

KINGS QUARRY LIMITED

PEBBLE BROOK ROAD WAINUI

AIR MATTERS REPORT J22312

Kings Quarry - Stage 2 Development - Greenhouse Gas Emission Assessment

Report Date: 21/02/2023

Kings Quarry Limited - Stage 2 development - Greenhouse Gas Emission Assessment FINAL Report: J22312 - 21/02/2023

Report prepared for Kings Quarry Limited by Air Matters Limited.

Report written by:

left laut

Nigel Goodhue Environmental Scientist

Report peer reviewed and approved by:

Nick Browne (MNZOHS) Air Quality Specialist

Air Matters Report: J22312

Date: 21/02/2023 Status: FINAL

This report must not be reproduced, except in full, without the written consent of the signatory

Table of Contents

1.	INTRODUCTION
F	Purpose of this report
k	Kings Quarry5
A	Aggregate Supply6
2.	METHODOLOGY
3.	GREENHOUSE GAS EMISSIONS ASSESSMENT10
4.	CONCLUSION13
5.	LIMITATIONS
6.	REFERENCES

1. INTRODUCTION

Kings Quarry Limited (KQL) have engaged Air Matters Limited to assess the greenhouse gas (GHG) emissions from activities relating to the proposed extension ('Stage 2') at Kings Quarry, Wainui. A range of resource consents are required for the Stage 2 development and KQL are intending to apply for a fast-track resource consent.

Purpose of this report

Approval for Stage 2 is being sought, via referral process, under the COVID-19 Recovery (fast-track consenting) Act 2020 (the Act). The Act requires projects seeking resource consents, to include an assessment of the public benefit provided by the project including:

"...contributing to New Zealand's efforts to mitigate climate change and transition more quickly to a

low-emissions economy (in terms of reducing New Zealand's net emissions of greenhouse gases)'.

For the purpose of supporting the consenting process Air Matters have reviewed the available information to determine the high-level aggregate supply chains within the Auckland Region and the potential impact of the Stage 2 development. A standardised GHG reporting methodology has been used to inform the potential type of changes in GHG emissions, within the aggregate supply industry, as a result of the Stage 2 development. A quantitative GHG emission assessment has then been undertaken using The Ministry for the Environment's published guidance and emission factors.

The aim of this report is to estimate the impacts on New Zealand's Greenhouse Gas emissions as a result of the Stage 2 development at Kings Quarry. This assessment is not a comprehensive GHG inventory assessment for Kings Quarry Limited. To meet best practise the assessment has followed standardised GHG reporting methodologies.

Kings Quarry

Kings Quarry was established in the 1930's and sits on a parcel of land totalling 167ha. Quarrying operations ceased in the 1990's, however an expansion to the Quarry is now being considered. Resource consent was granted in 2021 for the Stage 1 development. This initial stage was to allow 300,000 tonnes of aggregate to be removed over an area within the existing Quarry footprint. KQL are now looking to consent an expansion of the operation referred to as Stage 2.

Aggregate supplied from the site includes:

- ▶ GAP (General All Passing) 7, 20, 40 and 65 mm
- concrete aggregates including PAP (Premium All Passing) 7, 10/14 and 19 mm
- > premium construction sand for concrete, and field and turf base layers
- decorative river pebble

The Stage 2 development is expected to provide an operational life time of up to 60 years at an annual average extraction rate of 500,000 tonnes. Once operational the quarry can provide a range of aggregate with capacity to crush and screen onsite. Quantity of the various products will depend on the demand which is likely to fluctuate year-by-year but would typically be 45% graded construction chip, 30% construction sand and 25% decorative pebble.

The target aggregate supply markets for the proposed Stage 2 development will be the North Shore and West Auckland areas, however supply will likely occur over the Auckland Region especially in relation to the decorative pebble.

Figure 1. Location of Kings Quarry in relation to Auckland. Aggregate from the proposed development would focus on meeting demand in the North Shore and West Auckland areas. *Base map sourced from maps.google.com.*

Aggregate Supply

Typically, aggregates are mostly supplied from nearby sources because of the geographic dispersion of quarry locations (Welvaert, 2018) and the cost to transport. Due to these typically short distances, aggregates within New Zealand are almost entirely transported by road as opposed to rail or coastal shipping (Waka Kotahi, 2022).

Ministry of Transport data show that in 2012/13, aggregate transport accounted for 11% of road freight transport and there was rarely any aggregate freight transport between the Regions, with the exception of Auckland and Wellington.

Auckland Regional Supply

Total demand in Auckland cannot currently be supplied within the region (Waka Kotahi, 2022). Additional supply in the case of Auckland is sourced by aggregates from Northland and the Waikato.

An economic impact assessment was carried out on the Stage 2 development (m.e Consulting, 2022) and included an estimate of the potential savings in transport costs. To inform this, historic annual aggregate supply and demand in the Auckland Region was analysed. Estimates of future population and economic growth in Auckland was then used to demonstrate the potential aggregate demand out to 2043. In summary the assessment noted that the Auckland Region does not have enough aggregate production capacity to support itself currently or into the future. Therefore, for the purpose of this assessment, it is assumed that the entire annual volume of aggregate (500,000 tonnes) supplied from Kings Quarry would be used within the Auckland Region.

In addition to bulk aggregate for construction and roading, Kings Quarry will produce decorative rock in the form of pebbles. Supply into Auckland for this type of rock is currently from Manawatu and the South Island (Alex Semenoff, pers comms).

2. METHODOLOGY

Ministry for the Environment have produced a series of documents which have been used as a guidance for this assessment (MfE, 2022a). The guideline aligns with and endorses the use of the GHG Protocol Corporate Accounting and Report Standard and ISO 14064-1:2018.

When compiling a GHG inventory the guideline recommends the following relevant considerations:

- > Organisational boundaries (which activities within an origination should be accounted for)
- **GHG emission source inclusions and exclusions** (defined as Scope 1-3)
- > **Types of Greenhouse Gases** and factoring in their Global Warming Potential (GWP)
- Selecting an appropriate **base year** as a comparison

These have been considered in the following section.

Organisational Boundaries

Organisational boundaries were set with reference to the methodology described in the GHG Protocol and ISO 14064-1:2006 standards. The GHG Protocol allows two distinct approaches to consolidate GHG emissions: the equity share and control (financial or operational) approaches. For this assessment we used 'operational control' for KQL's stage 2 activities with only the transport operations being included. How emissions from these sources are accounted for is detailed below.

GHG emission source inclusions and exclusions

The GHG emissions sources included in this inventory were identified with reference to the methodology in the GHG Protocol and ISO14064-1:2006 standards, classified under the following categories:

- Direct GHG emissions (Scope 1): emissions from sources that are owned or controlled by the company
- Indirect GHG emissions (Scope 2): emissions from the generation of purchased electricity, heat and steam consumed by the company
- Indirect GHG emissions (Scope 3): emissions that occur as a consequence of the company's activities but from sources not owned or controlled by the company

Table 2.1 shows a breakdown of the various quarry operations that produce GHG emissions and provides their Scope level and information on whether they are included or excluded from this assessment.

Table 2.1. GHG emission sources	s associated with the establishment and operation of Kings (Quarry.
		~~~

Activity	Emission source	Emission level (scope)	Included / excluded			
Establishing the Quarry						
Mobile plant (earth moving equipment)	Diesel	Scope 1				
Vegetation clearance	Forest - harvest	Scope 1	Excluded			
Site office and equipment	Electricity	Scope 2				
Construction material	Steel; concrete; other building supplies	Scope 3				
Operation of the Quarry						
Mobile plant (earth moving equipment)	Diesel	Scope 1				
Stationary machinery and plant	Diesel and electricity	Scope 1				
Motor vehicles (company)	Ute – diesel, >2000cc	Scope 1	Excluded			
Motor vehicles (private)	Ute – diesel, >2000cc and Car – petrol, <2000cc Scope 3		7			
Waste from site (landfill)	Landfill gas emissions	Scope 3				
Transportation						
Bulk transport of aggregate	Diesel	Scope 1 and 3	Included*			

*Data source: Kilometres (vehicle distance) and kilometres per tonne (bulk haulage) based on assumption of distance travelled and volume of material transported.



## **Reasons for the exclusions**

In this assessment the establishment of the Quarry and ongoing operations have been excluded. These exclusions are based on the assumption that these activities would have no material differences from any other aggregate quarries in terms of GHG emissions. To support this the following observations are made:

- The process of establishing a quarry include vegetation clearance (if required); establishing site accesses and internal roadways; removing overburden and establishing site offices and machinery. Methods and materials for these types of activities are similar between quarries (for example excavators, bulldozers and trucks for removing overburden).
- Kings Quarry is an existing site which has established site access). Therefore, its GHG emissions during establishment of Stage 2 are expected to be similar to other expanding quarries and likely significantly less than a virgin quarry.
- Ongoing operations would include extracting aggregate, screening, crushing, washing and stockpiling. The energy requirements and power sources to undertake these processes would be typical of a quarry in New Zealand.

When undertaking a full GHG inventory for the quarry operations these processes should be included. For the purpose of this assessment, to determine the potential public benefit in support of a fast-track consenting process, these exclusions are considered appropriate.

# Types of greenhouse gases

The MfE guide (2022b) covers the following greenhouse gases: carbon dioxide ( $CO_2$ ), methane ( $CH_4$ ), nitrous oxide ( $N_2O$ ), hydrofluorocarbons (HFCs), perfluorocarbons (PFCs), sulphur hexafluoride ( $SF_6$ ) and nitrogen trifluoride ( $NF_3$ ). Because GHG's can trap different amounts of heat in the atmosphere, they have different relative impacts on climate change. To enable a meaningful comparison between the gases, the GHG emissions are commonly expressed as carbon dioxide equivalent ( $CO_2$ -e). To do this the emissions of each gas are multiplied by the Global Warming Potential (GWP) in a 100-year period.

Given this assessment will focus on road transport and the use of hydrocarbons (diesel), the GHG emission factors specified in the MfE calculator have been used (MfE, 2002a). These take into account relevant GHGs and their GWP.

## Scope

Bulk transport of aggregates from the Stage 2 development will include both the quarry operator's own transport fleet (Scope 1) and subcontracted bulk carriers (Scope 3). In this assessment the emission factors for Scope 3 (km and km.tonne) have been used for all transport-related activities. This is based on the assessment being focused on future emissions as opposed to calculating based on past usage, where using actual volume of diesel would be appropriate. It is expected the chosen factors will provide the most accurate estimation of GHG emissions.



#### 3. GREENHOUSE GAS EMISSIONS ASSESSMENT

As discussed in Section 1, a portion of North Shore's and West Auckland's aggregate demand is currently supplied from South Auckland and areas outside of Auckland Region including Waikato and Northland. Over time aggerate demand in Auckland is expected to increase with further supply constraints resulting in potentially higher reliance on out-of-region supply.

The operation of Kings Quarry Stage 2 will provide long term security for an inner region supply of aggregates. Given the cost to transport bulk material, Kings Quarry is expected to favourably displace more distant supplies.

Choosing a 'base year' is important as a meaningful and consistent comparison of emissions over time and requires a performance datum with which to compare current and future emissions. Annual information on regional and inter-regional aggregate transport is not available and therefore it is not practical to define a base year from which to make comparisons from. For the purpose of this assessment, it is considered more appropriate to understand how a supply from Kings Quarry may impact the cartage of aggregates over a year. Based on this the following assumptions are made:

- All GAP, PAP and sand material sourced from Kings Quarry will be used within the Auckland Region with target local markets being North Shore and West Auckland:
- Of the 500,000 tonnes/year of aggregate supplied to the Auckland Region from Kings Quarry, it will displace other aggregate supplies at the following ratios:
  - South Auckland Region: 40% (200,000 tonnes/year)
  - Out-of-Region (Waikato and Northland): 40% (200,000 tonnes/year)
- Kings Quarry will supply 100,000 tonnes/year of decorative pebble to the Auckland market (40% of current market) directly displacing supply from Manawatu Region and the South Island.
- Extrapolating an annual GHG emission value over a consent or quarry life time (60 years) is not practical given that the supply and demand for aggregate may change over time and changes in transport methods. Therefore, providing an annual value based on current best available information is most appropriate.

Table 3.1 below estimates the potential changes in heavy vehicle transport expressed as kilometres based on the Stage 2 operation displacing more distantly-located aggregate supplies. For simplification it has been broken down into four categories:

- Inter-region (South Auckland),
- Out-of-region (Waikato/Northland), and
- > Out-of-region for decorative pebble.

Taking into account the distance and expected tonnage of aggregates, Table 3.2 estimates the potential annual changes in GHG emissions. Given the large range of assumptions, there is a moderate uncertainty with the derived GHG emissions.



Table 3.1. Estimated reduction in distance (per round trip) to supply North Shore or West Auckland markets from Kings Quarry compared to other current aggregate supply locations. Sourced from Google Maps directions.

Aggregate supply location	Average distance to North Shore/ West Auckland (km per round trip)	Net change in distance* (km per round trip)	Source			
	Construction Aggregate					
Kings Quarry	77	-	Based on the average distance of a return trip between Kings Quarry and central North Shore (Wairua)			
Inter-region (South Auckland)	102	25	Based on the average distance of a return trip between Drury (central location for South Auckland Quarries) and central North Shore (Wairua)			
Out-of-region (Waikato/Northland)	168	91	Based on the average distance of a return trip between Hampton Downs (mid-point between Mercer, Huntly and Maramarua quarries) and central North Shore (Wairua)			
Decorative Pebble						
Out-of-region (Manawatu)	1,020	930	Based on a round trip difference between Kings Quarry and central Auckland (90km) & Palmerston North and central Auckland (1020km)			

* Calculated as: the 'Average distance to North Shore/ West Auckland' from the current aggregate supply locations (i.e. second column in table) minus the Average distance to North Shore / West Auckland from Kings Quarry (77km).



Table 3.2. Potential annual net-changes in transport-related GHG emissions resulting from Stage 2 development of Kings Quarry. The estimated netchanges are a result of Kings Quarry supplying local (North Shore/West Auckland) markets and displacing more distant alternative aggregate supplies.

Emissions from heavy vehicles (kg CO ₂ -e per km)					
Aggregate supply displacement	Tonnes of aggregate	No. of heavy vehicle movements	km saved per year	Emission factor ⁺	CO ₂ -e emissions
Aggregate supply displacement	(per year)	(29 tonne per vehicle)	(km per trip from Table 3.1)	(kg CO₂-e per km)	(tonne per year)
Inter-region (South Auckland)	200,000	6,897	172,425	1.499	258
Out-of-region (Waikato/Northland)	200,000	6,897	627,627	1.499	941
Out-of-region (Manawatu)	100,000	3,448	3,206,640	1.499	4,807

Emissions from freighting goods (kg CO2-e per tonne.km)							
Aggregate supply displacement	Tonnes of aggregate	km saved per year	Tonne kilometre	Emission factor	CO ₂ -e emissions		
Aggregate supply displatement	(per year)	(km per trip from Table 3.1)	Tome kionetre	(kg CO ₂ -e per tonne.km)	(tonne per year)		
Inter-region (South Auckland)	200,000	12.5*	2,500,000	0.105	262		
Out-of-region (Waikato/Northland)	200,000	45.5*	9,100,000	0.105	955		
Out-of-region (Manawatu)	100,000	465*	46,500,000	0.105	4,882		
tal (Stage 2 provides a net CO2-e benefit)					12,105		

* Based on transporting one way and assuming no backhauling of bulk material occurring.

* MfE Measuring Emissions: A guide for organisations – 2022. Emission Factor Workbook. ROAD freight emission factors for heavy goods vehicles. HGV diesel >30,000kg (2010-2015 fleet).

^ MfE Measuring Emissions: A guide for organisations – 2022. Emission Factor Workbook. ROAD freighting goods in New Zealand. Long-haul heavy truck



## 4. CONCLUSION

The development of Stage 2 at Kings Quarry will likely increase supply of local aggregate with a high proportion of the supply meeting the demand in the North Shore and West Auckland areas. Currently the wider Auckland Region imports a share of its aggregate from Northland and Waikato and a high percentage of inter-region supply is provided from South Auckland quarries.

Taking into account the potential savings in bulk transport Kings Quarry Stage 2 development will have a positive immediate benefit in reducing New Zealand's transport related greenhouse gas emissions. Based on current available information it is estimated that a reduction of 12,105 tonnes of  $CO_2$ equivalent GHG's could be achieved annually. A moderate level of uncertainty should be considered given the number of high-level assumptions that have been made. To provide context this equates to ~0.34% of New Zealand's total heavy vehicle  $CO_2$  equivalent GHG emissions, using Ministry of the Environment's transport data from 2019 as a base year.

Ministry for the Environment guidelines and emissions factors have been followed as a basis for this assessment. Some departures from guidelines have taken place but are considered appropriate given the intention of the assessment to support a fast-track consent application. Any departures from the guidelines have been noted in the report.

Most notably the impacts of establishing and operating the quarry itself have not been included in this assessment. It is assumed that the GHG emissions from these activities would be similar to any other existing aggregate quarry. In the case of a greenfield quarry development the GHG emissions from Kings Quarry Stage 2 are likely to be significantly less. This is based on the site already having established infrastructure including access road and a historic quarry face.

## 5. LIMITATIONS

This assessment is intended as a GHG emission report and has made a number of assumptions regarding the aggregate supply market. These assumptions have been based on the best available information and are clearly identified throughout the report where used. This report is not intended as an economic assessment of aggregate supply and demand.



#### 6. REFERENCES

Ministry for the Environment (2022a). Measuring emissions: A guide for organisations. 2022. Detailed Guide. Wellington

Ministry for the Environment (2022b). Measuring Emissions: A guide for organisations. Emission Factor Workbook. Using Data and Methods from the 2020 Calendar Year.

Waka Kotahi NZ Transport Agency (2022). Aggregate supply and demand in New Zealand, Waka Kotahi NZ Transport Agency research report 693.

Ministry of Transport (2017) Transport Outlook: Future State. A starting discussion on the future of transport in New Zealand

Ministry of Transport (2022) Mahere Hohenga kia Whakakorea te Waro ā-Kawenga 2022-25 | Decarbonising Transport Action Plan 2022–25.

m.e consulting (2023) Kings Quarry – Stage 2 Economic Assessment for COVID-19 Recovery Fast-Track Consenting Act Referral Application.

Aggregate & Quarry Association of NZ (2020). The Tyranny of Distance: Counting the cost of transporting aggregates (presentation sourced online at:

