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Diagram 9: Longer Source Depletion Future Plume Prediction (no retardation)
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Diagram 10: Longer Source Depletion Future Plume Prediction (with retardation) 
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7.7 Plume Predictions - Discussion and Summary 

A groundwater plume of PFOS + PFHxS has been modelled and interpreted based 
on all available observation data obtained during NZDF PFAS investigations.  
Mapping and interpretation of a PFOS + PFHxS plume has been utilised for the 
purposes of this project, rather than other PFAS species, due to the current 
relevance of these two species for drinking water toxicity guidelines, and 
because they are both terminal products.  Other PFAS, many of which are not 
well understood, may behave differently.  

The plume is sourced from at least 13 individual onsite Soil Source Zones.  In 
theory, each Soil Source Zone is likely to be/have been producing an individual 
plume, but due to the geographical spread and nature of the groundwater flow 
system beneath the wider Ohakea site, these individual plumes have coalesced 
into essentially a single plume.  Surface Water Source Zones have also been 
identified as key sources because they can transport contaminant mass, which 
can enter the groundwater system, long distances and quickly. 

The existing plume (PFOS + PFHxS ≥0.06 ug/L) has an estimated area of 1100 ha 
to 1600 ha, and has an estimated total PFOS + PFHxS mass (in solution) between 
50 kg to 70 kg.  An estimated ‘above detection’ extent has also been developed 
for the existing plume, with an estimated area of approximately 3600 ha.  Whilst 
these are considered best estimates, there are gaps in data and knowledge on 
the plume extent, concentration distribution, and geochemical processes.  
Consequently, there is significant uncertainty associated with the 
aforementioned estimates.  However, despite the uncertainties, the general 
plume extent is reasonably well covered spatially by physical observation data, 
and the present-day plume is interpreted to be well constrained in the northern 
and eastern direction (and in the western direction to a lesser extent).  This has 
enabled development of a predictive assessment which is considered ‘fit for 
purpose’ with respect to the project objectives. 

Into the future, the plume is expected to continue migration and expansion 
before beginning a slow process of depletion.  This is primarily because while the 
source is not being added to (i.e. AFFF containing PFOS is no longer used) 
ongoing leaching from soil is occurring.  The individual ‘arms’ of the plume are 
generally expected to continue advancing in their current direction of travel – 
generally west through south-southwest from Base Ohakea - until they encounter 
a major groundwater discharge boundary (i.e. Rangitikei River or Makowhai 
Stream).  Surface water, particularly the Rangitikei River and Makowhai Stream, 
are the primary receptors of the plume.  The plume discharges to these receptors 
(and their tributaries) as baseflow.  
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The hydrogeological setting in which the plume resides provides control on the 
fate and form of the plume into the future.  In general, higher topography and 
groundwater pressures exist north, east and south of the existing plume.  This 
effectively bounds the plume from migrating much further afield in these 
directions.  Rather, the plume is expected to migrate north-west through south-
southwest towards into the aforementioned Rangitikei River and Makowhai 
Stream (the regional groundwater sinks).  It must be noted that plume 
migration/transport under and beyond these surface water bodies is possible, 
but as these are the regional groundwater sinks, they are the ultimate receivers, 
and migration back into these surface water bodies would ultimately occur, 
albeit slightly further downgradient.   

Shallow wells (i.e. <50 m depth) which abstract groundwater from within the 
extent of the plume and the plumes predicted future migration path are also 
likely to be receptors.  Deep wells e.g. >100 m depth, are less likely to be 
receptors of the plume.  This is because the plume is generally predicted to be 
present and remain in the top portion of the groundwater system e.g. top 40 m 
to 60 m of saturation.  Significant groundwater abstraction and/or poorly sealed 
boreholes do however have the potential to locally ‘drag’ the plume to greater 
depths.  

The ‘best estimate’ of the likely time period for the existing plume  
(PFOS + PFHxS >0.06 ug/L) to decrease below its current area is estimated at 
approximately 75 years (no retardation) to 100 years (with retardation).  The 
time to halve the existing plume area (PFOS + PFHxS >0.06 ug/L) is estimated at 
approximately 95 years (no retardation) to 125 years (with retardation).  Even in 
a theoretical scenario where all source zones are instantaneously removed, it is 
expected that the plume (PFOS + PFHxS ≥0.06 ug/L) would remain approximately 
the same area (as the existing plume) for at least the next 25 years 
(approximately).  Consequently, all predictions and interpretations point towards 
the existing plume having a significant presence for time periods on the multi-
decade scale. 

A maximum future extent of ‘above detection’ or ≥0.001ug/L (PFOS + PFHxS) is 
estimated at approximately 4300 ha.  This extent should be considered as a 
probability extent e.g. PFOS + PFHxS detection outside of this extent is 
considered unlikely, but not impossible.  The timing of when this maximum 
extent could be reached is likely to be in the long-term future i.e. >50 years. 
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8.0 Summary and Conclusions 

Investigations at Ohakea have identified PFAS in soil and water on base, as well 
as in the surrounding environment and neighbouring properties. 

The sampling programme completed between 2015 and 2018 included several 
rounds of groundwater and surface water monitoring, and sampling soil, 
sediment, animal tissue and plant tissue in various locations within and in the 
vicinity of the site.   

In summary: 

• PFAS was detected in all media sampled with the exception of goat’s 
milk.   

• Exceedances of applicable guidelines and trigger values were observed 
for groundwater (drinking water), surface water, eggs, fish tissue and 
watercress.   

• The maximum PFAS concentrations observed were for PFOS for all media 
on-site.  Similarly, off-site the maximum PFAS concentration was for PFOS 
for all media, except groundwater and surface water.  Maximum PFHxS 
concentrations were higher than PFOS in off-site groundwater and 
surface water. 

• Comparison of the sample results on-site and off-side shows that a 
significant proportion of PFAS mass in groundwater remains on-site. 
Median sum of PFOS + PFHxS is an order of magnitude higher than the 
median of off-site samples. PFAS concentrations off-site generally 
decreased with distance from the base with the exception of PFHxS. 

• There is potentially significantly greater mass of PFAS (particularly PFOS) 
in the unsaturated soil than in the groundwater on-site.   

• In general, PFAS concentrations in surface water decreased with 
increasing distance from the Base.  The exception to this is the Makowhai 
Stream, where the lowest concentrations of PFOS were observed closest 
to the site, the highest concentrations approximately 1.5 km downstream 
from the base, before decreasing again downstream.   

• Higher concentrations of PFOS were observed in the Makowhai Stream in 
summer months and lower concentrations in the wetter winter months. 

• Evidence of transformation of PFAS was examined by comparing the 
molar concentration of PFAS from several groundwater wells extending 
south-west from the base.  Some limited evidence of transformation of 
PFAS compounds in the plume was found.  
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Predictions have been made for the existing and future groundwater plume using 
3D groundwater and flow and solute transport modelling: 

• The existing plume (PFOS + PFHxS ≥0.06 ug/L) has an estimated area of 
1100 ha to 1600 ha, and has an estimated total PFOS + PFHxS mass (in 
solution) in the order of 50 kg to 70 kg.  An estimated ‘above detection’ 
extent has also been developed for the existing plume, with an estimated 
area of approximately 3600 ha.  This estimate excludes other PFAS 
compounds. There is significant uncertainty associated with these 
estimates.   

• Into the future, the plume is expected to continue migration and 
expansion before beginning a slow process of depletion.  The plume is 
generally expected to continue advancing in the current direction of 
travel – generally west through south-southwest from Base Ohakea - 
until encountering a major groundwater discharge boundary (i.e. 
Rangitikei River or Makowhai Stream).  Surface water is the primary 
receptor of the plume.   

• The ‘best estimate’ of the likely time period for the existing plume (PFOS 
+ PFHxS >0.06 ug/L) to decrease below its current area is estimated to be 
in the order of 75 years (no retardation) to 100 years (with retardation).   

• The time to halve the existing plume area (PFOS + PFHxS >0.06 ug/L) is 
estimated to be greater than 100 years; best estimate 95 years (no 
retardation) to 125 years (with retardation).   

• A maximum future extent of ‘above detection’ or ≥0.001ug/L (PFOS + 
PFHxS) is estimated at approximately 4300 ha, and predicted to occur 
>50 years into the future.  This extent should be considered as a 
probability extent e.g. PFOS + PFHxS detection outside of this extent is 
considered unlikely, but not impossible.   

• A prediction was also completed whereby the existing sources were 
assumed to have already completely depleted.  This scenario is 
considered analogous to a ‘Best Possible Case’ estimate and its purpose 
is to provide a prediction which tends towards the fastest perceivable 
(but unlikely) plume depletion. 

• Under this scenario plume depletion is likely to be significantly more 
rapid than for the ‘best estimate’ scenario, however plume depletion is 
still on the multiple decade scale.   

• A longer source depletion prediction scenario where the existing sources 
were assumed to take longer to deplete than for the ‘best estimate’ 
scenario was also undertaken.  This produced a plume with an overall 
similar shape and aerial extent (as per the ‘best estimate’); however, 
plume depletion took significantly longer e.g. approximately twice the 
duration. 
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The following conclusions have been drawn following interpretation of the 
sample results and modelling of the groundwater plume: 

• The results and the literature indicate that there is potentially 
significantly greater mass of PFAS in the unsaturated soil than in the 
groundwater.  Leaching of PFAS from the unsaturated soil could 
potentially provide an ongoing and long term source of PFAS to 
groundwater. 

• Surface water has been identified as an important pathway for the 
migration of PFAS into groundwater and vice versa.  Surface water flow 
can move contaminants much faster than groundwater flow, and due to 
the strong connection between groundwater-surface water within the 
region, contaminant transport via surface water is a key influencing 
factor for the groundwater plume.   

• Interconnectedness of groundwater and surface water is further 
illustrated in the Makowhai Stream where PFOS concentrations are lower 
near Ohakea, reaching their maximum approximately 1.5 km from the 
site, before decreasing with increasing distance from the site.   

One potential mechanism for this pattern is the influence of groundwater 
discharge (to the Makowhai Stream) where PFOS concentrations in the stream 
are highest. 

• The plume of PFAS-containing groundwater emanating from historic use 
of AFFF at RNZAF Base Ohakea is expected to be constrained in the 
longer term by topography and higher groundwater pressures to the 
north, east and south and by the Rangitikei River to the west.  It is 
expected that shallow groundwater in the investigation area is prevented 
from moving further south than approximately the Makowhai Stream and 
is instead directed towards the Rangitikei River.  Plume 
migration/transport under and beyond these surface water bodies is 
possible, but as these are the regional groundwater sinks, they are the 
ultimate receivers, and migration back into these surface water bodies 
would ultimately occur, albeit slightly further downgradient.   

• The plume is expected to persist in concentrations > 0.06 ug/L for many 
decades.  
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