

Geotechnical Investigation

108 Dunns Crossing Road Rolleston Christchurch

> Submitted to: Hughes Developments Ltd Christchurch

ENGEO Limited 124 Montreal Street, Sydenham, Christchurch 8023 PO Box 373, Christchurch 8140, New Zealand Tel +64 3 328 9012 Fax +64 3 328 9013 www.engeo.co.nz

08.11.2019 12903.000.000_70

Contents

1	Introduction	3
2	Site Description	3
3	Geological Model	5
3.1	Regional Geology	5
3.2	Geomorphology	5
3.3	Geohazards	3
3.3.1	Seismicity	3
3.3.2	Liquefaction and Lateral Spreading	3
3.4	Site Investigation	3
3.5	ECan Boreholes	7
3.6	Groundwater	3
3.7	Site Seismic Class	3
4	Liquefaction Assessment	3
5	RMA Section 106 Requirements and Suitability to Subdivide	9
6	Geotechnical Recommendations	9
6.1	Earthworks	9
6.2	Subdivision Roading)
6.3	Stormwater Control)
6.4	Foundations10)
7	References11	1
8	Limitations12	2

Tables

Table 1:	Summary of Subsurface Conditions
Table 2:	Generalised Summary of ECan Boreholes

Figures

Figure 1:	Site Location Plan
Figure 2:	Historical Aerial Imagery - 1990 to 1994
Figure 3:	Nearby ECan Borehole Locations

Appendices

- Appendix 1: Site Plan and Inferred Paleo Channels
- Appendix 2: ENGEO Hand Auger and Test Pit Logs
- Appendix 3: ECan Boreholes

ENGEO Document Control:

Report Title	Geotechnical Investigation - 108 D	ounns Crossing Roa	ad, Rolleston				
Project No.	12903.000.000	70	70				
Client	Hughes Developments Ltd	Kelvin Blac	Kelvin Black				
Distribution (PDF)	Kelvin Black						
Date	Revision Details/Status	WP	Author	Reviewer			
08/11/2019	Issued to Client	JB	KF	GM			

1 Introduction

ENGEO Ltd was requested by Hughes Developments Ltd to undertake a geotechnical investigation of the property at 108 Dunns Crossing Road, Rolleston, Christchurch, as outlined in our variation proposal (ref: P2019.002.259_01).

The purpose of this assessment was to conceptualise a geological model of the site, assess the likely future land performance, comment on the suitability of the site for residential subdivision, address the requirements of Section 106 of the Resource Management Act (RMA) and provide recommendations for subdivision works and foundations for typical timber framed residential dwellings.

Our scope of works included the following:

- Complete a desktop study of relevant available geotechnical and geological publications, including the NZ Geotechnical and Environment Canterbury Databases;
- Undertake a geotechnical site walkover;
- Undertake sixteen hand auger boreholes with associated Scala penetrometer tests to assess the near surface material types and strength characteristics;
- Organise and technically supervise the excavation of fourteen test pits, including geotechnical logging of the exposed soils; and
- Preparation of this report outlining our findings on the ground conditions and the suitability of the site for residential subdivision, including geotechnical advice on the likely foundation Technical Category, conceptual foundation recommendations for typical timber framed residential dwellings, and address likely geohazards as required by Section 106 of the RMA.

2 Site Description

The site covers a total area of 10.1 ha and has the following legal description (Canterbury Maps):

• 108 Dunns Crossing Road - Lot 2 DP 61278.

It is located approximately 3 km southwest of Rolleston town centre. The site is bound to the southwest by Dunns Crossing Road, and all other sides by rural properties (Figure 1).

Figure 1: Site Location Plan

3 Geological Model

3.1 Regional Geology

The site has been regionally mapped by GNS (Forsyth et al., 2008) as being underlain by brownish grey river alluvium (Q2a).

3.2 Geomorphology

The site comprises relatively flat ground, with gentle undulations and depressions in some areas. As evident on aerial imagery (Canterbury Maps, 2019) and observed during our site walkover conducted on 4 November 2019, undulating and depressed ground can be attributed to paleo-channels, which traverse the site in a general northwest to southeast trend (Figure 2). Based on observations, silty sand deposits with variable thickness (up to 0.8 m) are expected to have in-filled the paleo-channels where they have not remained as channel features. Inferred paleo-channels have been mapped to give an indication of areas with potential channel in-fill (Appendix 1).

Figure 2: Historical Aerial Imagery – 1990 to 1994

Image sourced from Canterbury Maps. Not to scale.

3.3 Geohazards

3.3.1 Seismicity

There are no known or mapped faults in the immediate area of the site, however the site may be at risk of ground shaking induced by movement of proximal or distal faults.

The site is located between two recently discovered fault systems, the Greendale Fault and the Port Hills Fault, the ruptures of which initiated the ongoing Canterbury Earthquake Sequence (CES). The Greendale Fault has been mapped approximately 5.6 km north / northwest of the site and trends roughly east-west with a surface rupture length of approximately 28 km (GNS, 2015), while the Port Hills Fault remains unmapped as the fault did not rupture at the surface. Movement on the Port Hills Fault is believed to have extended to within 1 km to 2 km below ground surface.

Large regional areas of faulting (GNS, 2015) namely the Ashley Fault, Porters Pass - Amberley Fault Zone, and the Hope and Alpine Faults, are further afield but present a high seismic hazard to the Christchurch area due to the anticipated size of earthquakes generated. The largest of these faults is the Alpine Fault, which has a return period of 250 - 300 years and is expected to produce a M8 earthquake. The last rupture on the Alpine Fault is believed to have occurred in 1717 (Pettinga et al., 2001).

3.3.2 Liquefaction and Lateral Spreading

The site is located in an area mapped where "damaging liquefaction is unlikely" (NZGD Map CGD5140, 2012), and a "zone of very low liquefaction potential" (GNS, 2006).

3.4 Site Investigation

Site investigations to assess the shallow subsurface material types and strength characteristics were undertaken by ENGEO on 4 November 2019. The investigations comprised sixteen hand auger boreholes and fourteen test pit investigations with associated Scala penetrometer tests.

The investigations revealed subsurface conditions across the site are consistent with the published geological mapping, as summarised in Table 1. Hand auger and test pit logs are included in Appendix 2 of this report.

Soil Type	Depth to Top of Layer (m)	General Layer Thickness (m)	Density / Consistency	Additional Comments
TOPSOIL	0.0	0.1 – 0.3	Soft to Firm	-
Silty SAND	0.2	0.7 – 0.8	Loose to Dense	Present in TP09 and TP11
Sandy Gravel	0.1 – 1.0	Unknown	Medium Dense to Very Dense	Consistent across the site

Table 1: Summary of Subsurface Conditions

3.5 ECan Boreholes

A review of four deep ECan borehole logs was conducted. The first (M36/4450), is located on-site, and appears to be a water well servicing the properties irrigation. The other boreholes are located to the north (M36/5038), north east (M36/5041) and south (M36/4449) of the site. A borehole is located west of Dunns Crossing Road (M36/8130) but has no borehole data for the first 54 m of the soil profile on Canterbury Maps (Figure 3)

Well logs from the four holes of interest are presented in Appendix 3 and summarised in Table 2.

ECan Borehole	Total Depth (m)	Water level (m)	Generalised borelog as logged by driller
M36/4449	24	7.7	Gravel to 24 m with a layer of clay from 12 to 14 m and sandy gravel from 14 to 18 m.
M36/4450	26	8.1	Gravel to 26 m with a layer of clay from 12 to 18 m, 22 to 24 m and 26 o 26.5 m.
M36/5038	32	8.5	Silt bound gravel to 4 m and gravel to 32 m with a layer of silty gravel 12 to 14.4 m.
M36/5041	34	8.6	Gravel to 34 m with layers of silt bound gravel from 2 to 5.4 m and 8.2 to 12.8 m.

 Table 2:
 Generalised Summary of ECan Boreholes

Figure 3: Nearby ECan Borehole Locations

Aerial photograph sourced from Canterbury Maps. Not to scale.

3.6 Groundwater

Groundwater is recorded in the surrounding boreholes between approximately 7.7 m and 8.6 m depth.

3.7 Site Seismic Class

In accordance with NZS 1170.5:2004, Class D applies to this particular site, defining it as a 'deep soft soil site'.

4 Liquefaction Assessment

Owing to the nature of the subsurface materials and depth to groundwater at the site, we consider the potential for liquefaction and lateral spreading on the site to be very low.

We therefore consider future land performance to be in line with Technical Category 1 (TC1), whereby future land damage from liquefaction is unlikely, and ground settlements are expected to be within normally accepted tolerances.

5 RMA Section 106 Requirements and Suitability to Subdivide

Section 106 of the Resource Management Act 1991 states a consent authority may refuse to grant a subdivision consent, or may grant a consent subject to specific consent conditions if it considers that:

- There is a significant risk from natural hazards; or
- Sufficient provision has not been made for legal or physical access to each allotment to be created by the subdivision.

An assessment of the risk from natural hazards as required by the RMA includes the following:

- The likelihood of natural hazards occurring (whether individually or in combination);
- The material damage to land in respect of which the consent is sought, other land, or structures that would result from natural hazards; and
- Any likely subsequent use of the land in respect of which the consent is sought that would accelerate, worsen, or result in material damage of the kind referred to in paragraph (b).

We have assessed the risk of natural hazards at the site in accordance with Section 106 of the Resource Management Act (RMA) and considered the risk to the site from rockfall, inundation (debris), slope stability, subsidence, flooding and tsunami. Based on our observations and the nature of the site, its performance during the CES, and the site's distance from the nearest significant watercourse, we consider it is unlikely for the site to be subject to natural hazards such as rockfall, inundation (debris), slope stability, subsidence, flooding and tsunami. As such, the site is considered suitable for subdivision from a geotechnical perspective.

6 Geotechnical Recommendations

6.1 Earthworks

Earthworks carried out for the subdivision shall be in accordance with NZS 4404:2010, Land Development and Subdivision Infrastructure and NZS 4431:1989, Code of Practice for Earth filling for Residential Development. In particular, any areas to receive fill should be stripped of all vegetation, topsoil, non-engineered fill, soft or organic soils prior to fill placement.

Fill may comprise clean natural sandy gravel or silty soils, or clean imported soils and / or granular fill, compacted to achieve no less than 95% of maximum dry density. Fill faces steeper than 2V:1H and higher than 600 mm should be retained and referred back to ENGEO. Although unlikely, where any springs or groundwater seeps are encountered, they should be intercepted with suitable drainage and discharged to a Council approved outlet.

All unretained batters of pond and stormwater drains constructed with the native sandy gravel material should be at an inclination no steeper than 1V:3H, with protection schemes in place to control erosion of the formed batters within the waterways.

A comprehensive earthworks specification should be provided to the earthworks contractor prior to starting excavations and an inspection / testing regime agreed, along with a robust erosion and sediment control plan.

6.2 Subdivision Roading

Vegetation, any organic or deleterious material, topsoil and non-engineered fill should be removed from the site under pavement areas prior to aggregate placement. Based on our observations during testing, we consider the natural ground below the topsoil at the site should provide an adequate subgrade for the proposed pavement areas.

6.3 Stormwater Control

Concentrated stormwater flows from all impermeable areas must be collected and carried in sealed pipes to the Council system or an alternative disposal point subject to approval from Council. Uncontrolled stormwater must not be allowed to saturate the ground as this will potentially affect future foundation performance both statically and during future seismic activity.

6.4 Foundations

Foundations for future proposed residential dwellings within the subdivision may comprise shallow pad, strip, or slab foundations designed in accordance with the provisions of NZS 3604 Timber Framed Buildings.

Site specific testing will be required for Building Consent, to confirm the bearing materials and capacity. For preliminary design, we anticipate that a geotechnical Ultimate Bearing Capacity of 300 kPa may be assumed for foundations bearing on sandy gravel or engineered fill, below any topsoil. We anticipate this to be typically below 0.3 m depth based on our subsurface investigations.

7 References

- Canterbury Maps, Groundwater. Retrieved November 2019, from http://canterburymaps.govt.nz/Viewer.
- Canterbury Maps, Historic Aerial Imagery. Retrieved November 2019, from https://apps.canterburymaps.govt.nz/CanterburyHistoricAerialImagery.
- Forsyth, P., Barrell, D. J., & Jongens, R. (2008). Sheet 16 Geology of the Christchurch Area 1:250,000. Lower Hutt: Institute of Geological and Nuclear Sciences.
- GNS Science (2015). New Zealand Active Faults Database. Retrieved November 2018, from http://data.gns.cri.nz /af.
- Pettinga J.R., Yetton M.D., Van Dissen R.J., & Downes G. (2001). Earthquake Source Identification and Characterisation for the Canterbury Region, South Island, New Zealand. Bulletin of the New Zealand Society for Earthquake Engineering, Vol 34, No. 4, pp 282-317.
- Selwyn District Council, Property Search, retrieved November 2019, from https://www.selwyn.govt.nz/my-property/rates/search-properties.
- Standards Association of New Zealand (1989). NZS 4431:1989. Code of Practice for Earthfilling for Residential Development.
- Standards Association of New Zealand (2004). NZS 1170.5:2004. Structural Design Actions Part 5: Earthquake Actions – New Zealand.
- Standards Association of New Zealand (2010). NZS 3604:2010. Timber Framed Buildings.
- Standards Association of New Zealand (2010). NZS 4404:2010. Land Development and Subdivision Infrastructure.
- The Ministry of Business, Innovation, and Employment (2016). New Zealand Geotechnical Database. Retrieved November 2019, from https://www.nzgd.org.nz.

8 Limitations

- i. We have prepared this report in accordance with the brief as provided. This report has been prepared for the use of our client, Hughes Developments Ltd, their professional advisers and the relevant Territorial Authorities in relation to the specified project brief described in this report. No liability is accepted for the use of any part of the report for any other purpose or by any other person or entity.
- ii. The recommendations in this report are based on the ground conditions indicated from published sources, site assessments and subsurface investigations described in this report based on accepted normal methods of site investigations. Only a limited amount of information has been collected to meet the specific financial and technical requirements of the client's brief and this report does not purport to completely describe all the site characteristics and properties. The nature and continuity of the ground between test locations has been inferred using experience and judgement and it should be appreciated that actual conditions could vary from the assumed model.
- iii. Subsurface conditions relevant to construction works should be assessed by contractors who can make their own interpretation of the factual data provided. They should perform any additional tests as necessary for their own purposes.
- iv. This Limitation should be read in conjunction with the Engineering NZ/ACENZ Standard Terms of Engagement.
- v. This report is not to be reproduced either wholly or in part without our prior written permission.

We trust that this information meets your current requirements. Please do not hesitate to contact the undersigned on (03) 328 9012 if you require any further information.

Report prepared by

Kristian Fairley Engineering Geologist

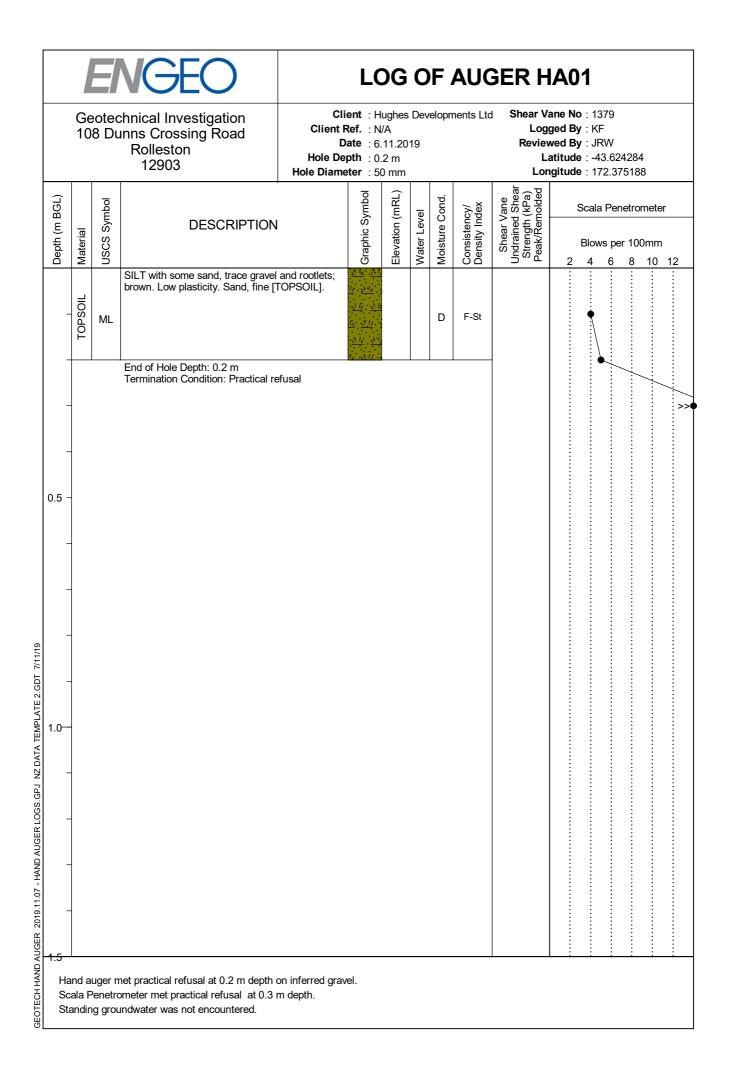
Jed Watts Engineering Geologist

Report reviewed by

Greg Martin, CMEngNZ (PEngGeol) Principal Engineering Geologist

APPENDIX 1:

Site Plan and Inferred Paleo Channels

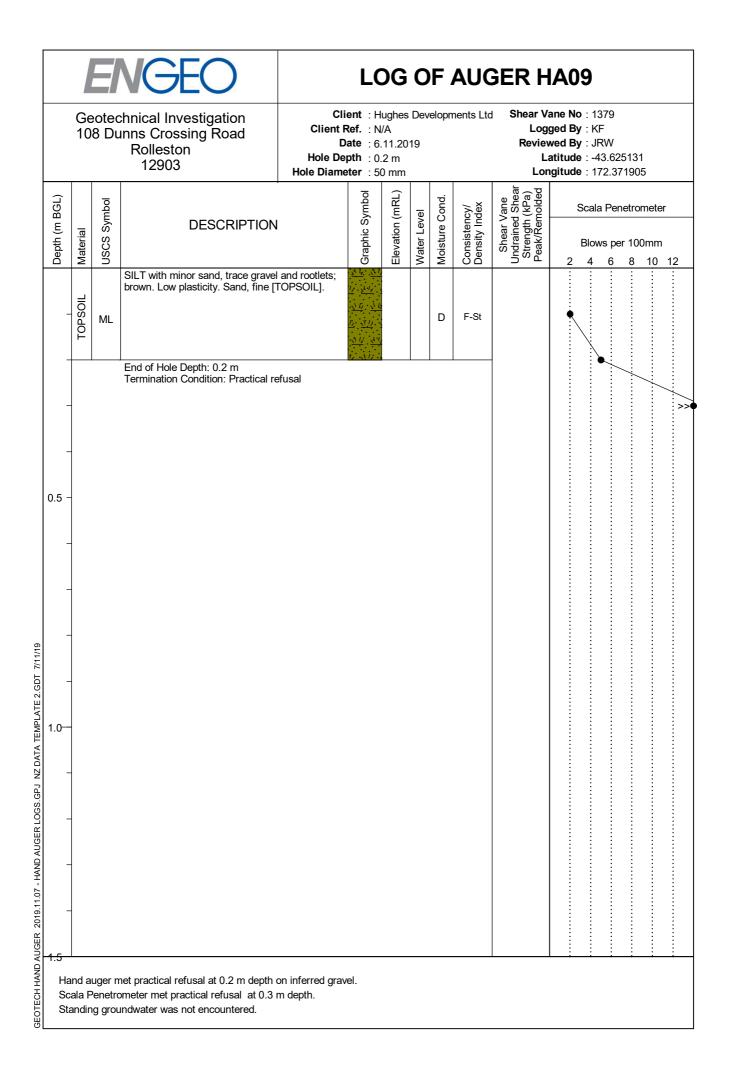

ORIGINAL FIGURE PRINTED IN COLOUR

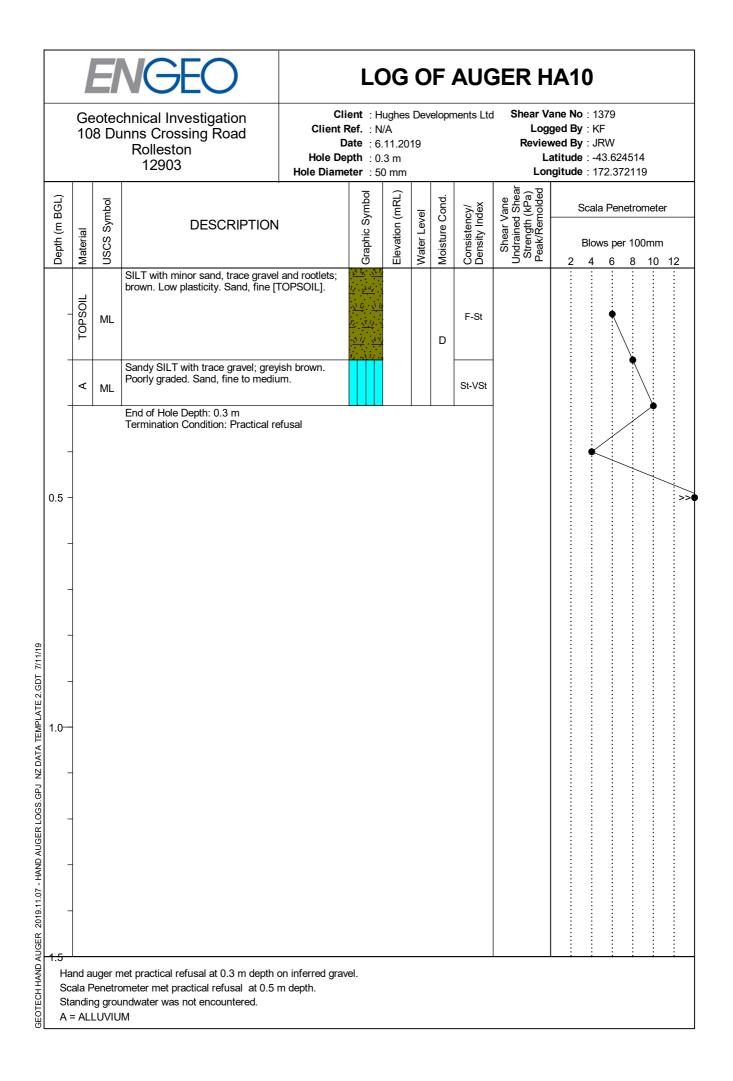
APPENDIX 2:

ENGEO Hand Auger and Test Pit Logs

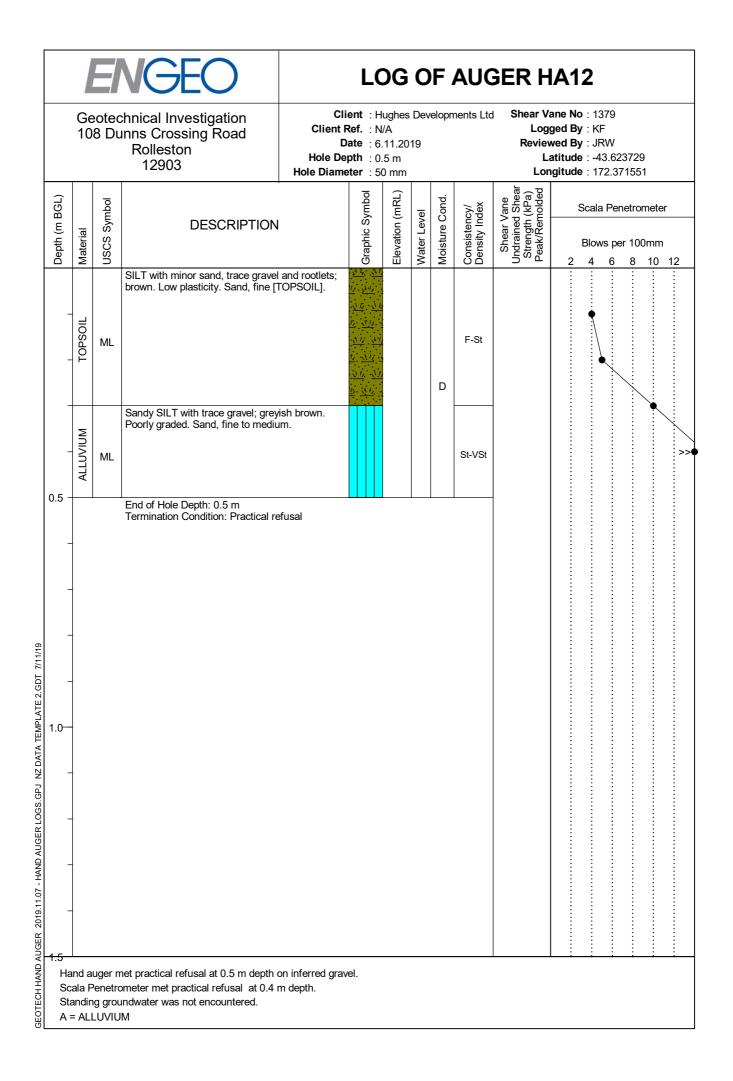
			VGEO		LC	C	0	F	AUG	SER H	A02	2			
	Ge 10	eotec 8 Du	chnical Investigation Inns Crossing Road Rolleston 12903	Client : Hughes Developments Ltd Shear Vane No : 1379 Client Ref. : N/A Logged By : KF Date : 6.11.2019 Reviewed By : JRW Hole Depth : 0.3 m Latitude : -43.623539 Hole Diameter : 50 mm Longitude : 172.375633											
Depth (m BGL)	Material	USCS Symbol	DESCRIPTION		Graphic Symbol	Elevation (mRL)	Water Level	Moisture Cond.	Consistency/ Density Index	Shear Vane Undrained Shear Strength (kPa) Peak/Remolded	В		enetrom ber 100		
-	TOPSOIL	ML	SILT with some sand and trace roo Low plasticity. Sand, fine [TOPSO Trace gravel from 0.2 m depth. End of Hole Depth: 0.3 m Termination Condition: Practical re	IL].			>	D	St	98/15	•	4 0	0		× /
- 0.5 -	-														
	-													· · · · · · · · · · · · · · · · · · ·	
	-														· · · · · · · · · · · · · · · · · · ·
1.5 Ha	ala P	enetro	net practical refusal at 0.3 m depth o ometer met practical refusal at 0.3 i indwater was not encountered.		el.										

			VGEO		LC	DG	0	F	AUC	GER H	A03			
	Ge 10	eotec 8 Du	chnical Investigation Inns Crossing Road Rolleston 12903	Client Ref. : N/A Logged By : KF Date : 6.11.2019 Reviewed By : JRW Hole Depth : 0.3 m Latitude : -43.624218 Hole Diameter : 50 mm Longitude : 172.374109										
n BGL)		ymbol	DESCRIPTION		Symbol	ר (mRL) ו	evel	Cond.	ency/ Index	Shear Vane Undrained Shear Strength (kPa) Peak/Remolded	Scala	Penet	rometer	
Depth (m BGL)	Material	USCS Symbol			Graphic Symbol	Elevation (mRL)	Water Level	Moisture Cond.	Consistency/ Density Index	Shear Undraine Strengt Peak/Re	Blow 2 4		100mm 3 10 1	12
-	TOPSOIL	ML	SILT with some sand, trace gravel brown. Low plasticity. Sand, fine [Gravel becomes minor from 0.2 m Gravel, fine, subangular to subrou End of Hole Depth: 0.3 m Termination Condition: Practical re	rOPSOIL]. depth. nded.				D	F-St		•			•
-	Termination Condition: Practical refusal													>>0
0.5 -	-													
-	-													
-	-													
-														
												•		
	-													
5 Sc	ala P	enetro	net practical refusal at 0.3 m depth o ometer met practical refusal at 0.4 i indwater was not encountered.		el.									

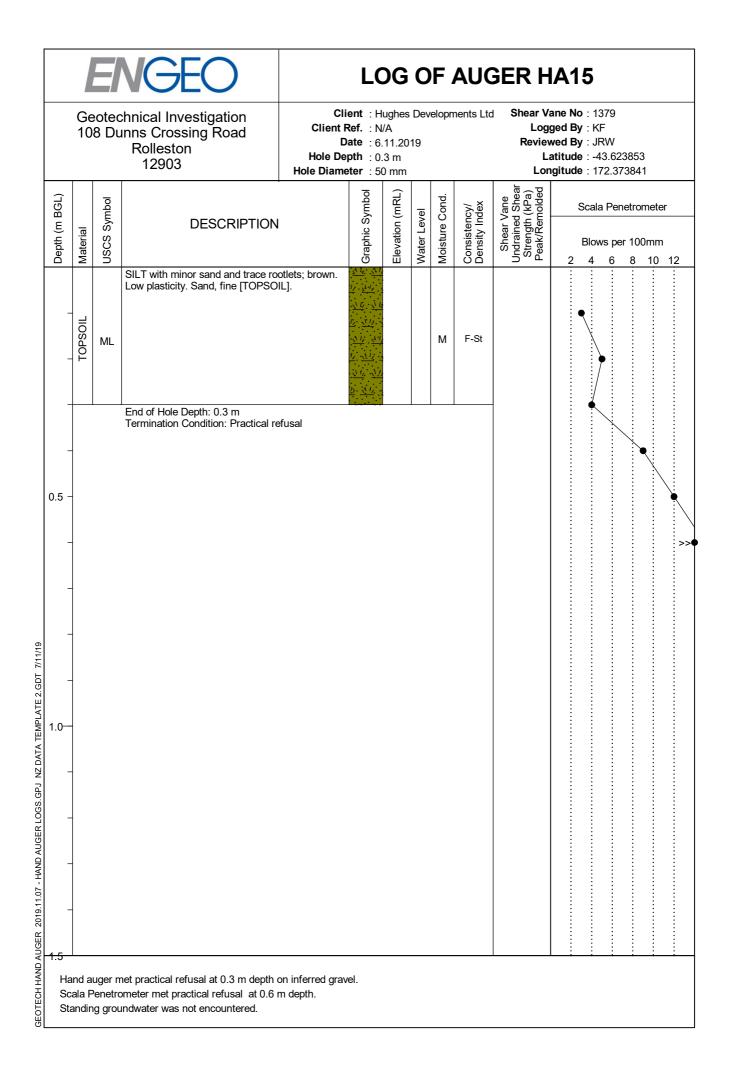

			VGEO		LC	C	0	F	AUC	GER H	IA04			
	Ge 10	eoteo 18 Du	chnical Investigation Inns Crossing Road Rolleston 12903	Client Ref. : N/A Logged By : KF Date : 6.11.2019 Reviewed By : JRW Hole Depth : 0.2 m Latitude : -43.624599 Hole Diameter : 50 mm Longitude : 172.373074										
BGL)		mbol			symbol	(mRL)	vel	Cond.	lcy/ dex	Vane d Shear າ (kPa) molded	Scala F	enetro	meter	
Depth (m BGL)	Material	USCS Symbol	DESCRIPTION		Graphic Symbol	Elevation (mRL)	Water Level	Moisture Cond.	Consistency/ Density Index	Shear Vane Undrained Shear Strength (kPa) Peak/Remolded	Blows 2 4 6	per 10 6 8	0mm 10 12	2
	TOPSOIL	ML	SILT with some sand, trace gravel rootlets; brown. Low plasticity. Sar [TOPSOIL].	, wood and nd, fine	<u>2 12</u> <u>21</u> <u>17</u> <u>211</u> <u>17</u> <u>211</u> <u>17</u> <u>211</u> <u>17</u> <u>211</u> <u>17</u> <u>211</u>	2		D	F-St		•			
	+		End of Hole Depth: 0.2 m Termination Condition: Practical re	efusal	$f_{j} \propto f_{j}$									
	-													>>
	-													
0.5	_													
61/11/1	-													
	-													
- HAND AUGER LUGS.GPJ NZ DALA LEMPLATE 2.601	-													
	-													
LUGS.GP														
U AUGER														
1.07 - HAN														
EK 2019.11.07	-													
	land o	nucer r	net practical refusal at 0.2 m depth	on inferred area	nel .									_
ភូ ទ	icala F	Penetro	ometer met practical refusal at 0.2 m depin ometer met practical refusal at 0.3 m indwater was not encountered.		GI.									

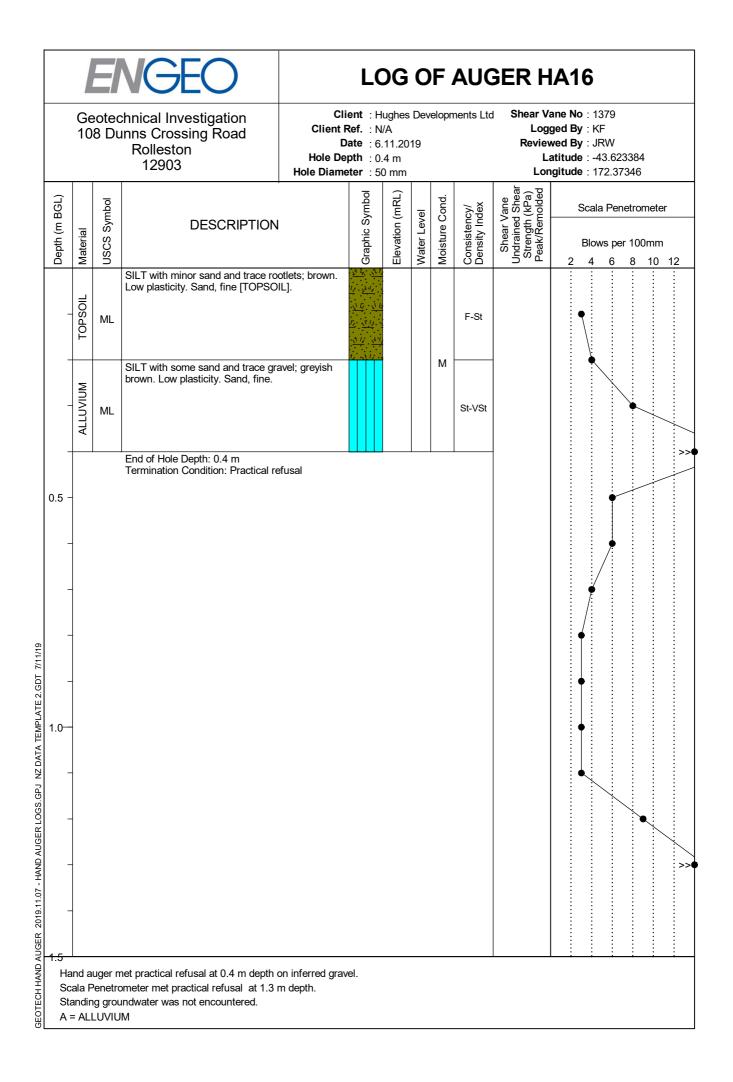

			VGEO		L	C	0	F	AUC	GER H	IA05			
			chnical Investigation Inns Crossing Road Rolleston 12903	Client F	Ref. : N ate : 6 pth : 0	I/A .11.20 .2 m		elopn	nents Lto	Log Review L Lor	ane No: 13 ged By: KF wed By: JR atitude: -43 ngitude: 17	W 8.62501		
BGL)		mbol		ymbol	(mRL)	/el	Cond.	icy/ idex	Vane d Shear i (kPa) molded	Scala	Penetro	ometer		
Depth (m BGL)	Material	USCS Symbol	DESCRIPTION		Graphic Symbol	Elevation (mRL)	Water Level	Moisture Cond.	Consistency/ Density Index	Shear Vane Undrained Shear Strength (kPa) Peak/Remolded	Blows 2 4	sper1(6 8		12
	TOPSOIL	ML	SILT with some sand, trace gravel rootlets; brown. Low plasticity. Sar [TOPSOIL].	, wood and nd, fine	14 14			M	F-St		•			
			End of Hole Depth: 0.2 m Termination Condition: Practical re	efusal										•••••
														•
	-													······
0.5	-													~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
	-													
	-													
	_												•	•••••
														•
	-													
2019.11.07	_													•
1.5														
ភ្ញ Se	cala P	enetro	net practical refusal at 0.2 m depth o ometer met practical refusal at 0.5 n indwater was not encountered.		el.									

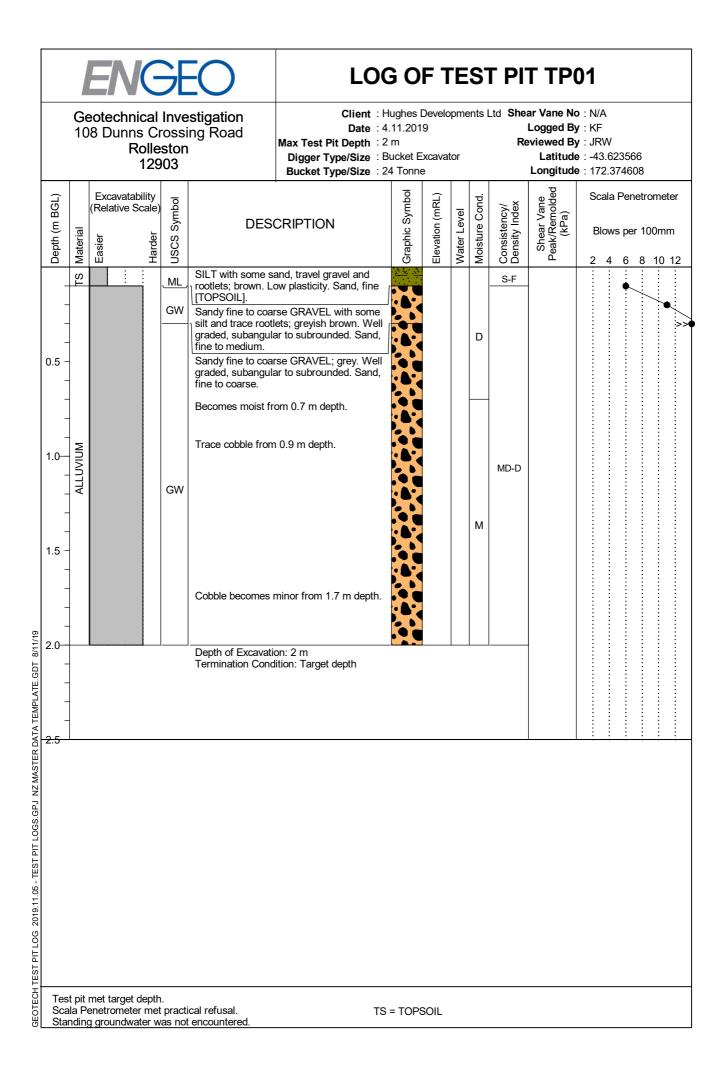
	ENGEO				LC	CG	0	F	AUC	GER H	IA06	
	Geotechnical Investigation 108 Dunns Crossing Road Rolleston 12903			Client : Hughes Developments Ltd Shear Vane No : 1379 Client Ref. : N/A Logged By : KF Date : 6.11.2019 Reviewed By : JRW Hole Depth : 0.4 m Latitude : -43.62482 Hole Diameter : 50 mm Longitude : 172.372715								
Depth (m BGL)	Material	USCS Symbol	DESCRIPTION		Graphic Symbol	Elevation (mRL)	Water Level	Moisture Cond.	Consistency/ Density Index	Shear Vane Undrained Shear Strength (kPa) Peak/Remolded	Scala Per Blows pe	netrometer er 100mm
<u> </u>	TOPSOIL	ML	SILT with some sand and trace roo Low plasticity. Sand, fine [TOPSO	otlets; brown. IL].			M	D	Ğ Ğ	<u> </u>		8 10 12
-	Image: Sandy SILT with trace gravel; greyish brown. Image: Sandy SILT with trace gravel; greyish brown. Image: Poorly graded. Sand, fine.							М	St-VSt			
			End of Hole Depth: 0.4 m Termination Condition: Practical re	đu sal								
Sc St	ala F andin	enetro	net practical refusal at 0.4 m depth o ometer met practical refusal at 0.8 undwater was not encountered. M		/el.							

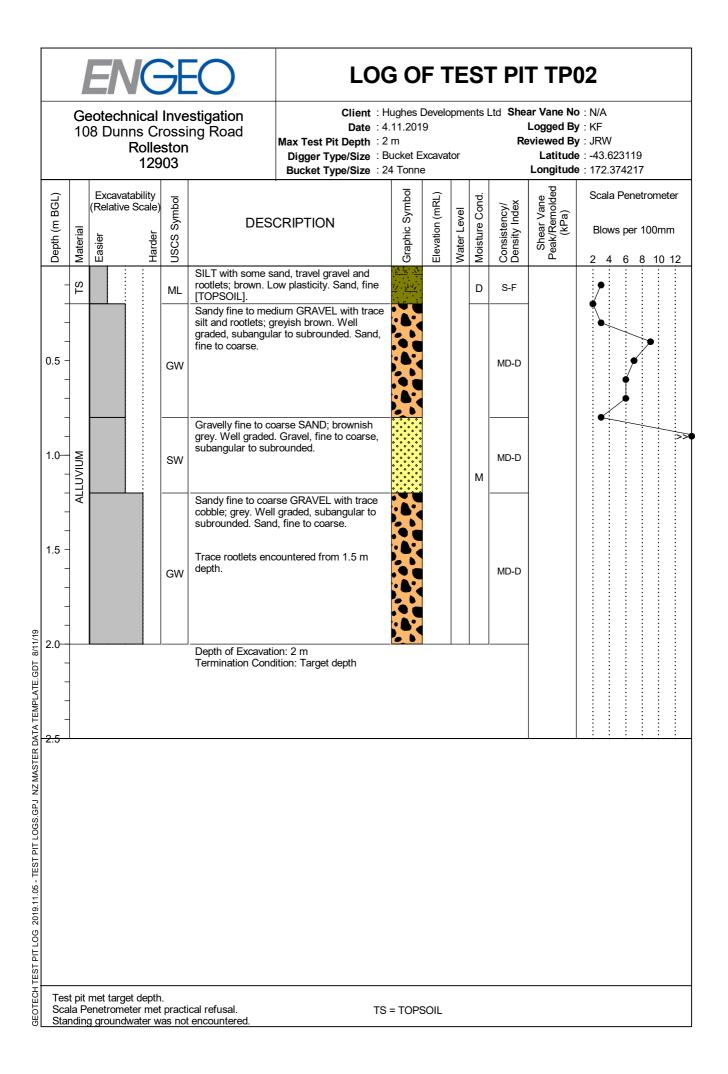

	ENGEO				LC	C	0	F	AUC	GER H	A07	,			
	Ge 10	eoteo 8 Du	chnical Investigation Inns Crossing Road Rolleston 12903	Client Ref. : N/A Logged By : KF Date : 6.11.2019 Reviewed By : JRW Hole Depth : 0.3 m Latitude : -43.625244 Hole Diameter : 50 mm Longitude : 172.372951											
Depth (m BGL)	Material	USCS Symbol	DESCRIPTION	/mbol mRL) cond.					Shear Vane Undrained Shear Strength (kPa) Peak/Remolded	BI		netrome er 100m 8 1			
-	TOPSOIL	ML	SILT with minor sand and trace ro Low plasticity. Sand, fine [TOPSO Trace gravel encountered from 0.2	IL].				D	F-St		•				
_			End of Hole Depth: 0.3 m Termination Condition: Practical re	fusal	<u> </u>		1							>	>0
0.5 -	-														
-	-														
-	-														
	-														
	-														
	-														
	-														
	-														
5 Sc	ala P	enetro	net practical refusal at 0.3 m depth o ometer met practical refusal at 0.3 n indwater was not encountered.		vel.							· · · ·			

			VGEO		LC	DG	0	F	AUC	GER H	A08	
	Ge 10	eotec 8 Du	chnical Investigation Inns Crossing Road Rolleston 12903	Client : Hughes Developments Ltd Shear Vane No : 1379 Client Ref. : N/A Logged By : KF Date : 6.11.2019 Reviewed By : JRW Hole Depth : 0.4 m Latitude : -43.625581 Hole Diameter : 50 mm Longitude : 172.37221								
Depth (m BGL)	Material	USCS Symbol	DESCRIPTION		Graphic Symbol	Elevation (mRL)	Water Level	Moisture Cond.	Consistency/ Density Index	Shear Vane Undrained Shear Strength (kPa) Peak/Remolded		netrometer er 100mm
Dep	Mat	NSI	SILT with minor sand and trace ro Low plasticity. Sand, fine [TOPSO	otlets; brown. IL].	<u>G</u> a	Ē	Wai	Moi	Cor	Be St	2 4 6	8 10 12
-	TOPSOIL	ML	Trace gravel encountered from 0.2	? m depth.	<u>19</u>			D	F-St			
-	A	ML	Sandy SILT with trace gravel; grey Poorly graded. Sand, fine to mediu	ish brown. ım.					St-VSt			
-			End of Hole Depth: 0.4 m Termination Condition: Practical re	efusal								
0.5 -												>>
-												
-	-											
-	-											
	-											
- אברי	-											
	_											
10.11.910												
1.5 1.5 Ha	and a	uger n	net practical refusal at 0.4 m depth	on inferred grav	el.							
Sta	andin		ometer met practical refusal at 0.5 i indwater was not encountered. M	m depth.								

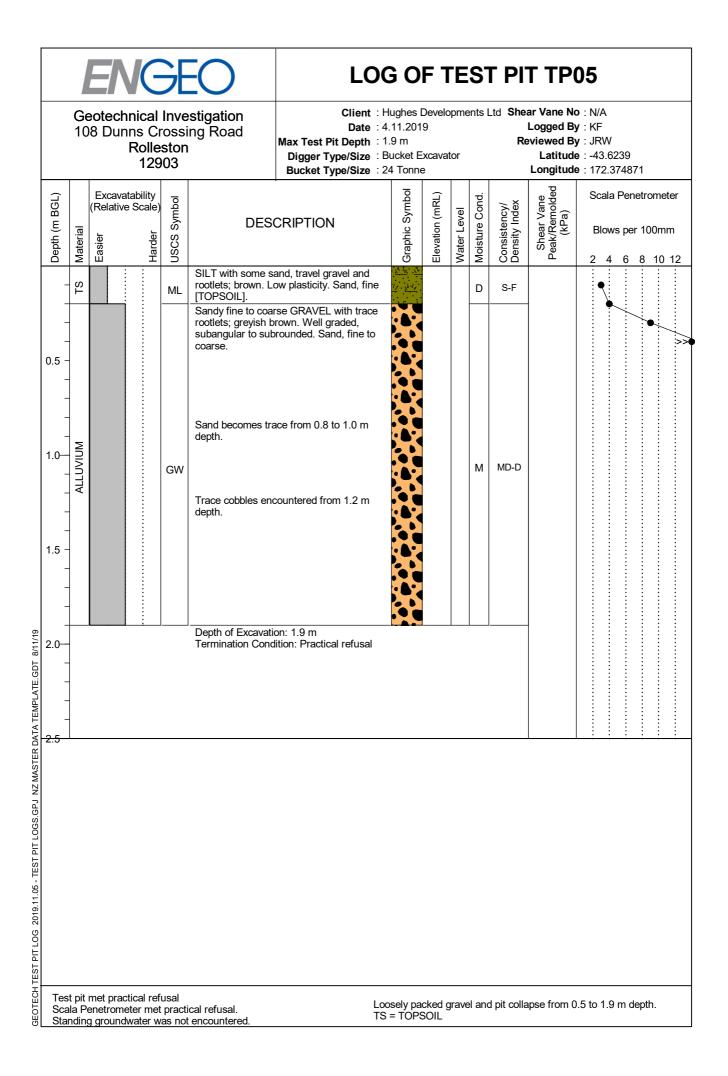


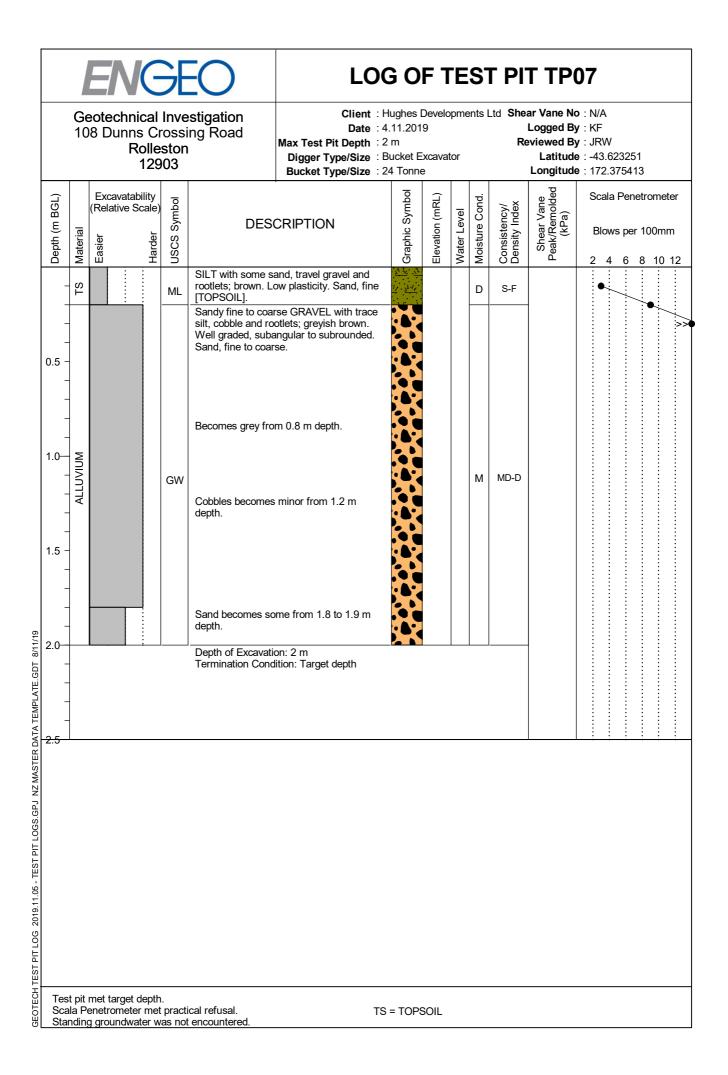

			VGEO		LC	C	0	F	AUC	GER H	IA11		
	Ge 10	eotec 8 Du	chnical Investigation Inns Crossing Road Rolleston 12903	Client : Hughes Developments Ltd Shear Vane No : 1379 Client Ref. : N/A Logged By : KF Date : 6.11.2019 Reviewed By : JRW Hole Depth : 0.2 m Latitude : -43.62435 Hole Diameter : 50 mm Longitude : 172.371175									
Depth (m BGL)	erial	USCS Symbol	DESCRIPTION		Graphic Symbol	Elevation (mRL)	Water Level	Moisture Cond.	Consistency/ Density Index	Shear Vane Undrained Shear Strength (kPa) Peak/Remolded		netrometer er 100mm	
Dept	Material	nsc			Grap	Elev	Wate	Mois	Cons Dens	Str Str	2 4 6		
-	TOPSOIL	ML	SILT with minor sand, trace gravel brown. Low plasticity. Sand, fine [and rootlets; rOPSOIL].	$\frac{\sum i \frac{1}{2}}{\sqrt{ij}} \frac{\sqrt{ij}}{\sqrt{ij}}$			D	F-St		•		
-			End of Hole Depth: 0.2 m Termination Condition: Practical re	efusal	1/	<u> </u>							
-													
-												>>	
0.5 -													
-													
61/11/													
1.0-													
- LOGO.													
AUGER													
	-												
			net practical refusal at 0.2 m depth o ometer met practical refusal at 0.4		/el.						· · · ·		
St.			indwater was not encountered.										

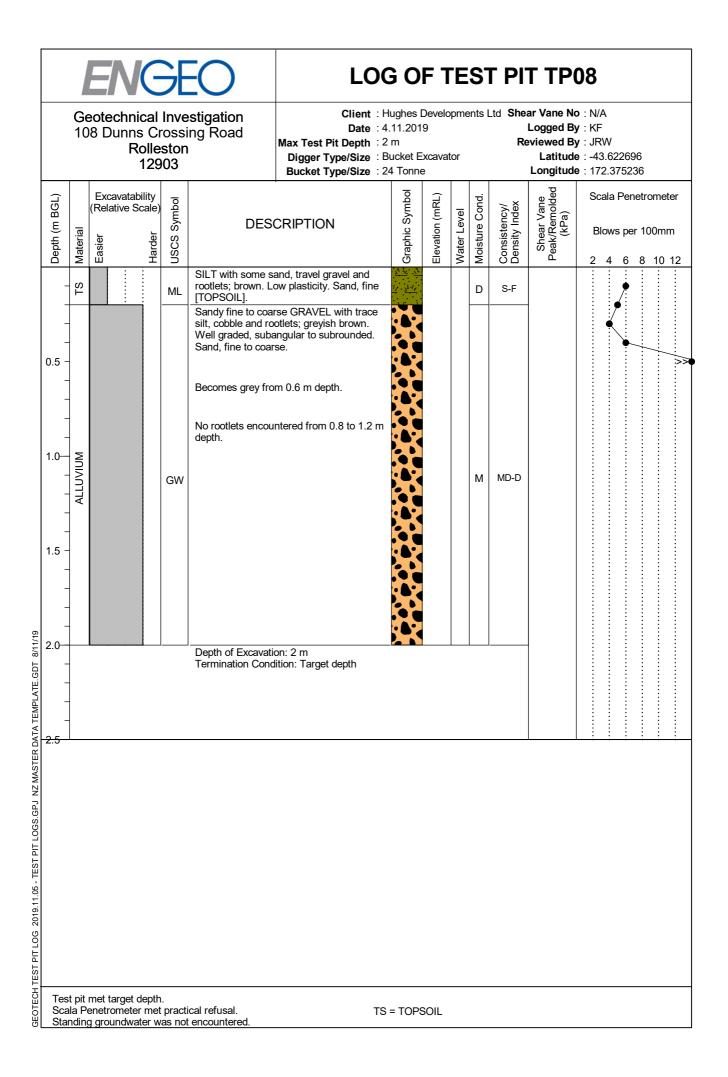


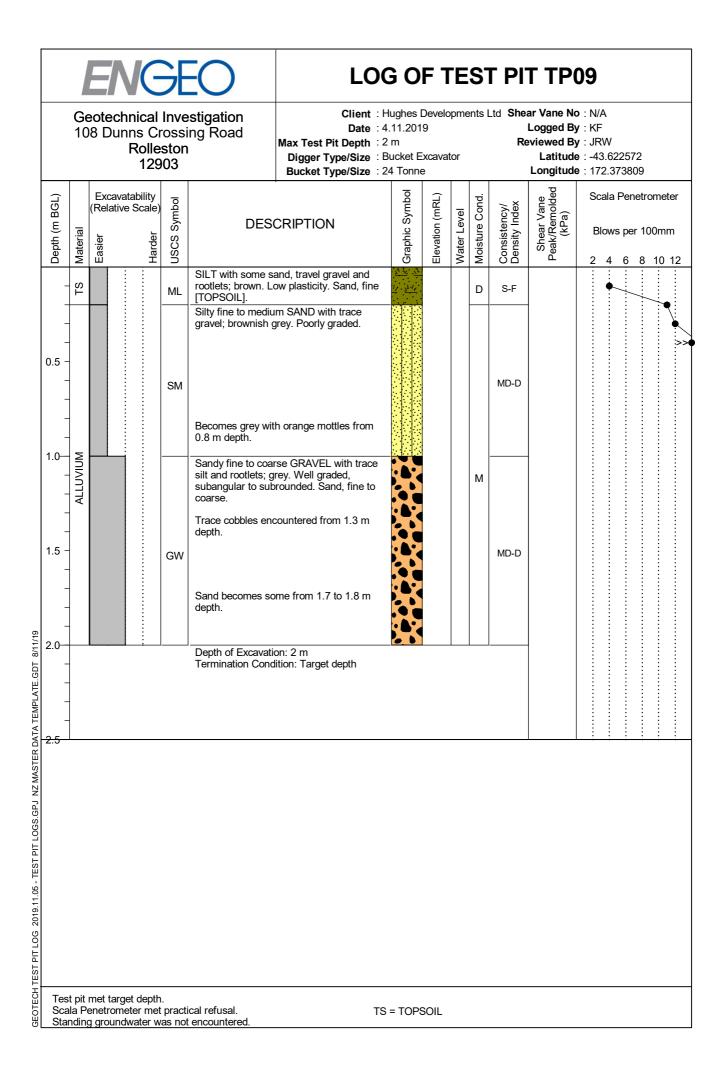

			VGEO		LC	C	0	F	AUC	GER H	IA13			
			chnical Investigation Inns Crossing Road Rolleston 12903	Client : Hughes Developments Ltd Shear Vane No : 1379 Client Ref. : N/A Logged By : KF Date : 6.11.2019 Reviewed By : JRW Hole Depth : 0.2 m Latitude : -43.622894 Hole Diameter : 50 mm Longitude : 172.373074										
BGL)		mbol			ymbol	(mRL)	/el	Cond.	icy/ idex	Vane d Shear i (kPa) molded	Scala	Penetro	ometer	
Depth (m BGL)	Material	USCS Symbol	DESCRIPTION		Graphic Symbol	Elevation (mRL)	Water Level	Moisture Cond.	Consistency/ Density Index	Shear Vane Undrained Shear Strength (kPa) Peak/Remolded	Blows per 100mm 2 4 6 8 10 1			12
-	TOPSOIL	ML	SILT with some sand, minor grave rootlets; brown. Low plasticity. Sar Gravel, fine, subangular to subrou [TOPSOIL].	nd, fine.	<u>x 1/2</u> <u>x 1</u> 1/2 <u>x 1/2</u> <u>x 1/2 <u>x 1/2</u> <u>1/2 <u>x 1/2</u> <u>x 1/2 <u>x 1/2</u></u></u></u>			D	F-St			¢		
-			End of Hole Depth: 0.2 m Termination Condition: Practical re	efusal	$f_{j} \propto f_{j}$								×	
-	-												•	>>
-	-													
0.5 -														
-	-													
21111													-	
	-													
1.0-	_												•	
	-												•	
	-													
													•	
													•	
1.5 Ha			net practical refusal at 0.2 m depth (el.						· · ·	· · ·		·
			ometer met practical refusal at 0.3 Indwater was not encountered.	m aepth.										

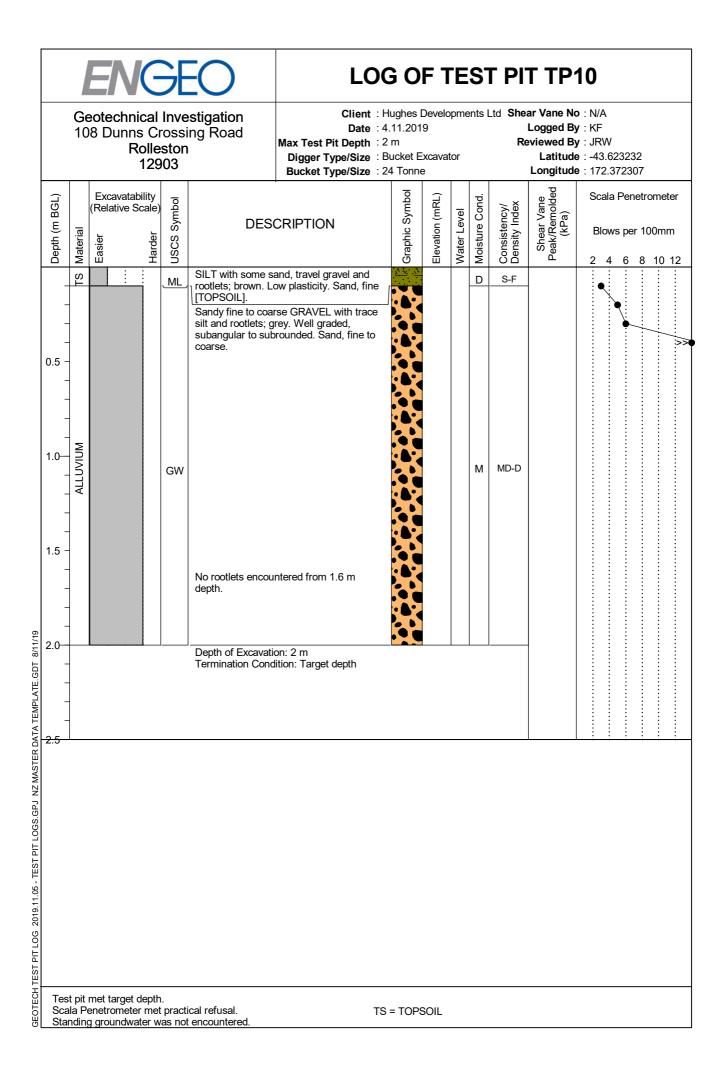
			VGEO		LC	C	0	F	AUC	SER H	IA14			
			chnical Investigation Inns Crossing Road Rolleston 12903	Client : Hughes Developments Ltd Shear Vane No : 1379 Client Ref. : N/A Logged By : KF Date : 6.11.2019 Reviewed By : JRW Hole Depth : 0.2 m Latitude : -43.622343 Hole Diameter : 50 mm Longitude : 172.374581										
BGL)		mbol			ymbol	(mRL)	e	Cond.	icy/ idex	Vane d Shear (kPa) molded	Scala Penetrometer			
Depth (m BGL)	Material	USCS Symbol	DESCRIPTION		Graphic Symbol	Elevation (mRL)	Water Level	Moisture Cond.	Consistency/ Density Index	Shear Vane Undrained Shear Strength (kPa) Peak/Remolded	Blows per 100mm 2 4 6 8 10 12			2
	TOPSOIL	ML	SILT with some sand, minor grave rootlets; brown. Low plasticity. Sar Gravel, fine, subangular to subrou [TOPSOIL].	nd, fine.	$\frac{\sqrt{3}}{12} \cdot \frac{\sqrt{3}}{\sqrt{3}} $	2		D	F-St		•			
			End of Hole Depth: 0.2 m Termination Condition: Practical re	efusal	<i>t,</i> , , <i>t</i> , ∶									
	-													
	-													
0.5	-													
	-													>>
	_													
	_													
	_													
- LAND AUGER LUGS. 647 NZ DALA LEMI-LATE 2:001	-													
	-													
2019.11.07	-													
1.5														
ភ្លូ ទ	cala F	Penetro	net practical refusal at 0.2 m depth o preter met practical refusal at 0.6 n undwater was not encountered.		el.									

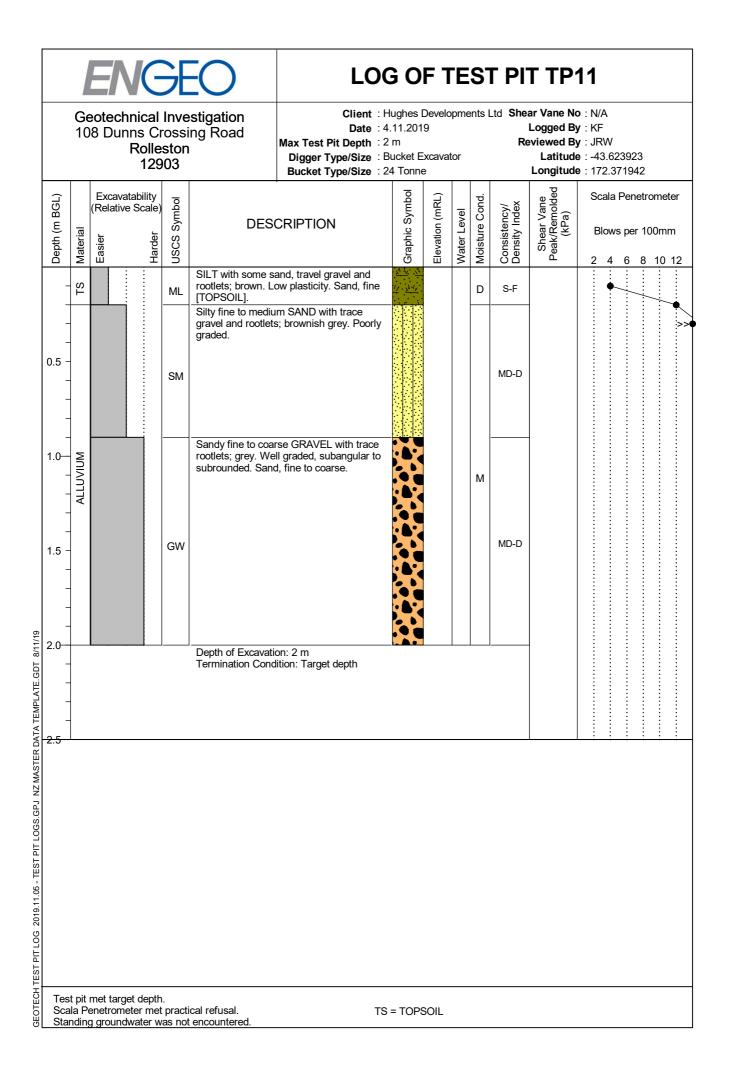


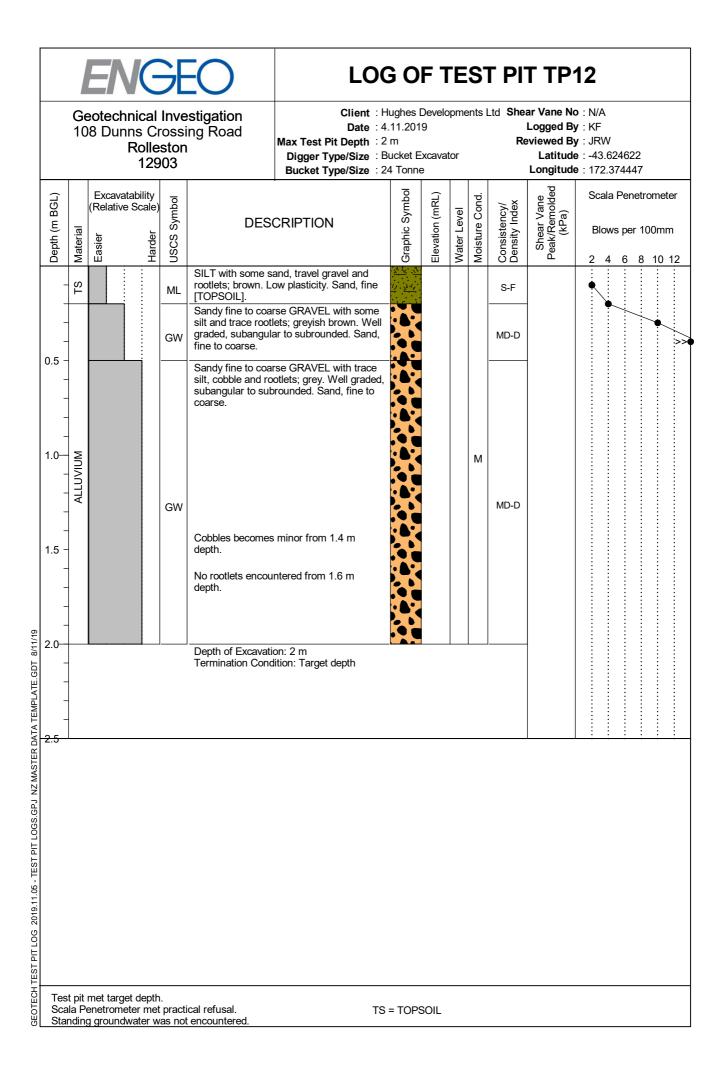


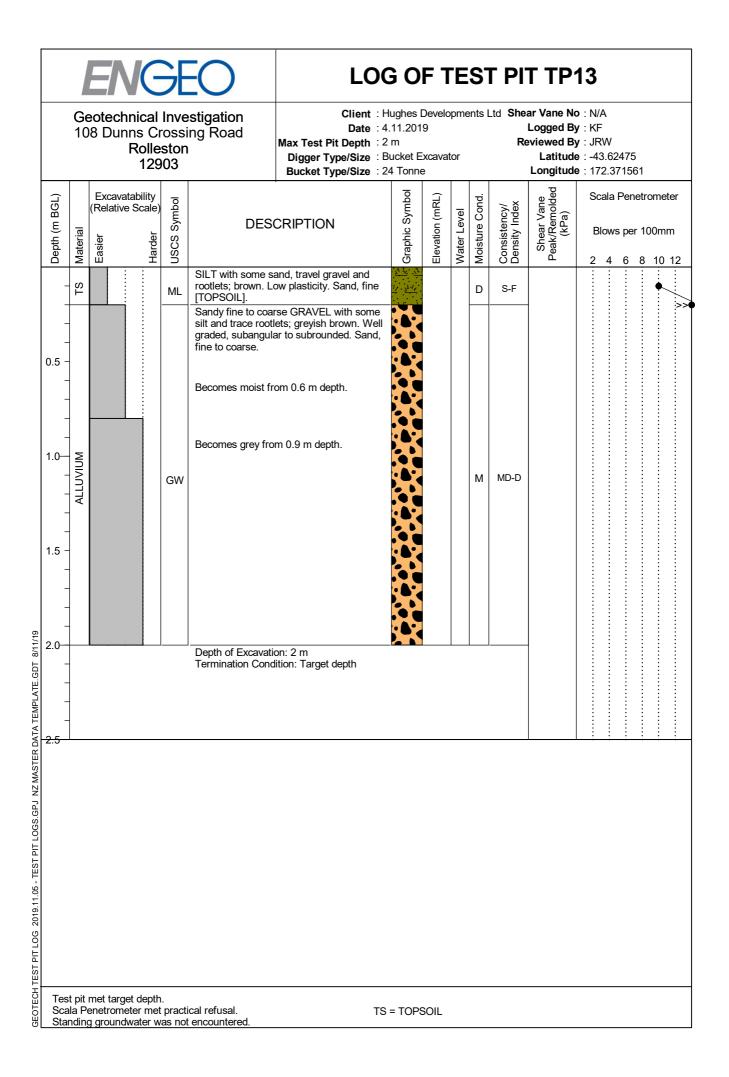

			IC	Æ	0	LO	G O	F٦	٢E	S	r pi	T TP(03	
	Ge 10	8 Dun	inical ins Cr Rolle 129	rossi <mark>ston</mark>	estigation ng Road	Date Max Test Pit Depth Digger Type/Size	Client : Hughes Developments Ltd She Date : 4.11.2019 Max Test Pit Depth : 2 m R Digger Type/Size : Bucket Excavator Bucket Type/Size : 24 Tonne					Shear Vane No : N/A Logged By : KF Reviewed By : JRW Latitude : -43.624211 Longitude : 172.372983		
Depth (m BGL)	Material	Excava (Relative .a. .a. .e. 		USCS Symbol	DES	CRIPTION	Graphic Symbol	Elevation (mRL)	Water Level	Moisture Cond.	Consistency/ Density Index	Shear Vane Peak/Remolded (kPa)	Scala Penetrometer Blows per 100mm 2 4 6 8 10 12	
0.5 1.0- 1.5	ALLUVIUM			GW	rootlets; brown. Lo [TOPSOIL]. Sandy fine to coars silt and rootlets; g graded, subangula fine to coarse. No silt and trace of from 1.0 m depth. Becomes moist an depth. Sand becomes so depth.	nd grey from 1.2 m ome from 1.4 to 1.6 m				М	S-F MD-D			
5 Sc	ala P		eter met	practi	ical refusal.		rs = tops	SOIL						

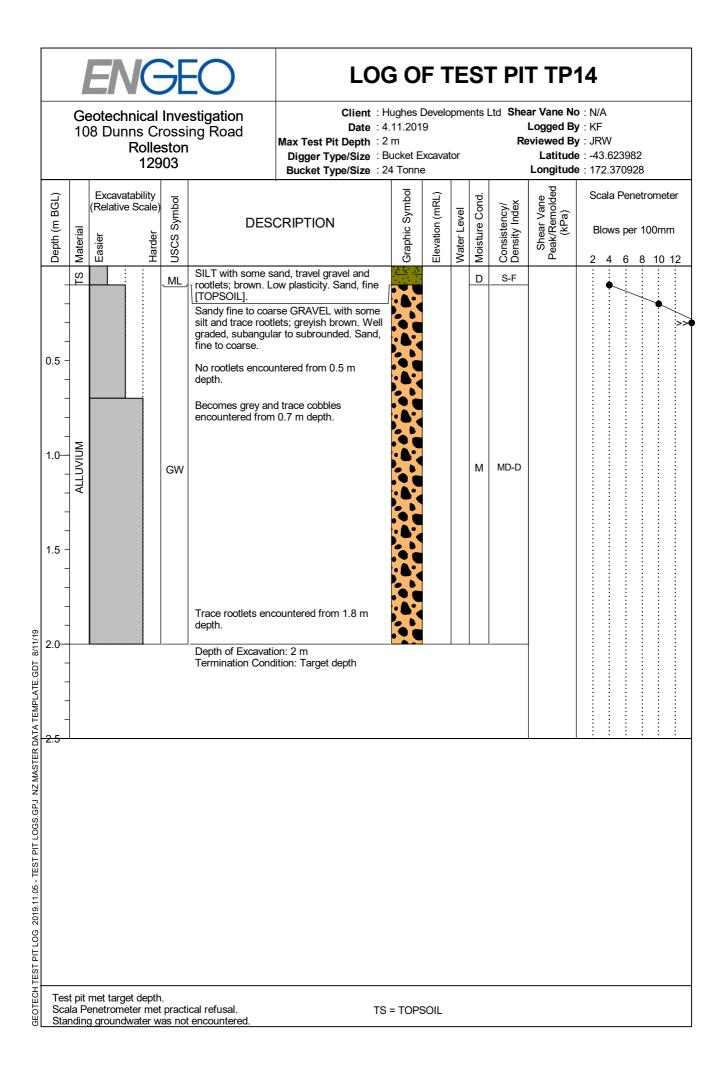

		ΕΛ	IC	Æ	0	LO	GO	F 1	٦E	S	r pi	T TP(04
	Ge 10	8 Duni	nical ns Cr Rolle 129	rossi ston	estigation ng Road	Date : Max Test Pit Depth : Digger Type/Size :) : N/A / : KF / : JRW 9 : -43.623729 9 : 172.372618
Depth (m BGL)	Material	Excavata (Relative		USCS Symbol	DES	CRIPTION	Graphic Symbol	Elevation (mRL)	Water Level	Moisture Cond.	Consistency/ Density Index	Shear Vane Peak/Remolded (kPa)	Scala Penetrometer Blows per 100mm 2 4 6 8 10 12
-	TS			ML	SILT with some sa rootlets; brown. Lo [TOPSOIL].	and, travel gravel and ow plasticity. Sand, fine	<u>x¹ 1₂</u> x ¹ <u>1</u> 2 <u>x¹ 1₂</u> <u>x¹ 1₂</u> x ¹ <u>x¹ 1₂</u> x ¹		D	S-F		•	
- 0.5 - - - -					silt and trace root	rse GRAVEL with some ets; greyish brown. We ar to subrounded. Sand				D			
	ALLUVIUM			GW	Trace silt and trac from 1.0 m depth. Becomes moist fr						MD-D		
					Sand becomes so	and becomes some from 1.7 m depth.				Μ			
LAIE.GUI 8/1					Depth of Excavati Termination Cond	on: 2 m lition: Target depth							
GEOLECH LEST PILLOG 2019.11.05 - IEST PILLOGS.GPJ NZ MASLEK DATA LEMPLATE.GDI 8/11. 2. 2. 2. 2. 2. 2. 2. 2. 2. 2													
Tes Sca Sta	la P		ter met	practi	ical refusal. : encountered.	Т	S = TOPS	SOIL					




			IC	Æ	Ο	LO	GO	F٦	٢E	S	r Pi	T TP	06
	Ge	eotech)8 Dun	nical	Inve ossi ston	stigation ng Road		4.11.201 2 m Bucket E	9 Excava		ents I		Longitude	/ : KF
Depth (m BGL)	Material	Excavat (Relative		USCS Symbol	DES	CRIPTION	Graphic Symbol	Elevation (mRL)	Water Level	Moisture Cond.	Consistency/ Density Index	Shear Vane Peak/Remolded (kPa)	Scala Penetrometer Blows per 100mm 2 4 6 8 10 12
0.5 1.0 1.5	ALLUVIUM			GW	rootlets; brown. Lo [TOPSOIL]. Sandy fine to coars silt and trace rooti graded, subangula fine to coarse. Becomes moist ar from 0.7 m depth. Trace cobbles encou depth. Trace cobbles encou depth. Sand becomes so depth.	ntered from 1.4 m countered from 1.5 m ome from 1.7 to 1.8 m				M	S-F MD-D		
5 Sc	ala P	met targe enetrome	eter met	practi	cal refusal.		'S = TOPS	SOIL					







Bore or Well No M36/4449				Envi	ronment
Well Name	DUNNS CR	OSSING RD		Cant	ronment erbury nal Council a Taiao ki Waitaha
Owner	TYACK GJ 8	& FR		Kauniherd	a Taiao ki Waitaha
Well Number	Vell Number			File Number	CO6C/02046
Owner		TYACK GJ & FR		Well Status	Not Used
Street/Road		DUNNS CROSSING	G RD	NZTM Grid Reference	BX23:49508-69470
Locality		ROLLESTON		NZTM X and Y	1549508 - 5169470
Location Description		LOT 1		Location Accuracy	50 - 300m
CWMS Zone		Selwyn - Waihora		Use	Irrigation,
Groundwater Allocati	on Zone	Selwyn-Waimakariri		Water Level Monitoring	
Depth		24.20m		Water Level Count	0
Diameter		150mm		Initial Water Level	
Measuring Point Desc	cription			Highest Water Level	
Measuring Point Elev	ation	38.81m above MSL (Lyttelton 1937)		Lowest Water Level	
Elevation Accuracy		< 2.5 m		First reading	
Ground Level		0.00m above MP		Last reading	
Strata Layers		9		Calc Min 95%	7.70m below MP
Aquifer Name		Riccarton Gravel		Aquifer Tests	0
Aquifer Type		Unknown		Yield Drawdown Tests	1
Drill Date		09 Jun 1992		Max Tested Yield	6 l/s
Driller		Dynes Road Drilling]	Drawdown at Max Tested Yield	5 m
Drilling Method		Cable Tool		Specific Capacity	1.36 l/s/m
Casing Material				Last Updated	08 Nov 2013
Pump Type		Unknown		Last Field Check	
Water Use Data		No			

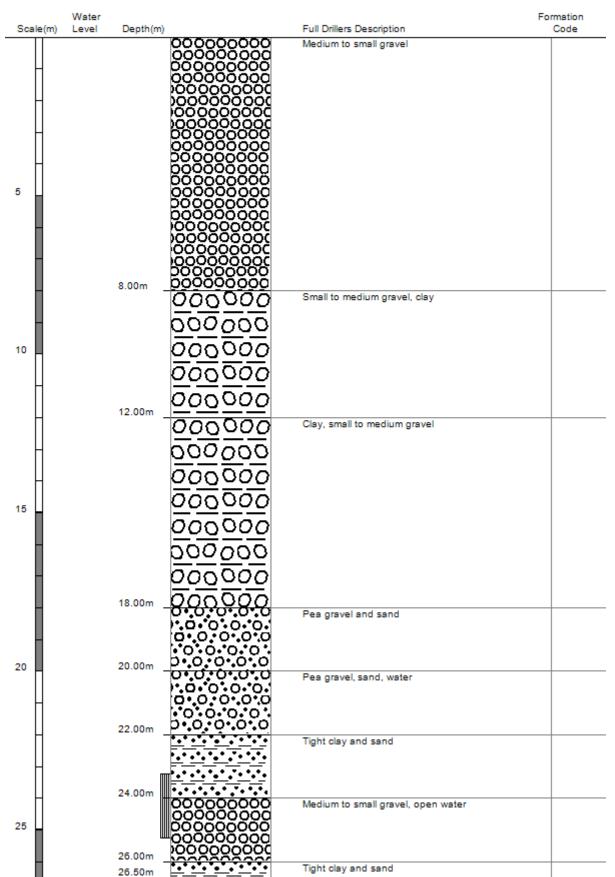
Grid Reference (NZTM): 1549508 mE, 5169471 mN Location Accuracy: 50 - 300m Ground Level Altitude: 38.8 m +MSD Accuracy: < 2.5 m Driller: Dynes Road Drilling Drill Method: Cable Tool Borelog Depth: 24.2 m Drill Date: 09-Jun-1992

	Watas				Franctine
Scale(m)	Water Level	Depth(m)		Full Drillers Description	Formation Code
5 Scale(m)	Level	Depth(m)	000000000 00000000 000000000 00000000	Pull Drilers Description Medium-small gravel	Code
		8.00m		Medium-small gravel, very open	
10		10.00m)0000000000 000000000 0000000000 0000000	Medium-small gravel	
		12.00m	0000000 000000 00000000000000000000000	Claybound small-medium gravel	
15		18.00m		Small to large sandy gravel	
20		20.00m		Medium gravel, Water-bearing	
		22.00m	000000000 000000000 000000000000000000	Small-medium gravel,clean,open	
		24.00m	000000000 00000000 000000000 000000000	Small to medium gravel,stained	

Bore or Well No	Bore or Well No M36/4450			Envi	ronment			
Well Name	DUNNS CF	ROSSING RD			terbury			
Owner	Mr & Mrs L	K & J C Blackmore	Environment Canterbury Regional Council Kaunihera Taiao ki Waitaha					
Well Number		M36/4450		File Number	CO6C/02046			
Owner		Mr & Mrs L K & J C Black	kmore	Well Status	Active (exist, present)			
Street/Road		DUNNS CROSSING RD		NZTM Grid Reference	BX23:49388-69660			
Locality		ROLLESTON		NZTM X and Y	1549388 - 5169660			
Location Description		DP61278 LOT 2		Location Accuracy	50 - 300m			
CWMS Zone		Selwyn - Waihora		Use	Irrigation,			
Groundwater Allocat	ion Zone	Selwyn-Waimakariri		Water Level Monitoring				
Depth		25.20m		Water Level Count	0			
Diameter		150mm		Initial Water Level				
Measuring Point Des	cription			Highest Water Level				
Measuring Point Elev	vation	39.62m above MSL (Lytte	elton 1937)	Lowest Water Level				
Elevation Accuracy		< 2.5 m		First reading				
Ground Level		0.00m above MP		Last reading				
Strata Layers		8		Calc Min 95%	8.10m below MP			
Aquifer Name		Riccarton Gravel		Aquifer Tests	0			
Aquifer Type		Unknown		Yield Drawdown Tests	1			
Drill Date		09 Apr 1992		Max Tested Yield	6 l/s			
Driller		Dynes Road Drilling		Drawdown at Max Tested Yield	6 m			
Drilling Method		Cable Tool		Specific Capacity	1.00 l/s/m			
Casing Material				Last Updated	08 Nov 2013			
Pump Type		Unknown		Last Field Check				
Water Use Data		No						

Screens

Screen No.	Screen Type	Top (m)	Bottom (m)	Slot Size (mm)	Slot Length (mm)	Diameter (mm)	Leader Length (mm)
1	Stainless steel	23.2	25.2				


Step Tests

Step Test Date	Step	Yield	Yield GPM	DrawDown	Step Duration
09 Apr 1992	1	6.1	80.50892	6.1	0

No comments for this well

Grid Reference (NZTM): 1549388 mE, 5169661 mN Location Accuracy: 50 - 300m Ground Level Altitude: 39.6 m +MSD Accuracy: < 2.5 m Driller: Dynes Road Drilling Drill Method: Cable Tool Borelog Depth: 26.5 m Drill Date: 09-Apr-1992

Bore or Well No	M36/5038		Envi	ronment			
Well Name	DUNNS CRO	DSSING ROAD	Cant	erbury			
Owner	KAJENS TRA	ADING DEVELOPMENT LTD	Environment Canterbury Regional Council Kaunihera Taiao ki Waitaha				
Well Number		M36/5038	File Number	CO6C/10010			
Owner		KAJENS TRADING DEVELOPMENT LTD	Well Status	Active (exist, present)			
Street/Road		DUNNS CROSSING ROAD	NZTM Grid Reference	BX23:49278-69840			
Locality		ROLLESTON	NZTM X and Y	1549278 - 5169840			
Location Descriptio	n		Location Accuracy	50 - 300m			
CWMS Zone		Selwyn - Waihora	Use	Domestic Supply,			
Groundwater Alloca	ation Zone	Selwyn-Waimakariri	Water Level Monitoring				
Depth		32.10m	Water Level Count	0			
Diameter		150mm	Initial Water Level	6.30m below MP			
Measuring Point De	scription		Highest Water Level				
Measuring Point Ele	evation	40.38m above MSL (Lyttelton 1937)	Lowest Water Level				
Elevation Accuracy		< 2.5 m	First reading				
Ground Level		0.00m above MP	Last reading				
Strata Layers		7	Calc Min 95%	8.50m below MP			
Aquifer Name			Aquifer Tests	0			
Aquifer Type		Unknown	Yield Drawdown Tests	1			
Drill Date		01 Nov 1996	Max Tested Yield	24 l/s			
Driller		Dynes Road Drilling	Drawdown at Max Tested Yield	9 m			
Drilling Method		Cable Tool	Specific Capacity	2.84 l/s/m			
Casing Material		STEEL	Last Updated	08 Nov 2013			
Ритр Туре		Unknown	Last Field Check				
Water Use Data		No					

Screens

Screen No.	Screen Type	Top (m)	Bottom (m)	Slot Size (mm)	Slot Length (mm)	Diameter (mm)	Leader Length (mm)
1	Stainless steel	30.1	32.1				

Step Tests

Step Test Date	Step	Yield	Yield GPM	DrawDown	Step Duration
01 Nov 1996	1	24.1	318.076233	8.5	2

No comments for this well

Grid Reference (NZTM): 1549278 mE, 5169841 mN Location Accuracy: 50 - 300m Ground Level Altitude: 40.4 m +MSD Accuracy: < 2.5 m Driller: Dynes Road Drilling Drill Method: Cable Tool Borelog Depth: 32.0 m Drill Date: 01-Nov-1996

	Water				Formation
Scale(m)	Level	Depth(m)		Full Drillers Description	Code
			0==0==0==	Small gravel silt bound	
Н			==0==0==0		
Ц			0==0==0==		
			==0==0==0		
Н			0==0==0==		
Ц		4.00m	1.00O		
_			0.0.0.0.0	small medium gravel sandy	
5			0.0.0.00		
			1.0.0.0.0.		
			0.0.0.0.0		
		8.39m	0.0.0.0.0		
		0.330	000000000	Small medium gravel with wet yellow	
			000000000	silt, small amount of water	
10			00000000		
			000000000		
П			000000000		
H		12.00m	0000000000	Small medium gravel siltboundvery	
			000000000	tight	
Π			000000000000000		
H		14.40m			
15			800000000	Small medium gravel, sandyenough	
			0.0.0.0.0	water to keep hand pump going.	
-			[•*O*O*O*O*O*		
			0.0.0.0.0		
			0.0.0.0.0		
			[••••••••••••		
			0.0.0.0		
20			0.0.0.0.0		
Ц			10.0.0.0.0		
		22.00m	D. 0. 0. 0. 0. 0		
Н		22.0011	0.0.0.0.0	Small medium gravel sandy	
Н					
			0.0.0.00		
Н		24.20m	0000000000	Small medium gravel brown stain clean	
25			0000000000		
			000000000000000000000000000000000000000		
			000000000		
-			10000000000		
			000000000000000000000000000000000000000		
			0000000000		
			D0000000000000000000000000000000000000		
30			0000000000		
 		Π	000000000000000000000000000000000000000		
Н			0000000000		
		32.00m	000000000000000000000000000000000000000		
• •					-

Bore or Well No	M36/5041		Envi	ronment			
Well Name	DUNNS CRC	DSSING ROAD					
Owner	KAJENS TRA	ADING DEVELOPMENT LTD	Environmen Canterbury Regional Counci Kaunihera Taiao ki Waitak				
Well Number		M36/5041	File Number	CO6C/10302			
Owner		KAJENS TRADING DEVELOPMENT LTD	Well Status	Active (exist, present)			
Street/Road		DUNNS CROSSING ROAD	NZTM Grid Reference	BX23:49507-69990			
Locality		ROLLESTON	NZTM X and Y	1549507 - 5169990			
Location Description			Location Accuracy	50 - 300m			
CWMS Zone		Selwyn - Waihora	Use	Domestic Supply,			
Groundwater Alloca	ation Zone	Selwyn-Waimakariri	Water Level Monitoring				
Depth		32.00m	Water Level Count	0			
Diameter		150mm	Initial Water Level	6.80m below MP			
Measuring Point De	scription		Highest Water Level				
Measuring Point Ele	evation	40.47m above MSL (Lyttelton 1937)	Lowest Water Level				
Elevation Accuracy		< 2.5 m	First reading				
Ground Level		0.00m above MP	Last reading				
Strata Layers		10	Calc Min 95%	8.60m below MP			
Aquifer Name			Aquifer Tests	0			
Aquifer Type		Unknown	Yield Drawdown Tests	1			
Drill Date		01 Feb 1997	Max Tested Yield	5 l/s			
Driller		Dynes Road Drilling	Drawdown at Max Tested Yield	13 m			
Drilling Method		Cable Tool	Specific Capacity	0.40 l/s/m			
Casing Material		STEEL	Last Updated	08 Nov 2013			
Pump Type		Unknown	Last Field Check				
Water Use Data		No					

Screens

Screen No.	Screen Type	Top (m)	Bottom (m)	Slot Size (mm)	Slot Length (mm)	Diameter (mm)	Leader Length (mm)
1	Stainless steel	30	32				

Step Tests

Step Test Date	Step	Yield	Yield GPM	DrawDown	Step Duration
01 Feb 1997	1	5.1	67.31074	12.8	2

No comments for this well

Grid Reference (NZTM): 1549508 mE, 5169991 mN Location Accuracy: 50 - 300m Ground Level Altitude: 40.5 m +MSD Accuracy: < 2.5 m Driller: Dynes Road Drilling Drill Method: Cable Tool Borelog Depth: 34.0 m Drill Date: 01-Feb-1997

	Water				Formation
Scale(m)	Level	Depth(m)		Full Drillers Description	Code
			0.0.0.0.0	Small medium gravel very sandy	
Н			0.0.0.00		
		2.00m	1.0.0.0.0.		
Π		-	000000000	Small medium gravel siltbound	
H			000000000		
			000000000		
Π			00000000		
5		5.40m	000000000		
		<u> </u>	0.0.0.0.0	Small medium gravel sand	
			0.0.0.0.0		
			1.0.0.0.0.		
		8.19m	p.o.o.o.o		
		6.19m	000000000	Small medium gravel siltbound, tight	
			000000000		
10			000000000		
· •			000000000		
H					
			000000000		
Н		12.80m	000000000		
Н		12.80m	8666666666	Small medium gravel silt wash gravel	
			000000000	brown	
Н			000000000		
15			000000000		
		46.70-	000000000000000000000000000000000000000		
		16.79m	8000000000	Small medium gravel sand traces of	
			0.0.0.	yellow silt	
			00.0		
20			0.0.00		
20					
Ц		21.00m	0.0.0.0.0	.	
			1.0.0.0.0.	Small medium gravel sandy driving	
Н			0.0.000		
Ц			0.0.0.0		
			p. 0. 0. 0. 0. 0		
Н			0.0.0.0.0		
25		25.40m	• • • • • • • • • • • • •		
		20.40m	000000000	Small medium gravel traces silt water	
			0000000000	5	
			000000000		
			000000000		
			000000000000000000000000000000000000000		
		20.00	000000000		
30		30.00m	<u>878797978</u>	Small medium gravel gravel small	
Ц			⊪•.0• *0•*0•*0•1	almost sand	
			0.0.0.0.0		
Н		32.59m			
		32.09m -	000000000	Small gravel siltboundwater	
Π			0000000000	dropping off	
		34.00m _			I