is less than the design flow previously modelled (8.68L/s compared with 9L/s).

The results of the modelling found that the existing 300mm uPVC trunk main running along Arrowtown–Lake Hayes Road has adequate capacity for the additional load from the Waterfall Park Hotel and the residential scenario (now Northbrook Retirement Village) for both the current, 2028, and 2058 design horizons without the need for any infrastructure upgrades. The modelling also indicated that the 150mm mPVC gravity reticulation north of Lake Hayes did not have adequate capacity to carry flows from the hotel and therefore this option has not been progressed.

A new 160 OD PE100 PN12.5 wastewater rising main, now installed alongside the new Waterfall Park Access Road, has been sized to accommodate the flows for both the Waterfall Park Hotel and the Northbrook Retirement Village. The proposed sewer pump station located as shown in Figure 4.1 has been sized to accommodate the Northbrook Retirement Village as part of the Waterfall Park Hotel detailed design.

#### 4.4 Wastewater Servicing for the Proposed Development

From the investigations and modelling undertaken, it is clear that the existing 300mm uPVC trunk main along Arrowtown–Lake Hayes Road has adequate capacity to accept sewer flows from the proposed Northbrook Retirement Village as well as the Waterfall Park Hotel. The 160 OD PE 100 PN12.5 rising main also has capacity to convey flows from the retirement village to the trunk main.

Wastewater servicing for the large majority of the proposed development will comprise of conventional gravity sewer reticulation, falling to the proposed main wastewater pump station located adjacent to the Waterfall Park Hotel Access Road (refer Figure 4.1). Wastewater will be pumped from the main wastewater pump station through the existing 160 OD wastewater rising main and into the 300mm PVC trunk main in the Arrowtown Lake Hayes Road.



Wastewater from six residential units in the southeast corner of the development and wastewater from the Medical Centre and Childcare Centre buildings is not able to be conveyed by gravity. Small package style pump stations are proposed to convey wastewater from these two areas to the gravity–fed wastewater network. The six residential units, Medical Centre, and Childcare Centre buildings that are proposed to feed the small package pump stations are shown on the Paterson Pitts Drawings (refer specifically to sheet 404).

The main wastewater pump station will be a private pump station but will be designed to meet QLDC's standards such that does not preclude it from being vested to Council in the future, if required.



#### 5.0 Water Supply

#### 5.1 Water Supply System Design

The design, sizing, and layout of the water supply network to service the proposed Northbrook development is related to the population served, the facilities to be provided and the water required to maintain the site landscaping. The following aspects relating to the water supply have been investigated to assess water supply requirements:

- Population (i.e. the number of residential units and aged care residents and the number of patrons of the other proposed facilities);
- Water demands both peak and fire fighting requirements;
- Water supply availability;
- Water pressure requirements;
- Water storage requirements;
- Landscaping irrigation requirements; and
- Water quality requirements.

#### 5.2 Water Demand Assessment

# 5.2.1 Domestic and Irrigation Water Demands

As noted in the wastewater assessment presented above, the proposed Northbrook Retirement Village development differs from a conventional residential subdivision in regard to both domestic/commercial water demands and irrigation requirements. For normal residential subdivisions, the property occupancy varies from house to house and can vary seasonally. Water for irrigation use is in the hands of individual households and is largely uncontrolled. For this reason, QLDC sets criteria to cover irrigation requirements on a per capita basis at 700L/p/d, noted in the QLDC COP 2020.

For the Northbrook Retirement development, however, there is greater control over water consumption and irrigation is controlled by the retirement village management company rather than individual residents. The water demand is therefore assessed on a more direct first principles approach. This allows the estimated domestic water demand of the residents to be reduced. The domestic water demand of a 250L/p/d has been adopted (the same as the wastewater demands). Other water demands have been assessed in regard to more specific activities within the development.

Table 5.1 sets out the assessed domestic/commercial demands for the proposed development. The peaking factors provided in the QLDC COP 2020 have been used for the peak hour water demand for most facilities. For the purpose of a conservative assessment, some non–residential facilities have a peak hour factor of 10 applied, as the operating hours (estimated to be between 12–16 hours each day) would impact the peak hour demand. These factors are considered appropriate for this preliminary analysis in terms of providing a conservative demand estimate. Specific irrigation demands are outlined further in Table 5.2 below.



|                                        |                     |                                        |                                                |                                    | Case 1: Do<br>Hour (day<br>no irri | mestic Peak<br>time only,<br>gation) | Case 2: Don<br>Hour (overnig<br>irriga       | nestic Peak<br>ht time, with<br>tion) |    |
|----------------------------------------|---------------------|----------------------------------------|------------------------------------------------|------------------------------------|------------------------------------|--------------------------------------|----------------------------------------------|---------------------------------------|----|
| Northbrook Village<br>Facility         | No. of<br>Buildings | Max No. of<br>People /<br>Facility/Day | Daily Water<br>Demand<br>Per Capita<br>(L/p/d) | Daily<br>Water<br>Demand<br>(m3/d) | Peak Hour<br>Peaking<br>Factor     | Peak Hour<br>Demand<br>(L/s)         | Peak Hour<br>Peaking<br>Factor (50%<br>Peak) | Peak Hour<br>Demand<br>(L/s)          |    |
| Residential Units                      | 162                 | 2                                      | 250                                            | 81                                 | 6.6                                | 6.19                                 | 3.3                                          | 3.09                                  | J, |
| Aged Care Rooms                        | 36                  | 1                                      | 250                                            | 9                                  | 6.6                                | 0.69                                 | 33                                           | 0,34                                  | ノ  |
| Aged Care Staff                        | 1                   | 22                                     | 50                                             | 1.1                                | 6.6                                | 0.08                                 | 3.3                                          | 0.04                                  |    |
| Childcare Centre                       | 1                   | 60                                     | 30                                             | 1.8                                | 6.6                                | 0.14                                 | 3.3                                          | 0.07                                  |    |
| Childcare Staff                        | 1                   | 10                                     | 50                                             | 0.5                                | 6.6                                | 0.04                                 |                                              | 0.02                                  |    |
| Medical Centre                         | 1                   | 192                                    | 20                                             | 3.84                               | 10                                 | 0.44                                 | 5.0                                          | 0.22                                  |    |
| Medical Centre Staff                   | 1                   | 10                                     | 50                                             | 0.5                                | 10                                 | 0.06                                 | 5.0                                          | 0.03                                  |    |
| Active Recreation<br>(including staff) | 1                   | 330                                    | 40                                             | 13.2                               | 10                                 | 1.53                                 | 5.0                                          | 0.76                                  |    |
| Clubhouse<br>(including staff)         | 1                   | 580                                    | 30                                             | 17.4                               | 6.6                                | 1.33                                 | 3.3                                          | 0.66                                  |    |
| Other Staff                            | 1                   | 14                                     | 50                                             | 0.7                                | 6.6                                | 0.05                                 | 3.3                                          | 0.03                                  |    |
| Added Daily Irrigation                 | Volume              |                                        |                                                | 165                                |                                    |                                      |                                              | 5.73                                  |    |
| Total                                  |                     | 11                                     | 6                                              | 294.04                             |                                    | 10.55                                |                                              | 11.00                                 |    |

#### Table 5.1: Assessed Water Supply Design Volumes and Flows

Building occupancies in Table 5.1 above have been selected to reflect maximum estimated daily water demand. These occupancies may vary from building occupancies relevant to fire safety/vehicle numbers etc.

Table 6.2 sets out the assessed irrigation requirement for the Northbrook Retirement Village development. A weekly averaged irrigation application rate of 5mm/day on lawns and landscaped areas has been adopted. This is a conservative allowance for concept design purposes. The irrigation will be on a managed basis over an 8–12 hour period per day, generally overnight, and more particularly avoiding peak domestic water demand periods during the day. This means that the daily irrigation demand will be relatively constant and not subject to the peaking characteristics typical of the domestic demands.



Two peaking factor scenarios have been considered:

- Case 1 peak hour, with no irrigation (i.e. daytime peak)
- Case 2 peak hour (50% domestic peak) plus irrigation over 8 hours (i.e. night time peak)

In Case 2, the peak hour has been reduced by 50% as it considers the night time peak, which would be significantly lower than the day time peak.

The irrigation demands were estimated based on an irrigation rate of 5mm/m²/day over the landscaped area, as shown in Table 5.2 below.

Any irrigation required during the early years of the development for plant establishment has not been included in the overall demand estimates in Table 5.1 as this irrigation will not occur when the buildings are occupied.

| Site                                            | andscaped<br>Area (m²) | Daily Irrigation<br>Rate (mm/m²/d) | brigation<br>Demand<br>(m <sup>3</sup> /day) | Case 2: 50 Peak Water<br>Demand – Night Time<br>with Irrigation ( /s) |
|-------------------------------------------------|------------------------|------------------------------------|----------------------------------------------|-----------------------------------------------------------------------|
| Northbrook Village<br>(Permanent<br>Irrigation) | 33,000                 | 5                                  | 165                                          | 5.73                                                                  |
| Northbrook Village<br>(Temporary<br>Irrigation) | 5,000                  | 5                                  | 25                                           | 0.87                                                                  |

#### Table 5.2: Irrigation Assessment

A point of note; albeit that Waterfall Park Developments Ltd has an existing water take consent to take up to 232.26m<sup>3</sup>/day from Mill Creek for irrigation, which will not be used for the Northbrook Development. It will be used for the proposed Waterfall Park Hotel.

From Tables 5.1 and 5.2, the following water demand requirements (excluding fire fighting) have been established.

| Peak Day Demand                                           | 294.04m <sup>3</sup> /da |
|-----------------------------------------------------------|--------------------------|
| Domestic Peak Hour (daytime only, no irrigation) (Case 1) | 10.55L/s                 |

Domestic Peak Hour (overnight, with irrigation) (Case 2) 11.00L/s

2 Fire Fighting Demands

The design of the water supply system is also required to meet the fire fighting flow and pressure requirements of *SNZ PAS 4509 – NZ Fire Service Firefighting Water Supplies Code of Practice 2013.* Assessment of the development's facilities and the building layouts has resulted in various fire fighting requirements as per *SNZ PAS 4509*, which are detailed in Table 5.3 below.



| uilding                       | Water Supply<br>Classification | Sprinkler System Re uired | <i>t</i> . |
|-------------------------------|--------------------------------|---------------------------|------------|
| Single Level<br>Apartments    | FW2                            | No                        | Å.         |
| Multi–level<br>Apartments     | FW3                            | No                        |            |
| Aged Care Centre & Clubhouse  | FW2                            | Yes                       |            |
| Active Recreation<br>Building | FW3                            | No                        | N S        |
| Childcare Centre              | FW3                            | No. X                     |            |
| Medical Centre                | FW3                            | , N₀                      |            |
| Maintenance                   | FW3                            | No                        | ]          |

#### Table 5.3: Fire Fighting Re uirements of uildings

Facilities that fall under the FW2 water supply classification require a minimum fire fighting supply of a total of 25L/s from two hydrants, at a minimum pressure of 100kPa. An FW 3 water supply classification requires a building to have a minimum fire fighting supply of a total of 50L/s from a maximum of three hydrants at a minimum pressure of 100kPa.

The sprinkler requirements of the Aged Care Centre and Clubhouse have been assessed by Cosgroves Ltd to be a maximum of 12L/s at a pressure of 450kPa. A copy of their correspondence is in the Appendices. As the sprinkler system is in addition to the FW2 requirement, the total fire fighting demand of the Aged Care Centre is 37L/s (12 + 25L/s), in which the minimum residual pressure of 100kPa with hydrants at full flow is required at this location.

The ability of the existing water supply network to provide these firefighting demands is discussed in Section 5.3.2 below.

# 5.3 Existing Water Supply System

Properties south of the Waterfall Park Development area are supplied from the Lake Hayes water storage reservoir, located east of Lake Hayes. The Lake Hayes water storage reservoir has a minimum water level of 435m, compared to building levels of around 347–358m in the Waterfall Park Development area. These levels indicate that there should be adequate pressure available to supply the development from the Lake Hayes reservoir.

The existing water reticulation network in the vicinity of the proposed development is shown in Figure 5.1 below. A 315 OD PE100 PN12.5 water main has been installed along the Waterfall Park Access Road to service the consented Waterfall Park Hotel development. A connection has been made from QLDC's DN225 Arrowtown–Lake Hayes Road water main to the new 315 OD water main in the Waterfall Park Access Road. This 315 OD can also service the proposed Northbrook Retirement Village.





Figure 5.1: Schematic overview of existing water services in the vicinity of the Waterfall Park Development with the potential location of the proposed connection from the 315 D along the Waterfall Park Assess Road



#### 5.3.1 Capacity of Existing Infrastructure – Peak Hour Demand

The capacity of the existing water supply infrastructure to service the Waterfall Park Hotel and an adjacent residential development was modelled by QLDC's modelling consultants, Mott MacDonald, during March and April 2018. Their report is provided in Appendix B.

At the time of the water modelling, Waterfall Park Developments Ltd were considering a residential development at the Northbrook Retirement Village site (called the Ayrburn Farm residential development). In 2018, Mott Macdonald modelled a combined peak flow of 45 L/s including 18.9 L/s for the Waterfall Park Hotel, 1.4 L/s for Ayrburn Domain and 24.7 L/s for the Ayrburn Farm residential development (refer to Table 5.4 below).

The Ayrburn Farm residential development is no longer proposed and has been replaced by the Northbrook Retirement Village (the present application). The estimated combined peak hour flows for the proposed Northbrook Retirement Village (11 L/s) are significantly lower than the estimated peak flows for the previously proposed Ayrburn Farm residentiar development (24.7 L/s), due to the control of irrigation (as stated in Section 5.2.1) refer Table 5.4. The overall peak hour demand for the Waterfall Park Hotel, the Northbrook Retirement Village, and Ayrburn Domain is approximately 31.3 L/s compared to the 45 L/s modelled during 2018 (a reduction of 13.7 L/s).

The results of the 2018 modelling found that the existing DN225mm mPVC Arrowtown–Lake Hayes Road water main has adequate capacity for the additional demand for both the Waterfall Park Hotel and proposed residential development, for both the current and 2028 design horizons without the need for any infrastructure upgrades. The modelling also identified high headlosses in the DN225 Arrowtown–Lake Hayes Road water main during the 2058 design horizon that exceeded the OLDC levels of service.

As the new proposed Northbrook Retirement Village has a lower peak hour demand (11 L/s) than the previously modelled residential development (24.7 L/s), the impact of the combined demand for the hotel plus the Northbrook Retirement Village on the water supply is significantly lower. A hydraulic review using the lower peak hour flow rate for the hotel and retirement village has found that the estimated headloss in the DN225 pipe along the Arrowtown–Lake Hayes Road reduces significantly during the 2058 design horizon and only slightly exceeds the QLDC levels of service. This is summarised in Table 5.4 below and the hydraulic calculations are provided in the Appendices.



# Table 5.4: Summary of peak hour flows modelled by Mott MacDonald in 2018 and updated peak hour flows considering the Northbrook Retirement Village

|                                                        | Waterfall<br>Park Hotel<br>Peak Hour<br>( /s) | Ayrburn Farm<br>Residential<br>Peak Hour<br>( /s) | Northbrook<br>Retirement<br>Village Peak<br>Hour ( /s) | Ayrburn<br>Domain<br>Peak Hour<br>( /s) | Combined<br>Peak Hour<br>Demand<br>( /s) | 2058<br>Headloss<br>in DN225<br>(m/km) |     |
|--------------------------------------------------------|-----------------------------------------------|---------------------------------------------------|--------------------------------------------------------|-----------------------------------------|------------------------------------------|----------------------------------------|-----|
| Original Flows<br>Modelled By Mott<br>MacDonald – 2018 | 18.9                                          | 24.7                                              | _                                                      | 1.4                                     | 45                                       | 7.8                                    | A   |
| Updated Flows with<br>Northbrook<br>Retirement Village | 18.9                                          | -                                                 | 11                                                     | 1.4                                     | 31,3                                     | 5.4*                                   | 30. |

\*Assuming roughness coefficient k of 0.015mm. Headloss in DN225 is calculated based on Mott Macdonald's predicted 'existing' flows plus the additional flows from the Waterfall Park Hotel and Northbrook Retirement Village.

The estimated 2058 headloss in the DN225 water main along the Arrowtown Lake Hayes Road is considered to be acceptable due to the high level of uncertainty associated with estimating flows 40 years in the future.

#### 5.4 Water Servicing for the Proposed Development

From the investigations undertaken, it is clear that the existing DN225 mPVC water main in the Arrowtown-Lake Hayes Road and the 315 OD PE100 PN12.5 water main installed in the Access Road to service the consented Waterfall Park Hotel development has adequate capacity to provide the combined demands to the proposed Waterfall Park Hotel and Northbrook Retirement Village developments.

Water servicing within the proposed Northbrook Retirement Village area will comprise of conventional water reticulation sized to ensure that domestic, fire, and irrigation flows can be maintained at adequate pressures meeting the QLDC COP.

Pressure reducing of the water supply will be required where it services the medical centre and childcare facility as the pressure to these areas of the development has the potential to exceed the QLDC level of service of 90m due to their elevation, especially during periods of low demand. The pressure reducing valve has already been installed as part of the Access Road works.



#### 6.0 Stormwater and Flood Management

#### 6.1 ocal Catchment Stormwater and Flood Flows

6.1.1 Analysis Methodology Summary

In order to evaluate the effects of the development and the appropriate management mechanisms, a hydraulic model of the local catchment in the area around the Northbrook Retirement Village was developed.

The hydraulic and hydrological modelling program Infoworks ICM (ICM) was used to derive the overland flow patterns based on 2D hydraulic calculation algorithms built from 3D ground surface information and soil parameters.

#### Soil Parameters and Roughness

The Horton methodology was used for estimating infiltration losses to the soil based on soil infiltration values adopted from data provided by Akan (1993). The adopted soil values were based on a dry silty loam soil with little to no vegetation, an initial infiltration ( $f_0$ ) of 101.6mm/hr, an ultimate infiltration ( $f_c$ ) of 7.6mm/hr, and a decay rate of 4.1/hr.

Additional to the soil characteristics, the site roughness was also assessed. A roughness Manning's n (n) of 0.075 was chosen to represent the sheet and shallow flow, which delays the flow of water through the pastoral hill catchment upstream of the site. In the spring–fed tributary a roughness of 0.1 was chosen to represent the channel areas with thick vegetation and tree growth as observed by site visits.

Lastly, the impervious areas of the proposed development site were altered to allow for a high rate of runoff in the post-development scenario.

#### Rainfall and Climate Change

A series of triangular rainfall hye ographs (rainfall depth versus time graph) were developed for a range of storm durations and used in the model. The triangular hyetograph methodology, adopted by the Christchurch City Council "Advanced Analysis" method provided in the "Waterways, Wetlands and Drainage Guideline," using recorded data at the Queenstown Airport has been applied for this assessment.

The QLDC COP 2020 requires that climate change be a design consideration. The current QLDC COP 2020 requires inclusion of a temperature increase of 2.1°C to be included as part of the design rainfall hyetographs for the site.

It is understood the NIWA High Intensity Rainfall Distribution System (HIRDS) has recently been upgraded from Version 3 to Version 4. HIRDS Version 4 includes a series of new climate projection models of which the RCP8.5 (2081–2090 time period) model has generally been accepted by local governments and is understood to be preferred by QLDC over HIRDS Version 3 with a 2.1°C temperature increase.



Therefore, in order to provide a more conservative estimate of the flood flows around and within the site, HIRDS Version 4 RCP8.5 (2081–2090) rainfall data has been used in the design.

#### Mill Creek Flows

Flows in Mill Creek have previously been assessed and described in the previous reporting for the Waterfall Park Access Road and Hotel consents (RM171280 and RM180584) Estimated flood flows utilise the Generalised Extreme Value Flow Estimation Methodology and include an allowance for climate change.

Note that the Mill Creek flow path above Waterfall Park is a wide, flat valley that absorbs runoff from the surrounding catchment areas and delays and moderates the flood response at Waterfall Park. The stormwater runoff from the Northbrook Petirement Village site would be immediate compared to the flood response from the greater Mill Creek catchment. Therefore, peak stormwater runoff to Mill Creek would typically occur multiple hours before the peak flood flow from the upper Mill Creek catchment. The stormwater and flood peak flows would not be coincident.

#### Mill Creek Tributary Flows

The tributary to Mill Creek runs through the Northbrook development site (refer to Figure 5.1 below) and discharges to the southeast corner of the site. (it is estimated that the tributary has an estimated spring flow of up to 101/s, but site observation suggests a typical flow of closer to 0-2L/s.

#### 6.1.2 Existing Stormwater and Flood Flow Pathways

Figure 6.1 below shows the existing flow paths within the local catchment around the Northbrook Retirement Village.

The topography of the land means that the site drains towards the spring–fed tributary and Mill Creek via natural overland flow paths. There is no existing stormwater infrastructure on the Northbrook Retirement Village site.







Figure 6.1: Existing Stormwater Flood Flow Pathways – 100yr 2hr Storm Event Flooding Shown 50mm

# 6.2 Proposed Stormwater Management Concept

2010

The proposed stormwater management concept for the Northbrook Retirement Village provides for collection of stormwater runoff from roofs, roads, and open space which is conveyed in a pipe network system, which discharges into a "treatment pond" before being discharged to a "treatment swale". Within the site, there are three separate sub–catchments, which are separated by the spring–fed tributary and the medical/childcare centre.

The stormwater system components are described in the following sections as well as shown in Figure 6.2 below.



SOLUTIONS



#### 6.2.1 Primary Pipe Conveyance System

Stormwater runoff from roofs and roads are collected and discharged directly into the conventional stormwater conveyance pipe network installed in the road reserve (pipe network sized to carry the 20yr Average Recurrence Interval (ARI) peak flow with no surcharging of manholes).

#### 6.2.2 Secondary Overland Flow Paths

The roads are designed to convey flows over and above the pipe network capacity for large storm events and direct overland flow into inlet sumps which discharge to the pipe conveyance system.

During major events and/or very high intensity rainfall events, overland flow from garden and recreation areas would be intercepted by the roads and hence enter sumps in the centre of the road.

#### 6.2.3 Low Point Overflow Discharge

In the event of a large or extreme rainfall event or blockage, an overflow point is located near the main pipe discharge locations to the East treatment ponds. At this point, the flood water would pond up until it overtops the kerb and flows over the hill. It is noted that the estimated ponding level is a maximum of 50–100mm and the estimated overflow rates are less than 100L/s and only occur during major storm events or in the event of a blockage.

#### 6.2.4 Cut-off Drains

The cut–off drains are designed to intercept the clean water flood flows from the hillside catchments to the north and west and discharge flows into the Mill Creek tributary or the table water drain on the north side of the main Northbrook access. The flow from the hillsides is relatively small. Flows from the north are estimated at a peak of 0.02–0.075m<sup>3</sup>/s for the 100yr ARI and flows from the west are approximately 1.2m<sup>3</sup>/s peak for the 100yr ARI.

A maintenance regime would be formed as part of the detailed design in order to ensure debris flows from upstream do not reduce the capacity of the drains.

# 6.2.5 Culvert Crossings

There are a total of five main culvert crossings along the Waterfall Park Access Road swale and the Mill Creek tributary. Additionally, there are a series of driveway crossings and a road crossing over the table drain in the Northbrook Retirement Village main drive (Road 01).

 The culvert diameter for the culvert under the main Northbrook accessway road (Road 01), collecting flow from the Mill Creek tributary, is estimated to be approximately 750mm diameter in order to convey the 0.75–0.9m<sup>3</sup>/s peak flow in the tributary.

There is also a culvert for a footpath crossing over the tributary, located downstream of the accessway road crossing, mentioned above.



- There are also three culvert crossings located directly adjacent to the main Waterfall Park Access Road. These culvert crossings are connected via a swale used for conveyance of the 100yr ARI flow from the western hillside, Northbrook Access Road, and nearby buildings and carparks.
- Lastly, there are a series of culvert crossings over the northern table drain of Road 01. These are designed to allow for driveway access to villas adjacent to Road 01 and access to the northern villas via the feeder road.

#### 6.2.6 Stormwater Treatment System

#### utline

The proposed treatment regime is to utilise mud-tanks within the primary pipe collection and conveyance network that would discharge to a treatment pond to capture the finer suspended sediment and further reduce the typical urban contaminant loads followed by a grassed or vegetated treatment swale for polishing the flow from the pond. For the frequent minor rainfall events, the infiltration of water to ground in the treatment pond and the swales would minimise the discharge of stormwater from the additional impervious surfaces to Mill Creek.

It is noted that the highest proportion of contaminant load compared to runoff in the remainder of the storm (by volume) is highest in the initial runoff from the surface (first flush).

The first flush is generally character sed by a peak in some pollutant loads (such as sediments and metals generated from road and urbanised development) immediately prior to the peak in flow volumes. The smaller storms happen most frequently and therefore transport most of the contaminant load. "Best practice for water quality improvement therefore promotes the capture and treatment of the first flush, where practicable, as this is often more practical and cost effective than treating flow volumes from the entire storm event (Auckland City Guideline Document 01 (GD01))."

# Treatment Ponds

The first fluor is defined as the first 12.5–25mm of direct rainfall runoff from the impervious areas by the Christchurch City Council *"Advanced Analysis"* method provided in the *"Waterways, Wetlands and Drainage Guideline."* The stormwater design allows for hard surface areas to be directed to and captured by the pipe network conveyance system for discharge into the treatment ponds.

Two treatment pond areas (East and West) are proposed to service each of the two sub-catchments of the site. The site is expected to have a low pollutant loading and additionally utilises a combination of first flush pond treatment plus polishing in a swale system (see below sections). Therefore, the minimum pond volume to achieve first flush treatment is based on the first 12.5mm of rainfall runoff from the impervious surfaces as shown in the table below. Additional volume above the 12.5mm rainfall runoff volume requirement will be beneficial. Pond volumes will be confirmed at detailed design stage.



|                    | Western Pond      | Eastern Pond 1    | Eastern Pond 2 |
|--------------------|-------------------|-------------------|----------------|
|                    | Minimum Volume    | Minimum Volume    | Minimum Volume |
| First Flush Volume |                   |                   |                |
| (First 12.5mm from | 258m <sup>3</sup> | 516m <sup>3</sup> | 63m³ 🛛 🌔       |
| Impervious Areas)  |                   |                   |                |

The eastern treatment ponds would be dry ponds, thus allowing the volume to be utilised entirely for the stormwater contaminant runoff. For aesthetic reasons, it is proposed to maintain a wet pond appearance for the western pond, which would be fed from a small inlet pipe from the spring flow in the Mill Creek tributary.

#### **Treatment Swales**

Discharge from the treatment ponds is via a small diameter pipe into a treatment swale sized according to GD01. In larger events, the pond bank is designed to convey overflow to discharge directly into the treatment swale.

|                                                                                                                                                                                                                                                                               | Eastern Swale                                                                                                                                                                                                                                                                                                                       |
|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 0.05m³/s                                                                                                                                                                                                                                                                      | 0.12m <sup>3</sup> /s                                                                                                                                                                                                                                                                                                               |
|                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                     |
| 0.1m                                                                                                                                                                                                                                                                          | -0 1m                                                                                                                                                                                                                                                                                                                               |
| 0. III                                                                                                                                                                                                                                                                        | <0.111                                                                                                                                                                                                                                                                                                                              |
| The lower reach of the spring-fed<br>tributary swale is highly vegetated. In<br>order to avoid use of machinery in the<br>area, the existing cross section and<br>vegetated extent of the flow path has<br>been assessed as being able to<br>provide sufficient treatment for | Both Eastern Ponds 1 and 2<br>discharge into the same treatment<br>swale, which eventually<br>discharges into Mill Creek.                                                                                                                                                                                                           |
|                                                                                                                                                                                                                                                                               | 0.05m <sup>3</sup> /s<br>0.1m<br>The lower reach of the spring–fed<br>tributary swale is highly vegetated, in<br>order to avoid use of machinery. In the<br>area, the existing cross section and<br>vegetated extent of the flow path has<br>been assessed as being able to<br>provide sufficient treatment for<br>secondary flows. |

Erosion protection measures for the pond overflow and swale discharge locations would be developed as part of the detailed design.

# 6.3 Stormwater Contaminant oading Assessment

The volumes of traffic generated by the Northbrook Retirement Village would be relatively low (assessed at 1,075 vehicles per day, two-way), and therefore contaminant loadings would also be relatively low.

Table 6.1 below shows the primary contaminants that are anticipated to be present in the stormwater generated from the Northbrook Retirement Village and the associated assessed risk for the development.



| Contaminant    | Description                                                                                                                                | Assessed |  |
|----------------|--------------------------------------------------------------------------------------------------------------------------------------------|----------|--|
|                |                                                                                                                                            | Risk     |  |
| Suspended      | <ul> <li>TSS is the primary potential contaminant.</li> </ul>                                                                              | Low      |  |
| Solids (TSS)   | <ul> <li>Mudtanks in the primary conveyance network would capture a large</li> </ul>                                                       |          |  |
|                | proportion of the particulate load.                                                                                                        |          |  |
|                | I ne treatment ponds have been sized to deal to the first flush<br>under some the largest properties of the application of the properties. |          |  |
|                | <ul> <li>Lastly, the treatment swales provide time for finer particles to settle</li> </ul>                                                |          |  |
|                | - Lasity, the treatment swales provide time for mer particles to settle                                                                    |          |  |
|                | Creek environment                                                                                                                          |          |  |
| Hydrocarbons   | The primary sources of hydrocarbons are typically generated from                                                                           | Low      |  |
| riyarooarborio | vehicle exhausts and engine oil leaks and are generally only                                                                               |          |  |
|                | considered a concern in high traffic areas (>10.000 vehicles per day)                                                                      |          |  |
|                | (Auckland Unitary Plan – Technical Report 2013/035, August 2013).                                                                          |          |  |
|                | <ul> <li>Hydrocarbons have been found to bind to sediments such that</li> </ul>                                                            |          |  |
|                | removal of total suspended solids is also considered effective at                                                                          |          |  |
|                | removal of total petroleum hydrocarbons.                                                                                                   |          |  |
| Heavy Metals   | <ul> <li>Lead, zinc, and copper metal contaminants are typically associated</li> </ul>                                                     | Low      |  |
|                | with road runoff.                                                                                                                          |          |  |
|                | <ul> <li>The stormwater that is generated from the building roofs is</li> </ul>                                                            |          |  |
|                | anticipated to be free of contamination, as modern roofing materials                                                                       |          |  |
|                | are designed to limit heavy metal loading.                                                                                                 |          |  |
|                | <ul> <li>Heavy metal particulates would bind to suspended sediments, which</li> </ul>                                                      |          |  |
|                | would be treated by removal.                                                                                                               |          |  |
|                | <ul> <li>Additionally, vegetation in the swales would absorb dissolved metal</li> </ul>                                                    |          |  |
|                | particles.                                                                                                                                 |          |  |
| Nutrients      | I he land is currently used as pasture which has a nutrient loading<br>ante the nurrently land                                             | LOW      |  |
|                | As part of the development, the sutrient leading would only be                                                                             |          |  |
| Phosphorus)    | As part of the development, the nutrient loading would only be                                                                             |          |  |
|                | anected by gardening activities which can be managed through the                                                                           |          |  |
|                | <ul> <li>Nitrogen and Phosphorus are not generated by vehicle activities and</li> </ul>                                                    |          |  |
|                | therefore not impacted by the increased vehicle traffic                                                                                    |          |  |
|                | Furthermore, the treatment swales and ponds provide an opportunity                                                                         |          |  |
|                | for nutrients to be reabsorbed by plants.                                                                                                  |          |  |
|                | <ul> <li>Additional information regarding the effects of phosphorus and</li> </ul>                                                         |          |  |
|                | Introgen are found in the Ecology Report (Ryder, May 2020) and                                                                             |          |  |
|                | Groundwater Assessment (JH Rekker Consulting, May 2020).                                                                                   |          |  |

| <b>Table 6.1: Stormwater Contaminant</b> | oading Assessment |
|------------------------------------------|-------------------|
|------------------------------------------|-------------------|

Therefore, the overall stormwater contaminant loading to Mill Creek has been assessed as low and the proposed treatment regime has been developed to further reduce risk of contamination.

During the construction period there would be an increased risk of erosion and sedimentation, increased suspended solids load and increased risk of a hydrocarbon spill. An Earthworks Management Plan and Erosion and Sedimentation Management Plan would be developed for the construction period to mitigate potential risks created by construction.



#### 6.4 Pre- versus Post-development Flow Paths Comparison

As part of the design, it is important to consider the pre– and post–development flow discharges and compare flow paths. Figure 6.3 below shows an example of the pre– and post–development flow paths for the critical 100yr ARI – 2hr duration storm. The "critical" duration storm event is the storm duration that results in the maximum peak flow. As part of the design process a range of design storm rainfall hyetographs (rainfall depth versus time graphs) for durations from 0.5hr to 24hr were analysed. From Figure 6.3, the main flow path through the Northbrook Retirement Village site is the Mill Creek tributary flow in both the pre- and post–development scenarios. There are also more minor flows from the surrounding hill catchments to the north and east which discharge into the tributary.



Figure 6.3: Stormwater Flood Flow Pathways

Figure 6.3: Stor





As part of the design, selected points in the model were used to record maximum estimated flood levels along the Mill Creek tributary for the pre– and post–development stormwater runoff conditions. Additionally, the peak pre- and post-development flow have been estimated from the model results at a flow measure line located at 10m south of the site boundary to check the combined effect of the Western Pond discharges to the Mill Creek tributary and Eastern Pond discharges to Mill Creek. The results of this assessment are described below. For the selected point and flow measure locations refer to Figure 6.4.

Additional to the required 20yr and 100yr ARI storms, the 2yr ARI storm even has also been considered to represent a typical moderate flood flow pattern that would be seen more frequently. Refer to the flood level and flow results in Table 6.1 below.



Figure 6.4: Preliminary Selected Result Measurement ocations

The "typical dry weather flow in the main Mill Creek channel, before the design rainfall storm starts was assumed to be 0.35m<sup>3</sup>/s (350 L/s). When a storm event occurs, runoff from the local hillside catchments to the north and west of the Northbrook Retirement Village, the steep hillside catchment along Mill Creek downstream of the waterfall feature at the northern houndary of the Waterfall Park development site, and the retirement village development area generate a small increase in flow to Mill Creek around the time of the peak of the rainfall.

However, this "typical" flow is not the same as the peak flood flow in Mill Creek. The peak flow from the wider Mill Creek catchment above the waterfall feature arrives at the



Northbrook Retirement Village development site many hours after any local runoff flows. Therefore, the Mill Creek peak flood flows of 10.4m3/s (100yr ARI), 8.5m3/s (20yr ARI), and 4.4m3/s (2yr ARI) occur after the local catchment flows.

In terms of flows, Table 6.1 shows the site runoff flows measured 10m downstream of the site boundary. The location of the flow measure line therefore represents a combination of the flows from the tributary and the main Mill Creek channel. Note that flows are only representative of the local catchment flows, rather than the Mill Creek peak flood flows.

For minor and moderate storm events, in the pre-development condition there is minimal runoff from the local catchments around the retirement village site and along Mill Creek downstream of the waterfall. As a result, for minor and moderate storm events, the assumed typical dry-weather flow in Mill Creek ("typical" flow) persists until the flood flow begins to arrive from the major Mill Creek catchment above the waterfall.

In the post-development situation, the flows are affected by the increased impervious surfaces of the Northbrook Retirement Village, the Access Road, and effect of the Eastern and Western Ponds which have some detention benefit. In the 2yr ARI pre-development situation, there is negligible flow from the local hill catchments. Therefore, the 2yr ARI pre-development flow at the site boundary consists of mainly the "typical" flow in the main Mill Creek channel.



|                                                                               | Pre-development       | Post-development      | Difference<br>(Post Minus Pre) |              |  |
|-------------------------------------------------------------------------------|-----------------------|-----------------------|--------------------------------|--------------|--|
| 100yr, 2hr                                                                    |                       |                       |                                |              |  |
| Point 1                                                                       | 361.94m               | 361.94m               | 0m                             |              |  |
| Point 2                                                                       | 357.45m               | 357.43m               | -0.02m                         |              |  |
| Point 3                                                                       | 350.70m               | 350.69m               | -0.01m                         |              |  |
| Point 4                                                                       | 349.18m               | 349.11m               | -0.07m                         | <b>Shr</b>   |  |
| Point 5                                                                       | 346.70m               | 346.67m               | <b>-0</b> .03m                 |              |  |
| Point 6                                                                       | 346.06m               | 346.05m 🔸             | -0.01m                         | $\mathbf{O}$ |  |
| Point 7                                                                       | 344.86m               | 344.80m               | –0.06m                         |              |  |
| Point 8                                                                       | 344.02m               | 344.00m               | -0.02m                         |              |  |
| Point 9                                                                       | 342.84m               | 342.81m               | -0.03m                         |              |  |
| Flow at 10m South of DS<br>Boundary (excluding Mill<br>Creek peak flood flow) | 6.3m³/s               | 4.0m³/s               | –2.3m³/s                       |              |  |
| 20yr, 6hr                                                                     |                       |                       |                                |              |  |
| Point 1                                                                       | 361.80m               | 361.81m               | +0.01m                         |              |  |
| Point 2                                                                       | 357.26m               | 357.32m               | +0.06m                         |              |  |
| Point 3                                                                       | 350.50m               | 350.56m               | +0.06m                         |              |  |
| Point 4                                                                       | 348.96m               | 348.91m               | –0.05m                         |              |  |
| Point 5                                                                       | 346.52m               | 346.52m               | 0m                             |              |  |
| Point 6                                                                       | 345.88m               | 345.87m               | –0.01m                         |              |  |
| Point 7                                                                       | 344.72m               | 344.71m               | –0.01m                         |              |  |
| Point 8                                                                       | 343.94m               | 343.93m               | –0.01m                         |              |  |
| Point 9                                                                       | 342.76m               | 342.75m               | –0.01m                         |              |  |
| Flow at 10m South of DS<br>Boundary (excluding Mill<br>Creek peak flood flow) | 2.5m³/s               | 1.7m <sup>3</sup> /s  | –0.8m <sup>3</sup> /s          |              |  |
|                                                                               | 2yr, 6hr              |                       |                                |              |  |
| Flow at 10m South of DS<br>Boundary (excluding Mill<br>Creek peak flood flow) | 0.39m <sup>3</sup> /s | 0.53m <sup>3</sup> /s | +0.14m³/s                      |              |  |

#### Table 6.1: Preliminary Results – Flood evels and Discharge Flows

Overall, the results show flood levels are relatively unchanged in the 20yr and 100yr ARI events and are coupled with decreases in peak discharge flows. These decreases in peak discharge flows are a result of the effect of the detention areas of the Northbrook Eastern and Western Ponds as well as the positioning of the Access Road.

For the 2yr ARI event, there is an increase in peak flow from the pre-development to the post-development scenario due to the increased impervious area compared to minimal runoff from the rolling hill and plateau catchments in the pre-development situation as described above. The impervious areas prevent the absorption of rain in the underlying ground and therefore the runoff from the impervious areas is immediate. There is stormwater detention provided in the Eastern and Western Ponds, but the size of the pond outlets allow



a modest unrestricted flow. The small increase in post-development flow of  $+0.14m^3/s$  (140 L/s) for the 2yr ARI design storm is considered to have minimal practical effect in Mill Creek downstream of the site compared to the peak Mill Creek flood flow of  $4.4m^3/s$  (4,400 L/s) that would occur hours after the local stormwater flows have discharged.

#### 6.5 perations and Maintenance

It is proposed that the operations and maintenance regime for the retirement village would include routinely monitoring the condition of the cutoff swales, culvert crossings, and treatment ponds and swales. Routine operations surveillance would include inspections of the stormwater and flood management structures after major storm events and annual inspections would monitor the condition and capacity of the swales and assess the deposition of sediment in the ponds against the minimum treatment volume required. Where trigger conditions occur, such as elevated sediment levels, maintenance requirements would be flagged in the course of the inspections and corrective action would be planned and implemented to reinstate the required state.

#### 6.6 Statutory Assessment

#### 6.6.1 Regional Plan: Water for Otago

The tributary to Mill Creek runs through the Northbrook Retirement Village site. As part of the development, it is proposed to construct culvert crossings to allow for vehicle and pedestrian access. It is also proposed to discharge treated stormwater from the development into the Mill Creek tributary via a pond and swale system. The western pond is proposed to be a wet bottom pond fed via the spring flow from the tributary.

The Regional Plan: Water for Otago (RPW) defines a "river" as "a continually or intermittently flowing body of fresh water, and includes a stream and modified watercourse; but does not include any artificial watercourse (including an irrigation canal, water supply race, canal for the supply of water for electricity power generation, and farm drainage canal)." Therefore, although the Mill Creek tributary flows intermittently, it is defined as a "river" under the RPW.

The proposed design would have minimal, if any, effect on the stability of the tributary channel and flood capacity. From a water quality perspective, stormwater discharged from the site would undergo a treatment in sumps, swales and ponds to ensure the water quality in Mill Creek is not affected.

Pursuant to the RPW, consent is required from the Otago Regional Council (ORC) for the following activities:

- Construction of vehicle and pedestrian crossings
  - 1 vehicle crossing culvert
- 2 pedestrian and cycle crossings culvert and boardwalk
- Disturbance of the bed of a river
  - Small weir structures in the channel bed
  - Vehicle crossing construction (Road 01)


- Pedestrian and cycle crossings
- Localised shaping of the channel bed

Additionally, two design elements for the site were assessed as permitted activities under the RPW:

- The discharge of stormwater from the development site to the tributary
- The diversion of water to keep a wet bottom pond fed from the spring flow in the tributary

The activities requiring consent and activities assessed as permitted are discussed in more detail in the below sections.

#### Vehicle and Pedestrian Crossing Construction

Section 13 of the RPW sets out the rules for land use activities in the bed of a lake or river including construction of bridges and culverts. In relation to the construction of the vehicle and pedestrian crossings as part of the Northbrook Retirement Village, Rule 13.2.1.7 of the RPW states the following (comment is provided on the compliance with each condition):

#### Rule 13.2.1.7:

The erection or placement of any single span bridge including for pipes over the bed of a lake or river, or any Regionally Significant Wetland, is a permitted activity, providing:

| Rule 13.2.1. Conditions                           | Compliance with Conditions                        |
|---------------------------------------------------|---------------------------------------------------|
| (a) The bridge or its erection or placement does  | Compliant. The pedestrian and vehicle             |
| not cause any flooding, nor cause any             | crossings have been designed to ensure that       |
| erosion of the bed or banks of the lake or        | they do not cause flooding, erosion, or property  |
| river, or Regionally Significant Wetland, or      | damage. Additionally, the expected velocities in  |
| property damage: and                              | the tributary are expected to be low (<1m/s for   |
|                                                   | the 100yr ARI event).                             |
| (b) No more than 20 metres of bridge occurs on    | Compliant. The vehicle and pedestrian             |
| any 250 metre stretch of any lake or river;       | crossings are less than 20m.                      |
| and                                               |                                                   |
| (c) There is no reduction in the flood            | Compliant. The crossings are to be designed to    |
| conveyance of the lake, river or Regionally       | ensure there is no reduction in flood             |
| Significant Wetland; and                          | conveyance for a 100yr ARI event.                 |
| (d) The bridge soffit is no lower than the top of | Non–Compliant. The pedestrian crossings           |
| the higher river bank; and                        | would be below the top of bank level.             |
| (e) The bridge and its abutments are secured      | Compliant. The crossings would be constructed     |
| against bed erosion, flood water and debris       | to be secured against erosion, flood water, and   |
| loading; and                                      | debris loading. The pedestrian crossings are to   |
|                                                   | be overtopped in large flood events. The          |
|                                                   | vehicle crossing is to be situated above the      |
|                                                   | 100yr ARI flood level. Should the vehicle         |
|                                                   | crossing culvert become blocked, flood levels     |
|                                                   | would build up on the upstream side until the top |



| Rule 13.2.1. Condition                                                                                                 | ns                                                                                  | Compliance with Conditions                                                |   |
|------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------|---------------------------------------------------------------------------|---|
|                                                                                                                        |                                                                                     | of road height is reached, at which point water would flow over the road. |   |
| <ul> <li>(f) Where the bridge is<br/>stock, measures are<br/>waste entering the la<br/>Significant Wetland;</li> </ul> | intended for use by<br>e taken to avoid animal<br>ake, river or Regionally<br>e and | Compliant. The crossings are not intended to be used by stock.            |   |
| (g) If the bridge is situat<br>land, then public acc<br>is maintained.                                                 | ted over or on public<br>cess over the public land                                  | Compliant. The crossings are not situated on or over public land.         | 8 |

The development proposal does not comply with regard to Rule 13.2.1.7 (d) and therefore consent is required for a discretionary activity.

Any boardwalks would be built as a permitted activity under Rule 13.2.1.7A and would be designed to not cause flooding or erosion.

## Disturbance of the River ed

From Section 8.2 of the RPW, the issues to be addressed specific to "disturbance" of the bed and margins of a "river," being the Mill Creek tributary are as follows:

Changes in the nature of the flow of water and sediment caused by activities in, on, under or over the bed or margin of a lake or river, can adversely affect:

- a. The stability and function of existing structures;
- b. The bedform of the take or river;
- c. Bed and bank stability; and
- d. Flood carrying capacity.

In relation to the implementation of small weir structures to create ponding areas in the Mill Creek tributary, the design meets the following requirements:

1. There must be no adverse effects due to flood flows on property downstream and no adverse effects on adjacent land as a result of the proposed works.

The proposed mitigation measures are based on observations of the current waterway flow regime and are therefore consistent with the waterway's future use.

The waterway is designed to confine the design flood flows that could affect buildings proposed on the site.



Rules 13.5.1.1 and 13.5.1.3 of the RPW refer to disturbance of the bed of a river. The proposed works will not comply as "the time necessary to carry out and complete the whole of the work within the wetted bed of the lake or river" is estimated to exceed 10 hours in duration, and therefore a resource consent is required. The other conditions in Rules 13.5.1.1 and 13.5.1.3 including limiting sedimentation and erosion during construction would be included in the earthworks management plan and erosion and sediment control plan prepared prior to construction.

#### Stormwater Discharge

Section 12.B.1.8 of the RPW provides rules relevant to the discharge of stormwater to water, or to land where it may enter water. The discharge of stormwater is a permitted activity provided that conditions (a) to (d) are met. Table 6.2 below lists each of these conditions and specifies how compliance with these conditions is achieved.

| Rule 121.8 Conditions                                                                                                                                                                                                                                                                                                                                    | Compliance with Conditions                                                                                                                                                                                                                 |
|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| The discharge of stormwater from a reticulated stormy<br>circumstances where it may enter water, is a permittee                                                                                                                                                                                                                                          | ater system to water, or onto or into land in activity, providing:                                                                                                                                                                         |
| <ul> <li>(a) Where the system is lawfully installed, or extended, after 28 February 1998:</li> <li>(i) The discharge is not to any Regionally Significant Wetland; and</li> <li>(ii) Provision is made for the interception and removal of any contaminant which would give rise to the effects identified in Condition (d) of this rule; and</li> </ul> | <ul> <li>(i) The discharge is not to a Regionally<br/>Significant Wetland.</li> <li>(ii) The first flush interception ponds and<br/>treatment swales provided for the removal of<br/>suspended solids.</li> </ul>                          |
| (b) The discharge does not contain any human sewage; and                                                                                                                                                                                                                                                                                                 | The stormwater is predominantly from a natural grassed catchment that would include road and roof runoff and therefore would not contain human sewage. Sewage is to be discharged to the QLDC wastewater collection and treatment network. |
| (c) The discharge does not cause flooding of any other person's property, erosion, land instability, sedimentation, or property damage; and                                                                                                                                                                                                              | The design of the stormwater management<br>system would ensure that the discharge does<br>not cause flooding, erosion, land instability,<br>sedimentation, or property damage.                                                             |
| (d) The stormwater discharged, after reasonable mixing, does not give rise to all or any of the following effects in the receiving water:                                                                                                                                                                                                                | The stormwater discharge would not give rise to these effects after reasonable mixing.                                                                                                                                                     |
| <ul> <li>(i) The production of any conspicuous oil or<br/>grease films, scums or foams, or floatable or<br/>suspended materials; or</li> </ul>                                                                                                                                                                                                           |                                                                                                                                                                                                                                            |
| (ii) Any conspicuous change in the colour or visual clarity; or                                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                            |

#### Table 6.2: Compliance with Rule 12. .1.8.



| Rule 121.8 Conditions                                                            | Compliance with Conditions |
|----------------------------------------------------------------------------------|----------------------------|
| (iii) Any emission of objectionable odour; or                                    |                            |
| (iv) The rendering of fresh water unsuitable for consumption by farm animals; or | <u>k</u>                   |
| (v) Any significant adverse effects on aquatic<br>life.                          | <b>O</b> *                 |

The conclusion of the stormwater discharge assessment of effects, see below demonstrates compliance with the permitted activity rules for RPW.

The objective for stormwater management and effects mitigation planning has been to collect stormwater that falls on roofs, roads, or travels towards the road from open space areas and direct runoff to treatment ponds and swales for the removal of potential contaminants and discharge the collected stormwater to Mill Creek, in compliance with ORC rules and the QLDC COP 2020.

The stormwater quality mitigation measures are considered to be adequate to ensure that stormwater discharge from the road would be in compliance with rule 12.B.1.8 of the RPW and the effects on Mill Creek would be less than minor. Implementation of the Earthworks Management Plan and Erosion and Sediment Management Plan would ensure compliance with rule 12.B.1.8 of the RPW during the earthworks period.

#### **Diversion of Water**

The diversion of water from the spring–fed tributary is considered to be a permitted activity under Rule 12.3.2.1 of the RPW. In this case, the estimated size of the catchment is less than 50ha and the dam/diversion would be a low level weir with a small diameter culvert to take a portion of the natural flow and discharge it into the proposed stormwater pond, from which the water is again discharged to the tributary approximately 35m downstream of the take location.

## 6.6.2 QLDC Land Development and Subdivision Code Practice

The stormwater infrastructure has been designed to meet the requirements of the QLDC COP 2020. The QLDC COP 2020 contains requirements for mitigating the adverse stormwater effects due to land development for urban use.

Design Capacity

The design capacity required for the primary and secondary flow paths is specified in Clause 4.5.3.2 of the QLDC COP 2020. The primary flow path is to be designed for a 20yr ARI without surface flooding. Where there is no secondary flow path, the primary system is to be designed for a 100yr ARI worst case flow without surface flooding.

The reticulation network is designed to confine and convey stormwater for a 20yr ARI event without significant surface flooding. The roads have capacity to convey flow in excess of the 20yr ARI event up to the 100yr ARI flow as a secondary flow path.



#### **Downstream Flow Mitigation**

To prevent significant adverse effects, the stormwater management system is required to address flows up to the 100yr ARI storm frequency to pre-development flow rates at the site boundary (Clauses 4.2.4 and 4.2.7).

The estimated peak flow at the southern boundary of the site is less in the 20yr and 100yr ARI post-development scenario than the pre-development scenario.

The 2yr ARI event is more representative of the everyday type flows that would occur. For the 2yr ARI event, there is a small increase in flow from the Mill Creek tributary (about 140L/s) due to the higher impervious area due to development. The existing tributary channel is well vegetated and portions upstream of the pond are proposed to be more heavily vegetated as part of the proposed development landscaping plans. Therefore, no additional erosion risk is assessed as a likely outcome. It is assessed that the increase in flow will have minimal, if any, effect. Note that the peak flood flow for Mill Creek is in the order of 4,400L/s and will occur several hours after the local stormwater flows. An increase of 140L/s for the stormwater flows is unlikely to adversely impact Mill Creek or the downstream environment.

#### **Stormwater Quality**

Clause 4.2.8 of the QLDC COP 2020 specifies that stormwater treatment devices can be required to avoid adverse effects on downstream water quality. The focus on the management to preserve receiving water quality is becoming an increasingly important focus for QLDC. An adequate treatment system has been proposed with the focus on intercepting suspended solids in order to reduce a contamination risk to Mill Creek.

#### uilding Freeboard evels

The freeboard requirements from the QLDC COP have been adopted as the minimum freeboard specification for the retirement village. Clause 4.3.5.2 is copied below:

he minimum freeboard neight additional to the computed top water flood level of the 1% AEP esign storm should be as follows or as specified in the district or regional plan:

| Freeboard                                                | Minimum height |
|----------------------------------------------------------|----------------|
| Habitable dwellings (including attached garages)         | 0.5 m          |
| CommerciaPand industrial buildings                       | 0.3 m          |
| Non-habitable residential buildings and detached garages | 0.2 m          |

The minimum freeboard shall be measured from the top water level to the building platform level of the underside of the floor joists or underside of the floor slab, whichever is applicable.

Please also refer to Figure 6.5 below which summarises the freeboard requirements for the site as per the QLDC COP which are met as part of the design.





Figure 6.5: Freeboard Re uirements

## 6. Recreation Area Flood Assessment

The development proposal also includes an allowance for mounding and a recreation area located on the eastern bank of Will Creek. There are no buildings proposed for this area (only playing fields) and therefore the minimum freeboard requirements in the QLDC COP 2020 do not apply. Based on an initial assessment of the Mill Creek flow patterns, the tennis court and bowling green area is situated above the 100yr ARI flood level.

Golf holes are also proposed on the northern side of the Waterfall Park Access Road. These involve minor reshaping (cut-fill balanced) of the existing ground levels only and will not affect any flow paths or detention volume allowances.

## Mobility Scooter Parking and us Stop Areas Flood Conveyance

As part of the Waterfall Park Access Road design, stormwater runoff from the road and flood waters in the vicinity of the mobility scooter parking and bus stop area are collected and conveyed via a swale system located on the north and south sides of the Access Road. The mobility scooter parking and bus stop will not affect the flood conveyance of these swales and any stormwater runoff from increased impervious area from the parking area or bus stop to the surrounding grassed areas would be negligible. Figure 6.6 below shows how the



mobility scooter parking area does not affect the Access Road swale system. Refer to Paterson Pitts drawings for additional information.





Receased in the intermediate Modelling Report

## Report

# Waterfall Park Development Wastewater Modellin

This report has been prepared by Beca on the specific instructions of our Client. It is solely for our Client's use for the purpose for which it is intended in accordance with the agreed scope of work. Any use or reliance by any person contrary to the above, to which Beca has not given its prior written consent, is at that person's own risk.



## **Revision History**

| Tracey Myers       Draft Report       8/2/18         Tracey Myers       Report updated with Developer's<br>Comments       16/2/18         Tracey Myers       Final Report       19/04//6         Ocument Acceptance       Final Report       23/04/18         eviewedrov       Dan Steveps       Final Report       23/04/18         pprevediev       Dan Steveps       24/04/18       24/04/18                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | evision Nº  | Prepared By                           | Description                     | Date 🕻   |
|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------|---------------------------------------|---------------------------------|----------|
| Tracey Myers       Report updated with Developer's<br>Comments       16/2/18         Tracey Myers       Final Report       19/04/r6         Image: State of the st      |             | Tracey Myers                          | Draft Report                    | 8/2/18   |
| Comments       19/04/r8         Tracey Myers       Final Report       19/04/r8         Image: State of the state of |             | Tracey Myers                          | Report updated with Developer's | 16/2/18  |
| Comment Acceptance     Signed     Date       epared by     Pacey Myers     Thus     23/04/18       sviewed by     Pacey Myers     Thus     24/04/18       proved by     Dan Stevens     24/04/18                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |             | Tracev Myers                          | Final Report                    | 19/04/18 |
| cument Acceptance       Signed       Date         cument Acceptance       Signed       23/04/18         cument by       Pacey Myers       23/04/18         cument by       Date (ens)       24/04/18         cument of       Brea bignified       Common (cument)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |             |                                       |                                 |          |
| Signed       Date         epared by       Pacey Myers         viewed by       Dan Stevens         preved by       Dan Stevens         preved by       Dan Stevens         binnet       Signed                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |             |                                       |                                 |          |
| ocument Acceptance     Signed     Date       ction     Name     Signed     Date       repared by     Dacey Myers     23/04/18       eviewed by     Dan Stevens     24/04/18       ppreved ey     Dan Stevens     24/04/18       technalit of     Beca biminted     Date                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |             |                                       |                                 |          |
| Ction       Name       Signed       Date         repared by       Dacey Myers       23/04/18         eviewed by       Dan Steveps       24/04/18         opreved by       Dan Stelens       24/04/18         tenalif of       Beca bignited       Common Steveps                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |             |                                       |                                 | つ へ・     |
| ocument Acceptance       Signed       Date         ction       Name       Signed       23/04/18         repared by       Dacey Myers       23/04/18         eviewed 6y       Dath Stevens       24/04/18         ppreved by       Dan Stevens       24/04/18         hbehalf of       Beca bimited       Content Stevens                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |             |                                       |                                 |          |
| ocument Acceptance     Signed     Date       ction     Nime     Signed     23/04/18       repared by     Pacey Myers     23/04/18       eviewed for     Dan Stevens     24/04/18       ppreved by     Dan Stevens     24/04/18       behalf of     Bica biminted     Stevens                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |             |                                       |                                 |          |
| ocument Acceptance       Signed       Date         ction       Name       Signed       Date         repared by       Dracey Myers       23/04/18         eviewed by       Dan Stevens       24/04/18         ppreved by       Dan Stevens       24/04/18         hbehalf of       Bica himited       Stevens                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |             |                                       | U.                              |          |
| ocument Acceptance       Signed       Date         ction       Name       Signed       Date         repared by       Dracey Myers       23/04/18         eviewed by       Dan Steveps       24/04/18         ppreved by       Dan Stevens       24/04/18         hbehalf of       Beça himited       Stevens                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |             |                                       |                                 |          |
| ocument Acceptance       Signed       Date         ction       Nz me       Signed       Date         repared by       Dracey Myers       23/04/18         eviewed by       Dan Stevens       24/04/18         pproved by       Dan Stevens       24/04/18         hbenalf of       Beca biminted       Stevens                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |             |                                       |                                 |          |
| ction     Name     Signed     Date       repared by     Pacey Myers     23/04/18       eviewed by     Dan Stevens     24/04/18       ppreved by     Dan Stevens     24/04/18       hbehalf of     Beca himited     Stevens                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |             |                                       |                                 |          |
| ocument Acceptance       Signed       Date         ction       Name       Signed       Date         repared by       Datesy Myers       23/04/18         eviewed by       Date       24/04/18         ppreved by       Dan Stevens       24/04/18         ppreved by       Dan Stevens       24/04/18         benalf of       Beca him/fted       Date                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |             |                                       |                                 |          |
| ocument Acceptance         ction       Nz me       Signed       Date         repared by       Dracey Myers       23/04/18         eviewed by       Dan Stevens       24/04/18         pprevad by       Dan Stevens       24/04/18         hbenalf of       Béca Limited                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |             |                                       |                                 |          |
| ocument Acceptance     Signed     Date       ction     Name     Signed     Date       repared by     Dacey Myers     23/04/18       eviewed by     Dan Stevens     24/04/18       pproved by     Dan Stevens     24/04/18       hbenalf of     Baca Lignified     Date                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |             |                                       |                                 |          |
| ction       Name       Signed       Date         repared by       Dacey Myers       23/04/18         eviewed ov       Dan Stevens       24/04/18         ppreved by       Dan Stevens       24/04/18         hbenalf of       Beca Limited       Communication                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |             |                                       |                                 |          |
| ocument AcceptancectionNameSignedDaterepared byDracey Myers23/04/18eviewed byDan Stevens24/04/18pproved byDan Stevens24/04/18pproved byDan Stevens24/04/18hbenalf ofBeca Limited                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |             |                                       |                                 |          |
| ocument AcceptanceSignedDatectionNameSignedDaterepared byDacey Myers23/04/18eviewed byDan Stevens24/04/18pproved byDan Stevens24/04/18hbenalf ofBeca Limited                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |             | · · · · · · · · · · · · · · · · · · · | $\sim$                          |          |
| ocument AcceptancectionNameSignedDaterepared byTracey Myers23/04/18eviewed byDan Stevens24/04/18pproved byDan Stevens24/04/18hbehalf ofBeca Limited                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |             |                                       |                                 |          |
| ocument AcceptancectionNzmeSignedDaterepared byPracey Myers23/04/18eviewed byDan Stevens24/04/18pproved byDan Stevens24/04/18hbehalf ofBeca Limited                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |             |                                       |                                 |          |
| ctionNameSignedDaterepared byPracey Myers23/04/18eviewed byDan Stevens24/04/18ppreved byDan Stevens24/04/18hbehalf ofBeca himfted                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |             |                                       |                                 |          |
| ctionNameSignedDaterepared byPracey Myers23/04/18eviewed byDan Stevens24/04/18pproved byDan Stevens24/04/18hbehalf ofBeca himfted                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | ocument A   | cceptance                             | <b>CO</b>                       |          |
| ctionNameSignedDaterepared byPracey Myers23/04/18eviewed byDan Stevens24/04/18pproved byDan Stevens24/04/18hbehalf ofBeca Limited                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |             |                                       |                                 |          |
| ctionNameSignedDaterepared byPacey Myers23/04/1823/04/18eviewed byDan StevensDate24/04/18pproved byDan StevensDate24/04/18hbehalf ofBeca himftedExample                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |             |                                       |                                 |          |
| repared by     Pracey Myers     23/04/18       eviewed by     Dan Stevens     24/04/18       pproved by     Dan Stevens     24/04/18       hbehalf of     Beca Limited                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | ction       | Name                                  | Signed                          | Date     |
| eviewed by     Dan Stevens     24/04/18       pproved by     Dan Stevens     24/04/18       hbehalf of     Beca Limited                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | repared by  | Tracey Myers                          | TMUSS                           | 23/04/18 |
| pproved by Dan Stevens 24/04/18 24/04/18                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | Paviawad by | Dan Stevens                           | inges                           | 24/04/18 |
| pproved by Dan Stevens 24/04/18 24/04/18                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | teviewed by |                                       | DOGerson                        |          |
| Thenalf of Beca Limited                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |             |                                       |                                 |          |
| Nbenalf of Beca Limited                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | pproved by  | Dan Stevens                           |                                 | 24/04/18 |
| behalf of Deca Lumied                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |             | Dan Stevens                           | D. 2 mars                       | 24/04/18 |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | behalf of   | Dan Stevens                           | D. e. trasmo                    | 24/04/18 |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |             | Dan Stevens<br>Beca Limited           | Degrams                         | 24/04/18 |

**III Beca** 

2

# Contents

| 1   | Background1                                 |                                                       |  |  |  |  |
|-----|---------------------------------------------|-------------------------------------------------------|--|--|--|--|
| 2   | Demand and Loads to the Wastewater Network1 |                                                       |  |  |  |  |
|     | 2.1                                         | Development Demand Assessment                         |  |  |  |  |
|     | 2.2                                         | Loads in the Wastewater Network                       |  |  |  |  |
| 3   | Desi                                        | gn Horizon Checks                                     |  |  |  |  |
|     | 3.1                                         | Scenario 1 – DWF Gravity Fed to Speargrass Flat Road2 |  |  |  |  |
|     | 3.2                                         | Scenario 2 – DWF Pumped to Arrowtown-Lake Hayes Road  |  |  |  |  |
|     | 3.3                                         | Scenario 3 – WWF Pumped to Arrowtown-Lake Hayes Road  |  |  |  |  |
| 4   | 4 Future Upgrades Required3                 |                                                       |  |  |  |  |
|     | 4.1                                         | Scenario 1a3                                          |  |  |  |  |
|     | 4.2                                         | Scenario 3                                            |  |  |  |  |
| 5   | Cond                                        | clusion                                               |  |  |  |  |
| Ap  | per                                         | ndices                                                |  |  |  |  |
| Арр | endi                                        |                                                       |  |  |  |  |
|     | Plans                                       |                                                       |  |  |  |  |
| Арр | endix                                       |                                                       |  |  |  |  |
|     | INTION                                      | is to the Lake Hayes Hump Stations                    |  |  |  |  |

## **Appendices**

#### Appendix A

#### Appendix B

#### Appendix C

Outflows from the Lake Hayes Pump Stations

Appendix D

Releasi

Long Section

**調Beca** 

## 1 Background

Beca Limited (Beca) have been engaged by Queenstown Lakes District Council (QLDC) to model a new development at Waterfall Park, Lake Hayes (see Appendix A, Development Plan). Modelling work has been completed previously for this development. However, the development has now expanded, and further modelling work is required.

## 2 Demand and Loads to the Wastewater Network

#### 2.1 Development Demand Assessment

We have been given average, and peak flow information by the developer. We have converted these flows into population equivalents, as this is what the model uses. The daily flow per person in the QLDC Land Development and Subdivision Code of Practice is 250 E/day. The population equivalent for the average flows are given in Table 1 below.

| Table 1 - Population Equivalent for hows |                           |                                        |                                    |  |  |
|------------------------------------------|---------------------------|----------------------------------------|------------------------------------|--|--|
| Development Type                         | Average Daily Flows (L/s) | Total Daily Flows<br>(m <sup>3</sup> ) | Population<br>Equivalent (rounded) |  |  |
| Hotel                                    | 2.9                       | 247.1                                  | 988                                |  |  |
| Residential                              | 1.8                       | 156.4                                  | 626                                |  |  |

We have, therefore, used a population equivalent of 1,614 in the wastewater model to represent the flows.

Appendix A, **Figure 1** shows the sewer network in the vicinity of the new development, and includes the modelled network for the development.

#### 2.2 Loads in the Wastewater Network

The peak wet weather flows entering the Lake Hayes #1 and #2, and Bendemeer pump stations are given in Table 2 below. Appendix B, **Figures 2 to 10**, show the peak wet weather flows entering the pump stations during the 2 year ARI event. Appendix C, **Figures 11 to 19**, show the flows discharging from the pump stations during the same period. No pump curve has been provided for the Lake Hayes #2 pump station and a fixed flow rate has been set at 16 L/s for both pumps.

| Pump Station  | Current WWF (L/s) | 2028 WWF Including<br>Growth Model (L/s) | 2028 WWF with<br>Growth Model and<br>Waterfall Park Flows<br>(L/s) |
|---------------|-------------------|------------------------------------------|--------------------------------------------------------------------|
| Lake Hayes #1 | 15                | 21                                       | 21                                                                 |
| Lake Haves #2 | 24                | 25                                       | 25                                                                 |
| Bendemeer     | 146               | 148                                      | 157                                                                |

#### Table 2 - Peak Flows Entering Lake Hayes #1 and #2 Pump Stations

We removed the Waterfall Park flows that were previously included in the growth model before we simulated the runs. The Waterfall Park development has a peak dry weather flow of 11.7 L/s, and a peak wet weather flow of 23.4 L/s.



## **3 Design Horizon Checks**

We have simulated three scenarios, using the 2028, and 2058 design horizons. The simulations have been run with a 2year ARI design storm event, which is the standard Level of Service for QLDC. Appendix D, **Figures 20 to 23** show the peak wet weather flow in the long sections.

#### 3.1 Scenario 1 – DWF Gravity Fed to Speargrass Flat Road

This is the developer's preferred option. In the previous modelling work, the network had insufficient capacity to take the extra flows from Waterfall Park. Therefore, we were requested to initially simulate dry weather flow from the development, but with wet weather flows in the rest of the model. Simulating the dry weather flow only allows us to see the impact of minimising the development inflow and infiltration on the existing network.

Without the development, one manhole (SM11957) floods downstream of the Lake Hayes #1 PS

When the full development is added, three manholes flood upstream of the Lake Hayes #1PS. These manholes are SM11804, SM11807, and SM11930.

The capacity in the current network is 7.1 L/s. Adding a peak residential flow of 4.5 L/s leaves the remaining capacity as 2.6 L/s, without adding any storage at the development. Therefore, the remaining flow from the development will need to be stored.

#### 3.1.1 Scenario 1a – Residential DWF Gravity Fed to Speargrass Flat Road

We simulated the DWF for only the residential development, with the wet weather flows in the rest of the model. The network upstream of the take Hayes #1 pump station has capacity to take these flows.

## 3.1.2 Scenario 1b - Hotel DWF Gravity Fed to Speargrass Flat Road

We simulated the DWF for only the hotel development, with the wet weather flows in the rest of the model. One manhole (SM11930) floods. Therefore, the network upstream of the Lake Hayes #1 pump station does not have the capacity to take the hotel flows.

## 3.2 Scenario 2 – DWF Pumped to Arrowtown-Lake Hayes Road

We modelled a pump station, and 300mm diameter rising main to take the flows to connect into the existing network on Arrowtown-Lake Hayes Road. The pump rate is 15 L/s. We then simulated the model with dry weather flow from the development, but with wet weather flows in the rest of the model. We considered whether or not the new pump station could run at the same time as the peak flows from the Arrowtown-Lake Hayes pump station. We found that the new pump station has insignificant impact on the existing pump station.

Without the development, one manhole (SM11957) floods downstream of the Lake Hayes #1 PS. Adding the development does not create any more areas of flooding.

## 3.3 Separatio 3 – WWF Pumped to Arrowtown-Lake Hayes Road

This scenario is the same as scenario 2, except we simulated the 2 year ARI event through the development as well. The pump rate remains 15 L/s. As before, we managed the pumping from the development using Real-Time Control. We also simulated the model without the Real-Time Control.

During the 2028 design horizon, SM11957 floods. This is regardless of whether the development is modelled or not. The flood volume is 75m<sup>3</sup>, during the 2028 design horizon.



During the 2058 design horizon, two manholes flood (SM11952 and SM11957) downstream of the Lake Hayes #1 PS without the development. The flood volume is 75m<sup>3</sup>.

With the development included, no extra manholes flood. As with Scenario 2, the new pump station has an insignificant impact on the existing pump station. Table 3 below details the pressure in the 300mm diameter pipe at the connection point for the 2058 design horizon.

#### Table 3 – Pressure at Connection Point for Scenario 3

| Design Horizon | Static Pressure (m) | Pressure with No<br>Waterfall Park Flow<br>(m) | Pressure with<br>Arrowtown and<br>Waterfall Park Flows |   |
|----------------|---------------------|------------------------------------------------|--------------------------------------------------------|---|
|                |                     |                                                | • (m)                                                  |   |
| 2058           | 4.6                 | 4.8                                            | 5                                                      | ) |

#### 4 Future Upgrades Required

Jayne Richards at Fluent Solutions Ltd requested that we look at the maximum flow that can be added to both Scenarios 1 and 3.

#### 4.1 Scenario 1a

The capacity in the current network is 7.1 L/s. Adding a peak residential flow of 4.5 L/s leaves the remaining capacity as 2.6 L/s, without adding any storage at the development. Therefore, the remaining flow from the development will need to be stored.

#### 4.2 Scenario 3

A Capital Scheme, Lake Hayes #2 PS, is already included in the current Capital Programme. This scheme includes upgrades that will relieve the flooding anticipated in 2028. In terms of effect on the network, we would recommend that Scenarios 2 and 3 are taken further. Neither of those scenarios affect the current flooding.

No other upgrades are required to contain the extra flows from Waterfall Park development during the 2028 or 2058 design horizons.

# 5 Conclusion +

The seven network between Speargrass Flat Road and Lake Hayes #1 PS has insufficient capacity to take all of the dry weather flows from the Waterfall Park development. After adding the residential development only there is spare capacity of 2.6 L/s peak flow in the Speargrass Flat Road network.

A Capital Scheme Lake Hayes #2 PS, is already included in the current Capital Programme. This scheme includes upgrades that will relieve the flooding anticipated in 2028. In terms of effect on the network, we would recommend that Scenarios 2 and 3 are taken further. Neither of those scenarios affect the current flooding, and no other upgrades would be required to the sewer network.



Beca // 7 February 2018 // Page 3 3361829 // NZ1-15100814-26 0.26 Released under the providence of the providence





eleasticial internations Inflows to the Dake Have Pump Stations



















eeeotical internations Outflows from he Lake Hayes Pump Stations


















Appendix D Long Sections the ion the i











Whetewater McGalling Report Addendum Whetewater McGalling Report Addendum Repeased in the formation of the second second





# WATERFALL PARK DEVELOPMENT: WASTEWATER NETWORK ASSESSMENT

To: Distribution: Richard Powell Jayne Richards Queenstown Lakes District Council (QLDC) Fluent Solutions (FS)

From: Subject: Date: Brian Robinson; Rebecca Ellmers (HAL) Waterfall Park Development – Wastewater Network Asses 16 January 2019

# 1 Introduction

## 1.1 Objective

The objective of this study is to utilise the existing hydraulic model (Wakatipu Wastewater Model with HAL updates, 2018) of the Queenstown, Arrowtown and Lake Hayes wastewater network to assess the impact of the proposed Waterfall Park development on the wastewater network.

## 1.2 Background

The Waterfall Park development proposal seeks to discharge a maximum flow rate of 23.4 l/s to the existing network. The initial hydraulic modelling carried out by BECA (Waterfall Park Development Wastewater Modelling, 2018) considered a number of private pump station scenarios at various connection points to the existing network. The development consultant has since requested further assessment of the Waterfall Park development impact.

# 2 Waterfall Park Development

## 2.1 Overview

2.

The Waterfall Park development seeks to discharge a maximum PWWF of 23.4 I/s and has considered two potential network connection points as summarized below:

. Connection to the existing local 150mm network to the south discharging to Lake Hayes #1 Pump Station, and eventually to the Arrowtown-Lake Hayes Pump Station

Connection to the existing transmission 300mm gravity/pressure main connecting Norfolk Street Pump Station to the Arrowtown-Lake Hayes Pump Station

The connection point to the existing 150mm network to the south was shown in the assessment undertaken by Beca to result in overflows from the local network upstream of the Lake Hayes #1 pump station. This assessment has focused on the connection point to the existing 300mm gravity/pressure main with a proposed pump rate of 23.4 l/s (i.e. matching expected design flows for the full development.

The location of the development and proposed connection points is shown in Figure 1 below.







Figure 1. Waterfall Park Development Wastewater Connection

# 3 Waterfall Park Development Impact

## 3.1 Proposed Modelling Scenarios

The development consultant Fluent Solutions have since requested further assessment of the Waterfall Park development impact. The initial hydraulic modelling carried out by BECA (Waterfall Park Development Wastewater Modelling, 2018) considered a private pump station with storage and off-peak pumping (assumed to lessen the effect of the development load on the network), with an arbitrary pumped rate of 15 I/s Fluent Solutions have requested modelling of the maximum proposed development discharge of 23.4 I/s at the Arrowtown-Lake Hayes 300mm connection point (identified as Scenario 3 in the BECA report).

## 3.2 Scenario 3: Waterfall Park (23.4 l/s) to Arrowtown-Lake Hayes 300mm line

The Wakatipu wastewater model (with 2018 HAL updates included update of pump station capacities) was run under the current (2015) scenario, with and without the proposed Waterfall Park development. The network was assessed against a 5-year ARI design storm to understand the system performance. As shown in the Figure 2 long-section below, the existing network has sufficient capacity in the 300mm Arrowtown-Lake Hayes Wastewater line, discharging to the Arrowtown-Lake Hayes Pump Station.







Figure 2: Existing (2015) Long Section (300mm Arrowtown WW line) – 5 year ARI design storm

The additional peak wet weather flows of 23.4 I/s from the Waterfall Park development were added in to the model, with connection to the 300mm Arrowtown Lake Hayes wastewater line. As shown in the Figure 3 long-section below, the post-development network has adequate capacity within the 300mm line to receive the full peak wet weather flows from the proposed development.



Figure 3: Post Development (2015) Long Section (300mm Arrowtown WW line) with additional Waterfall Park Flows (23.4 I/s) – 5 year ARI design storm

It should be noted that limited information has been made available to date regarding the levels of this 300mm wastewater pipe, with modelled levels taken from QLDC's GIS which just provides invert and ground levels at the upstream end of the pipe (at the confluence with the Norfolk St and Millbrook rising mains) and at the downstream end (at the Arrowtown-Lake Hayes pump station), with no information provided regarding levels at intermediate points along its length. It is understood that this pipeline, whilst generally operating as a gravity pipe, is designed to operate under pressure if flows exceed the on-grade capacity of the pipeline





## 3.3 Pump Station Assessment – Current Scenario (2015)

The 300mm Arrowtown-Lake Hayes wastewater line conveys flow from the Norfolk Road Pump Station (maximum capacity 70 l/s) and the Millbrook pump station (maximum capacity 24 l/s) to the Arrowtown Lake Hayes Pump Station. The modelled inflows and outflows for the Arrowtown-Lake Hayes PS post-development scenario are shown in Figure 4 below.

The Arrowtown-Lake Hayes Pump Station has a maximum capacity of 85 I/s with one pump operating (based on QLDC records). In the post-development scenario (with the 23.4 I/s from Waterfall Park connected), the peak modelled inflow to the pump station is 81 I/s in the 5-year ARI design storm (as shown by the red trace). As shown by the yellow trace, the majority of flows entering the pump station are received from the 300min line and the Waterfall Park development.



ure 4 Modelled Arrowtown-Lake Hayes Pump Station flows – 5 year ARI design storm

## .4 Pump Station Assessment – Future Scenario (2055)

Based on a future (2055) population scenario, an assessment was made of the capacities of the relevant pump stations discharging to the Arrowtown-Lake Hayes Pump Station, and can be summarised in the Figure 5 schematic below.

While there is current (2015) capacity in the Arrowtown-Lake Hayes Pump Station for the proposed development, future significant growth in the remainder of the contributing catchment (in addition to the proposed Waterfall Park flow of 23.4 l/s) will likely trigger pump station upgrade requirements.







Figure 5: Pump station capacity current (2015) scenario versus theoretical maximum flows

## 3.5 Pressure at Arrowtown-Lake Hayes 300mm line connection point

In both the current (2015) and future (2055) scenarios, there is sufficient capacity within the 300mm line to receive the additional flows from the Waterfall Park development. Based on the GIS data available, the wastewater line appears to discharges as free flow via gravity (i.e. not pressurized) to the Arrowtown-Lake Hayes Pump station.

The proposed connection point of the Waterfall Park development to the Arrowtown-Lake Hayes 300mm line has been constructed in the model with an estimated ground and invert level based on existing data. Insufficient level data is available to determine whether there are sections of this pipeline that don't operate under gravity conditions (and hence may operate under pressure), and is recommended as part of the design process for the Waterfall Park development, an assessment is made of actual levels at the proposed connection point to determine whether the pipeline is expected to operate under pressure, and to determine the head that the proposed Waterfall pump station will operate at.





Repeased unit into intermediate Modelling Report



Queenstown Lakes District Council Private Bag 50072 Queenstown 9348, New Zealand

#### Waterfall Park Development Water Impact Assessmen

19 March 2018

Mason Bros. Building Level 2, 139 Pakenham Street West Wynyard Quarter Auckland 1010 PO Box 37525, Parnell, 1151 New Zealand

T +64 (0)9 375 2400 mottmac.com This letter summarises the results of the assessment undertaken for a proposed development consisting of mixed land use, including a hotel (380 rooms) and a residential development of 125 units (double dwelling). The project is located on the northwest side of Arrowtown-Lake Hayes Rd and Speargrass Flat Rd.

#### 1 ackground

In January 2018 Mott MacDonald was commissioned by Queenstown Lakes District Council (QLDC) to assess the system performance in terms of Level of Service (LOS) and firefighting capacity in the proposed development.

In this analysis, the latest Lake Haves water supply model was used. Three scenarios were investigated, with and without additional demand from the proposed development for existing and ruture conditions. These are further detailed in the scenarios investigation section of this letter.



Figure 1 - Proposed Development ocation



#### 2 Assumptions

#### 2.1 **Demand Calculations**

A demand assessment was provided by the client as summarised in Table 1 below. The detailed calculation is attached in appendix.

## **Table 1 - Demand Calculation**

| Hotel Facility (Elevation: R 368m)                                                       |       |
|------------------------------------------------------------------------------------------|-------|
| No. Hotel rooms                                                                          | 380   |
| Maximum people per room                                                                  | 2     |
| Peak daily consumption (I/day/room)                                                      | 440   |
| Peak water demand (m <sup>3</sup> /day) - room                                           | 167.2 |
| Additional demand (conference centre, restaurant, irrigation, etc) (m <sup>3</sup> /day) | 205.2 |
| Instantaneous Peak Flow (I/s)                                                            | 18.9  |
|                                                                                          |       |
| Residential Development (Elevation: R 36 m)                                              |       |
| No. Primary Dwelling (3 people)                                                          | 125   |
| No. Secondary Dwelling (2 people)                                                        | 125   |
| Peak consumption Primary Dwelling (I/day/property)                                       | 2,100 |
| Peak consumption Secondary Dwelling (I/day/property)                                     | 700   |
| Peak water demand (m <sup>3</sup> /day)                                                  | 350   |
| Instantaneous Peak Flow (I/s)                                                            | 26.   |

The calculated demand seems conservative when compared to the observed consumption in Queenstown (2000l/property/day) and Lake Hayes (see table below).

#### ake Haves Demands Table 2 -

| DMA one           | Total demand<br>(m³/day) | Number of connections | Average demand per<br>connection (I/prop/day) |
|-------------------|--------------------------|-----------------------|-----------------------------------------------|
| Shotover Country  | 374                      | 495                   | 756                                           |
| Lake Hayes Estate | 822                      | 596                   | 1379                                          |
| Lake Hayes        | 928                      | 421                   | 2204                                          |
| Bendeemer         | 17                       | 13                    | 1308                                          |
| Terraces          | 25                       | 9                     | 2778                                          |
| DMAs Combined     | 2 166                    | 1 534                 | 1 412                                         |

#### 2.2 **Proposed Connection Point**

#### **Table 3 - Proposed Development Elevations**

|        | Bendeemer                                                                                                                                             | 17 <i>·</i>                                                                                                                                         | 13 1308                                                                                   |
|--------|-------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------|
| 01     | Terraces                                                                                                                                              | 25                                                                                                                                                  | 9 2778                                                                                    |
|        | DMAs Combined                                                                                                                                         | 2 166 1 53                                                                                                                                          | 34 1 412                                                                                  |
| Releas | As shown in the table a<br>equivalent to a third of<br>2.2 Proposed Conn<br>The minimum and max<br>the lots are shown in the<br>Table 3 - Proposed De | bove, the proposed develop<br>the current peak day deman<br>ection Point<br>imum elevations within the p<br>e table below:<br>evelopment Elevations | ment peak day demand is<br>d in the entire service area.<br>proposed development areas of |
| ×      |                                                                                                                                                       | Min elevation in propose<br>development are                                                                                                         | d Max elevation in proposed<br>a development area                                         |
|        | Hotel Development                                                                                                                                     | 347.5m (with 4 story hot<br>building ~12.8m heigh                                                                                                   | el 368m (with single story<br>t) building only)                                           |
|        | Residential<br>Development                                                                                                                            | 342                                                                                                                                                 | m 367m                                                                                    |

Overall, the maximum elevation within the lot proposed for the residential development is 423m.



As suggested by the developer, it was assumed that the proposed development would be connected to the 235 mm ID main at the Arrowtown-Lake Hayes Rd and Speargrass Flat Rd junction. Figure 2 below shows the development location, and the proposed network and connection point considered in this study.



Figure 2 Proposed Development ocation Network and Connection Point

## 3 Scenario Investigated

Three scenarios were investigated, including the above demand and the current network operations:

- Existing peak day scenario.
- 2028 peak day scenario
- 2058 peak day scenario

Planned upgrades along Frankton Ladies Mile Highway were included in the future 2028 and 2058 scenarios.

To ensure head losses in the proposed network remain between 1 and 3 m/km (recommended head losses for pipeline design), it was assumed that the proposed development would be serviced through a 260mm (ID) pipe connected to the supply point. The proposed network layout was provided by the client and is attached in appendix.

Two elevation points were included, one for the hotel (max. elevation:368m) and one for the residential development (max. elevation:367m). Respective demands were assigned to each point.

Fire flow capacity was assessed based on FW2 requirement plus sprinklers flow of 16.6l/s, as defined by the client.

#### 4 Model Results

#### 4.1 System Performance Analysis in the Proposed Development

This section describes the results of the system performance analysis undertaken for the above scenarios after including the proposed development demands. Results have been analysed to verify whether levels of service can be met in the proposed development without any network modification. The table below summarises the results in terms of minimum and maximum pressure, maximum head losses in the proposed network (260mm pipe) and fire flow capacity.

Releas

# M MOTT MACDONALD

# Table 4 - Minimum Pressure and Maximum HeadOsses in ProposedDevelopment

| Scenario | Minimum<br>Pressure (m) | Maximum<br>Pressure (m) | Maximum Head<br>osses (m/km) | Fire Flow                                      |
|----------|-------------------------|-------------------------|------------------------------|------------------------------------------------|
| Existing | 60.9                    | 97.1                    | 3.0                          | Can meet residential                           |
| 2028     | 59.9                    | 97.1                    |                              | fire flow (FW2 –25 l/s<br>+ 16 6l/s sprinklers |
| 2058     | 58.0                    | 97.0                    |                              | flow)                                          |

The normal operating pressure set by QLDC addendum to NZS4404:2004 (Development ad Subdivision Engineering Standards) is 30 to 90m. As shown in the table above, minimum pressure in the proposed development is predicted to meet the recommended LOS for all scenarios. However, pressures higher than the recommended LOS are predicted in areas below 349m.

FW2 fire flow was tested at the end of the proposed 260mm (ID) line. The model predicts that residential fireflow (FW2 – 25l/s) plus the sprinkler flow required can be provided with a residual pressure of 47m at RL 368m.

The highest elevation that would be serviceable for the residential development is 395m. Recommended LOS in terms of pressure and fire flow are predicted to be met up to this point.

## 4.2 System Performance Analysis in the Remaining of the Network

The section below describes the results of the system performance in the remaining of the Lake Hayes network. Results have been analysed to assess the effect of the proposed development for each scenario.

**Figure 3** to Figure 8 below show the system performance for current operational conditions, including current, 2028 and 2058 peak demand.









Figure 6 - 2028 Peak Day System Performance - Post Development

# Μ MOTT MACDONALD



Figure 8 - 2058 Peak Day System Performance - Post Development

The table below summarises the maximum head losses in the existing 235mm ID pipe along Arrowtown Lake Hayes Rd and the minimum pressure forecasted at the supply point, before and after the proposed development:

## Table 5 - Minimum Pressure at Supply Point

| Demand           | Min pressure before<br>development (m) | Min pressure after<br>development (m) | Pressure drop (m) |
|------------------|----------------------------------------|---------------------------------------|-------------------|
| Current Peak Day | 89.5                                   | 83.1                                  | 6.4               |
| 2028 Peak Day    | 89.2                                   | 82.2                                  | 7.0               |
| 2058 Peak Day    | 88.2                                   | 80.2                                  | 8.0               |

#### Table 6 - Maximum Head osses in 235mm ID Pipe

| Demand           | Max head losses<br>before development<br>(m/km) | Max head losses<br>after development<br>(m/km) | Head losses<br>increase<br>(m/km) |
|------------------|-------------------------------------------------|------------------------------------------------|-----------------------------------|
| Current Peak Day | 0.4                                             | 6.0                                            | 5.6                               |
| 2028 Peak Day    | 0.6                                             | 6.6                                            | 6.0                               |
| 2058 Peak Day    | 1.1                                             | 7.8                                            | 6.7                               |

As shown in the pictures and above tables, the proposed development is predicted to have a noticeable impact on the remaining of the water network with a maximum pressure drop of 8.0m. Pressures are generally high along Arrowtown Lake Hayes Rd and Speargrass Flat Rd, so pressure remains well above the recommended LOS in this area, for current and future scenarios. However, pressures below the recommended LOS are predicted in the properties located in the elevated areas of Slope Hill Rd and Threewood Rd. This is an existing LOS issue that needs to be addressed.

Head losses are predicted to increase by up to 6.7m/km reaching 7.8m/km in the 235mm (ID) along Arrowtown Lake Haves Rd due to the additional demand. The predicted head losses exceed the recommended LOS, 5m/km. This LOS issue needs to be addressed.

## 5 Conclusions and Recommendations

Demand from the proposed Waterfall Park development has been added to the network for the current, future 2028 and 2058 peak day models to determine if suitable levels of service could be obtained.

Levels of service are expected to be met in terms of minimum pressure and head losses in the proposed development, however pressures higher than the recommended LOS are predicted in areas below 349m. The model predicts that fireflow requirements (FW2 – 25l/s and 16.6l/s sprinklers flow) can be provided with a residual pressure of 47m at RL 368m, for current and future scenarios. The highest elevation that would be serviceable for the residential development is 395m.

The system performance in the remaining of the network has been verified. The proposed development is predicted to cause a maximum pressure drop of 8m at the connection point. Since pressures are high in this area recommended LOS can still be met in terms of pressure. However, pressures dropping to zero are predicted in 2058 in properties located in the elevated areas of Slope Hill Rd and Threewood Rd due to the additional demand. These areas already experience pressures below the recommended LOS, the additional demand causes the pressure to deteriorate even further.

Maximum head losses greater than 5 m/km are predicted along Arrowtown Lake Hayes Rd for all scenarios. This system performance issue is related to the additional demand, the proposed development impact needs to be mitigated.

201000

Diana Galindo Hydraulic Engineer s 9(2)(a)

| Revision | Date       | riginator        | Checker           | Approver          | Description             |
|----------|------------|------------------|-------------------|-------------------|-------------------------|
| A        | 23/02/2018 | Diana<br>Galindo | Julie<br>Plessis  | Julie<br>Plessis  | Draft for client review |
| В        | 19/03/2018 | Diana<br>Galindo | Julie<br>Plessis  | Julie<br>Plessis  | Draft for client review |
| С        | 30/05/2018 | Diana<br>Galindo | Nasrine<br>Tomasi | Nasrine<br>Tomasi | Final                   |

This document is issued for the party which commissioned it and for specific purposes connected with the above-captioned project only. It should not be relied upon by any other party or used for any other purpose.

We accept no responsibility for the consequences of this document being relied upon by any other party, or being used for any other purpose, or containing any error or omission which is due to an error or omission in data supplied to us by other parties.

This document contains confidential information and proprietary Intellectual property. It should not be shown to other parties without consists from us and hum the party which commissioned it.



| 6 | Appendix - | <ul> <li>Demand</li> </ul> | Calculation | and p | roposed Pi | pe a | yout |
|---|------------|----------------------------|-------------|-------|------------|------|------|
|---|------------|----------------------------|-------------|-------|------------|------|------|

| M<br>MOTT<br>MACDONALD                                                                                                                                                                                                                                   | mand (                                                                                                  | Calcula                                                                                 | ation an                                                                | d propo                                                          | sed Pip                                | e ayo                          | out                          |                               |                          |                                                                                                                                                                     |
|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------|-------------------------------------------------------------------------|------------------------------------------------------------------|----------------------------------------|--------------------------------|------------------------------|-------------------------------|--------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Waterfall Park Water Demand Estin<br>Table 1: Waterfall Park Hotel Comp                                                                                                                                                                                  | nate Summary<br>lex - Water De                                                                          | /<br>emand Estima                                                                       | ate                                                                     |                                                                  |                                        |                                |                              |                               |                          |                                                                                                                                                                     |
| Hotel facility                                                                                                                                                                                                                                           | No.<br>Facilities                                                                                       | Max no.<br>People /<br>Facility                                                         | Average Daily<br>Water<br>Demand<br>(L/p/d)                             | Average Daily<br>Water<br>Demand<br>(m3/day)                     | Average Daily<br>Water<br>Demand (L/s) | Peak Hour<br>Peaking<br>Factor | Peak Hour<br>Demand<br>(L/s) | Peak Day<br>Peaking<br>Factor | Peak Day                 |                                                                                                                                                                     |
| Hotel Room                                                                                                                                                                                                                                               | 380                                                                                                     | 2                                                                                       | 220                                                                     | 167.2                                                            | 1.94                                   | 6.6                            | 5 12.77                      | 7 3.30                        | 0 6.39                   | 9 AS NZS 1547:2012, Table 14.                                                                                                                                       |
| Conference Centre                                                                                                                                                                                                                                        | 1                                                                                                       | 600                                                                                     | 30                                                                      | 18                                                               | 0.21                                   | 6.6                            | 5 1.38                       | 8 3.30                        | 0.65                     | Metcalfe and Eddy, Table 3-2. Nedding can occur at same time as conference     AS/NZS 1547-2012, Table 44, Restaurants can seat 270 people, Assume hotel full       |
| Restaurants                                                                                                                                                                                                                                              | 1                                                                                                       | 1520                                                                                    | 30                                                                      | 45.6                                                             | 0.53                                   | 6.6                            | 5 3.48                       | в                             | 1.74                     | (760 people) assume, each person eats two meals at hotel, total no. diners = 1520<br>14 aver a day                                                                  |
| Lounge Bar and bar                                                                                                                                                                                                                                       | 1                                                                                                       | 250                                                                                     | 20                                                                      | 5                                                                | 0.06                                   | 6.6                            | 0.38                         | 3,20                          | 0.19                     | AS/NZS 1547-2012 Table 14. Lounge and bar can accommodate 115 people, assume<br>9 250 people may over may                                                           |
| Chapel / wedding venue                                                                                                                                                                                                                                   | 1                                                                                                       | 100                                                                                     | 40                                                                      | 4                                                                | 0.05                                   | 6.6                            | 5 <b>03</b> 1                | 1 3.30                        | 0.15                     | 5 Assume 49 Yauest. Wedding can occur at same time as conference.                                                                                                   |
| Wellness centre - pool, gym, spa                                                                                                                                                                                                                         | 1                                                                                                       | 100                                                                                     | 40                                                                      | 4                                                                | 0.05                                   | 6.6                            | i 0.31                       | 3.30                          | 0.                       | Metalle and eddy Table 3-4 for swimming pools. Assume pool is filled overnight<br>when in agation is not running.                                                   |
| Non residential staff                                                                                                                                                                                                                                    | 1                                                                                                       | . 120                                                                                   | 30                                                                      | 3.6                                                              | 0.04                                   | 6.6                            | 0.28                         | 3.30                          |                          | 47 57 //25 1547:2012, Table H4.<br>Based on calculated irrigation requirements with irrigation over an eight hour period                                            |
| Irrigation demand<br>Total                                                                                                                                                                                                                               | 1                                                                                                       | . n/a                                                                                   | n/a                                                                     | 372.59                                                           | 1.45<br>4.31                           | n/a                            | 18.90                        | n/a<br>D                      | 4.35<br>13.8             | s pvemight                                                                                                                                                          |
| Table 2: Waterfall Park Residential I                                                                                                                                                                                                                    | Development                                                                                             | - Water Dem                                                                             | and Estimate                                                            | Avorage Dalle                                                    |                                        |                                |                              |                               |                          |                                                                                                                                                                     |
| Hotel facility                                                                                                                                                                                                                                           | No.<br>Dwellings                                                                                        | No.<br>people/<br>dwelling                                                              | Water<br>Demand<br>(L/p/d)                                              | Water<br>Demand<br>(m3/day)                                      | Average Daily<br>Water<br>Demand (L/s) | Peak Hour<br>Peaking<br>Factor | Peak Hour<br>Demand<br>(L/s) | Peak Day<br>Peaking<br>Factor | Peak Day<br>Demand (L/s) | s) Comment / Reference                                                                                                                                              |
| formativ Dweiling                                                                                                                                                                                                                                        | 125                                                                                                     |                                                                                         |                                                                         | 202                                                              | 0                                      | 0.0                            |                              |                               |                          | Assume each lat may also have a secondary dwelling. Assume average of 2 person<br>accupancy per secondary dwelling, assume no irrigation requirements for secondary |
| Total                                                                                                                                                                                                                                                    | 125                                                                                                     | 2                                                                                       | 2 350                                                                   | 350.0                                                            | 4.05                                   | 6.0                            | 26.74                        | 5 3.30<br>4                   | 13.34                    | 4 awening<br>7                                                                                                                                                      |
| Notes:<br>- Average day to peak hour peaking<br>- The average day to peak day peak<br>- It is assumed that each residential<br>References:<br>Metcalfe and Eddy, 2003, Wastewat<br>AS/NZS 1547:2012 - Onsite wastewa<br>QLDC Land Development and Subdiv | factor of 6.6 h<br>ing factor is as<br>lot may have d<br>er Engineering<br>iter managem<br>iter managem | as been appli<br>sumed to be :<br>a primary the<br>g: Treatment<br>ent<br>nactice, 2015 | ied as per QLDC<br>50% of average<br>elling ond a set<br>and Reuse, McG | GP Section 6.3.<br>Day to peak hou<br>ndary dwelling<br>raw-Hill | 5.6<br>r peaking faitor                | C                              |                              |                               |                          |                                                                                                                                                                     |
| Mott MacDonald New Zeala<br>Limited Registered in New Z<br>no. 3338812                                                                                                                                                                                   | nd<br>Cealand                                                                                           |                                                                                         |                                                                         | ંડ                                                               |                                        |                                |                              |                               |                          |                                                                                                                                                                     |



ing Fire Fi cogrove's Enteil Concerning Fire Pighting Requirements

| Subject: RE: CS19078 | Ayrburn Development - Water s | upply requirements |                | <b>C</b>         |
|----------------------|-------------------------------|--------------------|----------------|------------------|
| s 9(2)(a)            | ; 'Martin Robertson' <        | s 9(2)(a)          |                |                  |
| s 9(2)(a)            | ; 'Klemens Markiewicz'        | s 9(2)(a)          | ; 'Sam Ballam' |                  |
| Cc: 'Brady Cosgrove' | s 9(2)(a)                     | 'Jakub Macak'      | s 9(2)(a)      | Lauren Christie' |
| To: 'Jayne Richards' | s 9(2)(a)                     |                    |                |                  |
| Sent: Thursday, 28 N | ovember 2019 3:10 PM          |                    |                |                  |
| From: Daniel Jessop  | s 9(2)(a)                     |                    |                |                  |

Jayne,

Thanks for the phone call, to (hopefully) clarify the requirements;

The sprinkler system demand is expected to be no more than 720 L/min @ 450 kPa for the Care Home building and this supply needs to be provided by the incoming mains. The 450 kPa pressure does <u>not</u> need to be achieved when the inground hydrants are at full flow, i.e. it can be assumed that the in-ground hydrants are at 0 flow when assessing the water supply pressure for the sprinkler system. Obviously the sprinkler system is at full flow (720 L/min) for this scenario.

With the sprinkler system and hydrants at full flow (i.e. 37 L/s for the Care Home), there needs to be residual pressure of 100 kPa in the incoming mains. Note that the 'FW3' category for non-sprinklered buildings requiring 50 L/s may be more onerous than the sprinkler protected building requirement?

I believe this is what is described in my e-mail below, however apologies if it is not clea

Also as discussed, yes you can design so that the sprinkler system has 450 kPa pressure with the sprinkler system + hydrants at full flow, however this may have cost implications? It would be a Client decision in our view as it is beyond the minimum requirements of the relevant Standards for complying with the NZ Building Code.

Kind regards,

 Daniel Jessop | Senior Engineer (Fire)

 Cosgroves Ltd | Level 1, 23-27 Beach St | Queenstown 9

 M
 \$ 9(2)(a)

 W www.cosgroves.com

P Please consider the environment before printing this e-mail All information contained in this email message is confidential and may be subject to legal privilege. If you are not the intended recipient, you must not use, disclose, copy or distribute this message or the information contained in it. If you have received this message in error, please email or telephone us (collect) and destroy the message and all attachments received. Cosgroves is a trading name of "Cosgroves std"

From: Daniel Jessop \$ 9(2)(a) Sent: Thursday, 28 November 2019 1:10 PM

| lo: 'Javne Richards' | s 9(2)(a)             |                 |                |                     |
|----------------------|-----------------------|-----------------|----------------|---------------------|
| Cc: 'Brady Cosgrove' | s 9(2)(a)             | ; 'Jakub Macak' | s 9(2)(a)      | ; 'Lauren Christie' |
| s 9(2)(a)            | ; 'Klemens Markiewicz | s 9(2)(a)       | ; 'Sam Ballam' |                     |
| s 9(2)(a)            | ; 'Martin Robertson'  | s 9(2)(a)       |                |                     |

## Subject: RF CS19078 Ayrburn Development - Water supply requirements

Hi Jayne,

Generally your summary aligns with our understanding. For clarity I've prepared some further advice as follows.

In regards to pressure and flows of the sprinkler and hydrant systems the following 'rules' apply, based on the relevant Standards:

- a. The sprinkler system water supply needs to achieve the required performance at the design flow + pressure as per e-mail below, however it can be assumed for this case that the hydrants are <u>not</u> being used
- b. With the hydrants and sprinkler system at full flow (serving one building), the residual pressure in the mains needs to be 100 kPa.

With respect to the proposed development and the building types, we summarise the requirements as follows:

- a. Single level Housing (non-sprinklered) FW2
- b. Active Recreation/Amenities Building (non-sprinklered) FW3
- c. Multi-level Apartments (non-sprinklered) FW3
- d. Care Home (Sprinklered) FW2
- e. Childcare Centre (non-sprinklered) FW3
- f. Maintenance (non-sprinklered) FW3
- g. Medical Centre (non-sprinklered) FW3

Water supply requirements:

- a. FW2 25 L/s total (12.5 L/s each from two hydrants)
- b. FW3 50 L/s total (25 L/s each from two hydrants)

Apologies I didn't come back to you yesterday – I was pretty well buried until late in the day

Give me a call if you have any questions about the above.

Kind regards,

Daniel Jessop | Senior Engineer (Fire)

Cosgroves Ltd | Level 1, 23-27 Beach St | Queenstown 930

M s 9(2)(a) W <u>www.cosgroves.com</u>



cosgroves



Outpatients Building, Christchurch Hospital

#### AUCKLAND / CHRISTCHURCHY CREENSTOWN

P Please consider the environment before plunting this e-mail All information contained in this email message is confidential and may be subject to legal pluvilege. If you are not the intended recipient, you must not use, disclose, copy or distribute this message or the information contained in it. If you have received this message in error, please email or telephone us (collect) and destroy the message and all attachments received. Cosgroves is a trading name of "Cosgroves Ltd".



Receased in the interview of the intervi

Hydraulic calcs comparing to model



Hydraulic Calculations to assess maximum headlosses in 235mm ID pipe Q000492 Northbrook Retirement Village Jayne Richards Anthony Steel 1/04/2020

| Pipe Dia (ID) | Flow    | Area    | Pipe diameter | Roughness | Length | Kinematic<br>Viscosity                 | Mean Velocity | Hydraulic<br>diameter | Reynolds<br>Number | Friction<br>Coefficient | Total Head |          | Velocity Head | Description                                        |
|---------------|---------|---------|---------------|-----------|--------|----------------------------------------|---------------|-----------------------|--------------------|-------------------------|------------|----------|---------------|----------------------------------------------------|
|               | Q (l/s) | A (m²)  | m             | k (mm)    | L (m)  | v (10 <sup>°°</sup> m <sup>2</sup> /s) | V (m/s)       | D (m)                 | Re                 | f                       | ΔH (m)     | m/1000 m | roloony rioud | 20001                                              |
|               |         |         |               |           |        |                                        |               |                       |                    |                         |            |          |               |                                                    |
| 235 mm        | 12.7    | 0.04338 | 0.235         | 0.015     | 1      | 1.5                                    | 0.29          | 0.235                 | 45867              | 0.0214                  | 0.00       | 0.40     | 0.004368623   | Estimated flow before development-current peak day |
| 235 mm        | 16      | 0.04338 | 0.235         | 0.015     | 1      | 1.5                                    | 0.37          | 0.235                 | 57785              | 0.0204                  | 0.00       | 0.60     | 0.006933893   | Estimated flow before development- 2028 peak day   |
| 235 mm        | 22.4    | 0.04338 | 0.235         | 0.015     | 1      | 1.5                                    | 0.52          | 0.235                 | 80899              | 0.0190                  | 0.00       | 1.10     | 0.01359043    | Estimated flow before development- 2058 peak day   |
|               |         |         |               | •         |        | ••                                     |               |                       |                    |                         |            |          |               | 0.                                                 |

| Post-development flows - estimated from Mott MacDonald Headloss/km in Table 6 (to match headloss in m/km) |               |         |                     |               |                          |        |                                        |               |                       |                    |                         |                    |          |               |               |            |          |                |          |   |  |
|-----------------------------------------------------------------------------------------------------------|---------------|---------|---------------------|---------------|--------------------------|--------|----------------------------------------|---------------|-----------------------|--------------------|-------------------------|--------------------|----------|---------------|---------------|------------|----------|----------------|----------|---|--|
|                                                                                                           | Pipe Dia (ID) | Flow    | Area                | Pipe diameter | Roughness<br>Coefficient | Length | Kinematic<br>Viscosity                 | Mean Velocity | Hydraulic<br>diameter | Reynolds<br>Number | Friction<br>Coefficient | Total Head<br>loss |          | Velocity Head |               |            | Desc     | ription        | 2        |   |  |
|                                                                                                           |               | Q (l/s) | A (m <sup>2</sup> ) | m             | k (mm)                   | L (m)  | v (10 <sup>-o</sup> m <sup>2</sup> /s) | V (m/s)       | D (m)                 | Re                 | f                       | ∆H (m)             | m/1000 m |               | •             |            |          |                | 7        |   |  |
|                                                                                                           |               |         | -                   |               |                          | =      | -                                      |               |                       |                    | -                       |                    |          |               |               |            | <u> </u> |                |          |   |  |
|                                                                                                           | 235 mm        | 57      | 0.04338             | 0.235         | 0.015                    | 1      | 1.5                                    | 1.31          | 0.235                 | 205859             | 0.0160                  | 0.01               | 6.00     | 0.088000853   | Estimated flo | ow post de | velopm   | ent- current r | Jeak day | y |  |
|                                                                                                           | 235 mm        | 60      | 0.04338             | 0.235         | 0.015                    | 1      | 1.5                                    | 1.38          | 0.235                 | 216694             | 0.0159                  | 0.01               | 6.59     | 0.09750787    | Estimated fi  | ow post de | velopm   | ent- 2028 pea  | k day    |   |  |
|                                                                                                           | 235 mm        | 65.8    | 0.04338             | 0.235         | 0.015                    | 1      | 15                                     | 1 52          | 0.235                 | 237641             | 0.0156                  | 0.01               | 7 81     | 0 117270548   | Estimated flu | w nost de  | velonm   | ent. 2058 nez  | k dav    |   |  |

| Approximate flows allocated to Waterfall Park development in Mott Macdonal Model: |          |  |  |  |  |  |  |
|-----------------------------------------------------------------------------------|----------|--|--|--|--|--|--|
| Current peak day:                                                                 | 44.3 L/s |  |  |  |  |  |  |
| 2028 peak day:                                                                    | 44 L/s   |  |  |  |  |  |  |
| 2058 peak day:                                                                    | 43.4 L/s |  |  |  |  |  |  |

| New flow (Waterfall Park Hotel plus Northbrook Retirement Village): |          |  |  |  |  |  |  |  |  |
|---------------------------------------------------------------------|----------|--|--|--|--|--|--|--|--|
| Current peak day:                                                   | 31.3 L/s |  |  |  |  |  |  |  |  |
| 2028 peak day:                                                      | 31.3 L/s |  |  |  |  |  |  |  |  |
| 2058 peak day:                                                      | 31.3 L/s |  |  |  |  |  |  |  |  |
|                                                                     |          |  |  |  |  |  |  |  |  |

Title

Job No.

Job Title:

Engineer: Checked:

Date:

| New post-development flo | ws (Mott Macdonald Pre-Development Flows plus Waterfall Park Hotel plus Northbrook Retirement Village): |
|--------------------------|---------------------------------------------------------------------------------------------------------|
| Current peak day:        | 44 L/s                                                                                                  |
| 2028 peak day:           | 47.3 L/s                                                                                                |
| 2058 peak day:           | 53.7 L/s                                                                                                |
|                          |                                                                                                         |
|                          |                                                                                                         |

| 235 mm                                     | 57                                        | 0.04338                 | 0.235                 | 0.015                    | 1        | 1.5                                    | 1.31          | 0.235                 | 205859             | 0.0160                  | 0.01       | 6.00         | 0.088000853   | Estimated flow post development- current peak day |
|--------------------------------------------|-------------------------------------------|-------------------------|-----------------------|--------------------------|----------|----------------------------------------|---------------|-----------------------|--------------------|-------------------------|------------|--------------|---------------|---------------------------------------------------|
| 235 mm                                     | 60                                        | 0.04338                 | 0.235                 | 0.015                    | 1        | 1.5                                    | 1.38          | 0.235                 | 216694             | 0.0159                  | 0.01       | 6.59         | 0.09750787    | Estimated flow post development 2028 peak day     |
| 235 mm                                     | 65.8                                      | 0.04338                 | 0.235                 | 0.015                    | 1        | 1.5                                    | 1.52          | 0.235                 | 237641             | 0.0156                  | 0.01       | 7.81         | 0.117270548   | Estimated flow post development- 2058 peak day    |
| Approximate flows all<br>Current peak day: | ocated to Waterfall Park developn<br>44.3 | nent in Mott Ma<br>BL/s | acdonal Model:        |                          | I        |                                        |               |                       |                    |                         |            |              | Ô,            |                                                   |
| 2028 peak day:                             | 44                                        | L/s                     |                       |                          |          |                                        |               |                       |                    |                         |            |              |               |                                                   |
| 2058 peak day:                             | 43.4                                      | L/S                     |                       |                          |          |                                        |               |                       |                    |                         |            | •            |               |                                                   |
| New flow (Waterfall Pa                     | ark Hotel plus Northbrook Retirem         | nent Village):          |                       |                          |          |                                        |               |                       |                    |                         |            |              | K             |                                                   |
| Current peak day:                          | 31.3                                      | 8 L/s                   |                       | -                        |          |                                        |               |                       |                    |                         |            | $\mathbf{O}$ |               | $\mathbf{\Lambda}$                                |
| 2028 peak day:                             | 31.3                                      | 8 L/s                   |                       |                          |          |                                        |               |                       |                    |                         |            |              |               |                                                   |
| 2058 peak day:                             | 31.3                                      | 8 L/s                   |                       |                          |          |                                        |               |                       |                    |                         |            |              |               |                                                   |
|                                            |                                           |                         |                       |                          |          |                                        |               |                       |                    |                         |            |              |               |                                                   |
| New post-development                       | nt flows (Mott Macdonald Pre-Deve         | elopment Flow           | s plus Waterfall Park | Hotel plus No            | rthbrook | Retirement Vill                        | lage):        |                       |                    |                         | くく         |              | X             |                                                   |
| Current peak day:                          | 44                                        | L/s                     |                       |                          |          |                                        |               |                       |                    |                         |            |              |               |                                                   |
| 2028 peak day:                             | 47.3                                      | 8 L/s                   |                       |                          |          |                                        |               |                       |                    | •                       |            | - C          |               |                                                   |
| 2058 peak day:                             | 53.7                                      | ′L/s                    |                       |                          |          |                                        |               |                       |                    |                         |            |              |               |                                                   |
| I                                          | 1                                         |                         |                       |                          |          |                                        |               |                       |                    | <b>U</b> 5              |            |              |               |                                                   |
| New post-development                       | nt flows (Mott Macdonald Pre-Deve         | elopment Flow           | s plus Waterfall Park | Hotel plus No            | rthbrook | Retirement Vill                        | lage):        |                       |                    |                         |            |              | •             |                                                   |
| Pipe Dia (ID)                              | Flow                                      | Area                    | Pipe diameter         | Roughness<br>Coefficient | Length   | Kinematic<br>Viscosity                 | Mean Velocity | Hydraulic<br>diameter | Reynolds<br>Number | Friction<br>Coefficient | Total Head |              | Velocity Head | Description                                       |
|                                            | Q (l/s)                                   | A (m²)                  | m                     | k (mm)                   | L (m)    | v (10 <sup>°°</sup> m <sup>2</sup> /s) | V (m/s)       | D (m)                 | Re                 | f 🥐                     | ΔH (m)     | m/1000 m     |               |                                                   |
|                                            |                                           |                         |                       |                          |          |                                        |               |                       |                    |                         |            |              |               | 1                                                 |
| 235 mm                                     | 44                                        | 0.04338                 | 0.235                 | 0.015                    | 1        | 1.5                                    | 1.01          | 0.235                 | 158909             | 0.0167                  | 0.00       | 3.74         | 0.052437566   | Estimated flow post development- current peak day |
| 235 mm                                     | 47.3                                      | 0.04338                 | 0.235                 | 0.015                    | 1        | 1.5                                    | 1.09          | 0.235                 | 170827             | 0.0165                  | •0.00      | 4.26         | 0.060598162   | Estimated flow post development- 2028 peak day    |
| 235 mm                                     | 53.7                                      | 0.04338                 | 0.235                 | 0.015                    | 1 1      | 1.5                                    | 1 24          | 0 235                 | 193941             | 0 0 1 6 2               | 0 01       | 5.38         | 0 078106242   | Estimated flow post development- 2058 peak day    |

#### Extract from Mott Macdonald Report:

The table below summarises the maximum head losses in the existing 235mm ID pipe along Arrowtown Lake Hayes Rd and the minimum pressure forecasted at the supply point, before and after the proposed development:

#### Table 5 - Minimum Pressure at Supply Point

| Demand           | Min pressure before<br>development (m) | Min pressure after<br>development (m) | Pressure drop (m) |  |  |
|------------------|----------------------------------------|---------------------------------------|-------------------|--|--|
| Current Peak Day | 89.5                                   | 83.1                                  | 6.4               |  |  |
| 2028 Peak Day    | 89.2                                   | 82.2                                  | 7.0               |  |  |
| 2058 Peak Day    | 88.2                                   | 80.2                                  | 8.0               |  |  |

#### Table 6 - Maximum Head Losses in 235mm ID Pipe

| Demand           | Max head losses<br>before development<br>(m/km) | Max head losses<br>after development<br>(m/km) | Head losses<br>increase<br>(m/km) |  |  |
|------------------|-------------------------------------------------|------------------------------------------------|-----------------------------------|--|--|
| Current Peak Day | 0.4                                             | 6.0                                            | 5.6                               |  |  |
| 2028 Peak Day    | 0.6                                             | 6.6                                            | 6.0                               |  |  |
| 2058 Peak Day    | 1.1                                             | 7.8                                            | 6.7                               |  |  |

As shown in the pictures and above tables, the proposed development is predicted to have a noticeable impact on the remaining of the water network with a maximum pressure drop of 8.0m. Pressures are generally high along Arrowtown Lake Hayes Rd and Speargrass Flat Rd, so pressure remains well above the recommended LOS in this area, for current and future scenarios. However, pressures below the recommended LOS are predicted in the properties located in the elevated areas of Slope Hill Rd and Threewood Rd. This is an existing LOS issue that needs to be addressed.

Head losses are predicted to increase by up to 6.7m/km reaching 7.8m/km in the 235mm (ID) along Arrowtown Lake Hayes Rd due to the additional demand. The predicted head losses exceed the recommended LOS, 5m/km. This LOS issue needs to be addressed.