STORMWATER MODELLING REPORT

FOR

PROPOSED WARKWORTH SOUTH

PLAN CHANGE AREA

CONTENTS

1	INTRODUCTION	
1.1	PROJECT	
1.2	PREVIOUS STUDY	4
1.3	PROPOSED STRATEGY	4
1.4	SCENARIOS MODELLED	4
1.5	SOURCES OF DATA	4
1.6	REFERENCE TECHNICAL DOCUMENTS	5
2	HYDROLOGICAL MODELLING WITH HEC-HMS	6
2.1	METHODOLOGY	6
2.2	RAINFALL DATA	6
2.3	CATCHMENT SIZE	7
2.4	LAND-USE AND SOILS	7
2.5	HEC-HMS MODEL	
2.	5.1 Effects of climate change	12
2.	5.2 Effects of the proposed development	
3	HYDRAULIC MODELLING WITH HEC-RAS	17
3.1	METHODOLOGY	17
3.2	HEC-RAS MODEL LAYOUT	17
3.3	BOUNDARIES	
3.4	FLOODPLAIN COMPARISON	
3.5	FLOW CHECK	19
3.6	HYDRAULIC GRADE LINE	
3.7	FLOW HYDROGRAPHS	20
3.8	CHECK ON DOWNSTREAM LEVEL	21
3.9	OUTFLOW VOLUME VALIDATION	21
3.10	0 HEALTHY WATERS MODELLING	23

Appendix

- A 100 YEAR FLOW HYDROGRAPH
- **B HEC RAS CULVERT DETAILS**
- C PRELIMINARY PRE & POST DEVELOPMENT FLOOD EXTENT PLAN
- D TP 108 CALCULATIONS AND TIME OF CONCENTRATION CALCLATIONS

1 INTRODUCTION

1.1 PROJECT

Maven Associates have been engaged to assist in the development of a plan change application including determining setting baseline scenarios for predevelopment scenarios in various storm events and assessing the effects of development specific to the proposed plan change area at 1711 & 1723 State Highway 1, Warkworth. Figure 1.1 shows the study area.

The objective of this report is to provide a preliminary analysis of the overland flowpaths in terms of peak flows and water level constraints. This will enable the assessment of mitigation measures required to ensure the proposal does not result in any adverse effect on the downstream properties. The analysis will be for a range of annual return period storms and include rainfall increases due to climate change.

Figure 1.1 – Catchment Delineation

1.2 PREVIOUS STUDY

A Rapid Flood Hazard Assessment was undertaken by DHI in 2009. This was done on a 10m grid. This assessment did not include either climate change or land development changes.

1.3 PROPOSED STRATEGY

A 2D model will be used in the area around the Scheme Plan boundary. This will enable the identification of all overland flowpaths. The upper catchment area will be modelled as individual catchments to provide boundary inflows. All analyses will be done using TP108, HEC-HMS and HEC-RAS in accordance with guidelines of the Auckland Council Stormwater Code of Practice.

1.4 SCENARIOS MODELLED

Table 1.1 shows the scenarios modelled. Scenarios will indicate the difference between today's existing flow environment and the future.

Scenario	Return period	Land-use	Rainfall
1	100-year	Existing	Existing - historical
2	100-year	Existing	Climate change
3	100-year	Developed	Climate change
4	50-year	Developed	Climate change
5	20-year	Developed	Climate change
7	10-year	Developed	Climate change

Table 1.1 – Scenarios modelled

1.5 SOURCES OF DATA

Attribute	Organisation
Catchment Plans	Auckland Council Geomaps
Contours	LINZ DEM 1m. The Terrain datum is New Zealand Vertical Datum. LiDAR/Site Survey by Parrallax Ltd. LiDAR/Site Survey by Maven Associates.
Flow & WL data	Healthywaters
Flood level evidence	None

Table 1.2 – Source of Data

1.6 REFERENCE TECHNICAL DOCUMENTS

- AUCKLAND COUNCIL CODE OF PRACTICE FOR LAND DEVELOPMENT AND SUBDIVISION. CHAPTER4 STORMWATER, VERSION 3.00
- ACCEPTABLE SOLUTIONS AND VERIFIABLE METHODS, DOCUMENT E1 SURFACE WATER, MINISTRYOF BUSINESS, INNOVATION AND EMPLOYMENT,
- AUCKLAND COUNCIL TP108

2 HYDROLOGICAL MODELLING WITH HEC-HMS

2.1 METHODOLOGY

The analysis was done using the following steps:

- 1. Delineate the catchments,
- 2. Use Tp108 to calculate parameters,
- 3. Use HEC-HMS to create a rainfall hyetograph and flow hydrographs,

2.2 RAINFALL DATA

TP108 gives the following rainfall depths which are then adjusted for climate change as shown in Table 2.2. Climate change factor have been applied in accordance with Auckland Council code of practice (Version 3) assuming a 2.1°C increase in temperature as shown below;

Annual Exceedance probability exceedance	Percentage Increase in 24-hour design rainfall depth due to future climate change*
10%	13.2%
5%	15.1%
2%	16.8%
1%	16.8%

* Assuming 2.1°C increase in temperature

Table 2.1 - Climate change factors

In accordance with TP108 section 2.3 an areal reduction factor (ARF) has been applies as the catchment has an area above 10 km2. ARF adjusted rainfalls are also shown in table 2.2. An ARF factor of 0.92 was used per TP108 table 2.2.

	TP108	Climate change	ARF adjusted
10-year	170	192	176
20-year	208	239	220
50-year	238	278	256
100-year	270	315	290

Table 2.2 – Rain depths

2.3 CATCHMENT SIZE

Figure 2.1 shows the catchment area modelled. The upper catchments are *A* to *F* and downstream catchments G to N. The red boundary is the 2D grid with the excess *Rain*. The catchment outflow of the Mahurangi River is at the northern edge. The Scheme Plan boundary is blue. The total area is 49km².

2.4 LAND-USE AND SOILS

The soil is assumed to be Group C with a curve number of 74. The land cover for the existing scenario has been obtained via delineation of impervious areas shown on the Auckland Council GIS aerial. The land-use is predominantly Rural-production and Rural-coastal with a small area of conservation, according to the AUP, see Figure 2.2. For the proposed scenario, the MPD (maximum probable development) of the proposed zoning has been used as well as MPD for the yellow designated FutureUrban. The FutureUrban zoning included in the developed scenarios assumes an average impervious area of 60%. The combined curve numbers and initial abstractions have been calculated according to TP108 and may be found in appendix D based on existing and developed land-use. Only catchments *Rain* and *F* will have a change in impervious area.

The full TP108 details to calculate the peak flows and times of concentration may be found in Appendix D. The total catchment area and the time of concentration suggests an area reduction factor of 0.92. This has been applied to the rainfall as per Table 2.2. This data can now be inserted into a HEC-HMS model.

Figure 2.1 – Catchment Boundary

Figure 2.2 – Land-use zones

	Impervious %	Rain	Α	В	С	D	E	F	G	н	1	J	K	L	М	Ν
Total		485	334	412	292	510	573	304	585	849	24	284	72	22	128	49
Rural / Vegetated area	1%	471	331	405	291	481	572	302	581	845	12	276	27	22	15	10
Urban MPD to	60%	0	0	0	0	0	0	0	0	0	12	5	0	0	113	39
Open Space - Conservation	1%	1	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Transort Corridor	90%	13	3	7	1	0	0	2	4	4	0	3	0	0	0	0
Residential - Large Lot	35%	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Residential - Single House	60%	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Residential - Mixed Housing Urban	60%	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Residential - Terrace & Apartment	70%	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Business - Local Centre Zone	100%	0	0	0	0	0	0	0	0	0	0	0	45	0	0	0
Impervious		16.42	6.01	10.35	3.81	4.81	5.72	4.82	9.41	12.05	7.32	8.46	45.27	0.22	67.71	23.60
Pervious		468.91	327.76	401.82	287.75	505.27	567.57	299.11	575.13	836.71	16.25	275.40	26.88	21.57	59.89	25.57

Figure 2.3 – Existing land use calculations

	Impervious %	Rain	Α	В	С	D	E	F	G	Н	1	J	K	L	М	Ν
Total		485	334	412	292	510	573	304	585	849	24	284	72	22	128	49
Rural / Vegetated area	1%	51	331	405	291	481	572	285	581	845	12	276	27	22	15	10
Urban MPD to	60%	276	0	0	0	0	0	17	0	0	12	5	0	0	113	39
Open Space - Conservation	1%	5.7	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Transort Corridor	90%	13.0	3	7	1	0	0	2	4	4	0	3	0	0	0	0
Residential - Large Lot	35%	13.9	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Residential - Single House	60%	22.0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Residential - Mixed Housing Urban	60%	74.2	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Residential - Terrace & Apartment	70%	25.4	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Business - Local Centre Zone	100%	3.4	0	0	0	0	0	0	0	0	0	0	45	0	0	0
Impervious		261.76	6.01	10.35	3.81	4.81	5.72	15.10	9.41	12.05	7.32	8.46	45.27	0.22	67.71	23.60
Pervious		223.57	327.76	401.82	287.75	505.27	567.57	288.83	575.13	836.71	16.25	275.40	26.88	21.57	59.89	25.57

Figure 2.4 – Developed land use calculations

2.5 HEC-HMS MODEL

The data was then transferred to HEC-HMS. Figure 2.7 shows the model set-up. Calculations for the time of concentration of the reaches may be found in Appendix D. The reaches between junctions have been incorporated respectively to reflect the time it would take to arrive at the downstream connection.

Figure 2.7 – HEC-HMS model set-up

Figure 2.8 shows the 100-year developed land-use rainfall hyetograph for the grid.

Figure 2.8 – Rainfall excess, 100-year, climate change, developed

Figure 2.9 shows the hydrograph for scheme inflow for the 100-year storm with climate change rain and developed.

2.5.1 Effects of climate change

Figure 2.10 shows the global summary of the existing catchment flows against those that are expected to occur due to climate change and development. The scheme inflow has increased from 188m³/s to 219³/s. Most of the 31m³/s increase is due to climate change. The volume increase is almost 0.72 million m³.

At the scheme outflow the changes are 327³/s to 383m³/s. Thus, the catchment is expected to yield 56m³/s, (this entire increase is due to climate change as explained in section 2.5.2). This increase is 17%. The volume increase is 1.4 million m³.

Figure 2.10 – Global summary of flows and volumes for the 100-year storm (historical rain, existing land-use vs climate change rain and existing land-use vs. climate changed rain and developed)
 Global Summary Results for Run "Existing-Q100-existing 3" – □ ×

Project	: Warkworth South Plan	Change Simulatio	n Run: Existing-Q100-existing (3
Start of Ru	n: 01Jan2000,00:00	Basin Model:	Existing Land-Use V2	
End of Run:	: 02Jan2000, 00:00	Meteorologic N	Nodel: 100yr-existing-existing	g-land
Compute Ti	me:18Jan2023, 16:50:1	3 Control Specifi	ications:24hr (Maven)	
Show Elements: All Eleme	ents 🗸 Vol	ume Units: 🔘 MM	1000 M3 Sort	ting: Alphabetic \vee
Hydrologic	Drainage Area	Peak Discharge	Time of Peak	Volume
Element	(KM2)	(M3/S)		(1000 M3)
A	3.338	34.9854	01Jan2000, 13:30	574.8533
В	4.122	44.9294	01Jan2000, 13:25	713.6943
С	2.9156	34.2147	01Jan2000, 13:15	505.2180
D	5.1008	54.5587	01Jan2000, 13:25	876.9597
E	5.7329	58.7550	01Jan2000, 13:35	982.5589
F	3.0393	38.8736	01Jan2000, 13:00	529.8983
G	5.8454	62.9972	01Jan2000, 13:25	1008.6598
н	8.4876	103.4464	01Jan2000, 13:05	1474.0228
I	0.2357	5.1299	01Jan2000, 12:20	46.2726
J	2.8386	36.4625	01Jan2000, 13:00	496.9987
Junction - ABE	21.2093	174.4654	01Jan2000, 14:35	3603.5080
Junction-CD	8.0164	88.1185	01Jan2000, 13:20	1382.1776
Junction-HG	14.3330	146.8338	01Jan2000, 14:25	2437.6070
Junction-IJ	46.5092	337.0465	01Jan2000, 15:45	7630.1277
Junction-KLM	48.7246	341.8011	01Jan2000, 16:25	7960.3802
к	0.7215	17.1789	01Jan2000, 12:20	156.4929
L	0.2179	5.1014	01Jan2000, 12:10	38.6693
М	1.276	25.0929	01Jan2000, 12:30	267.3881
N	0.4917	8.6788	01Jan2000, 12:40	101.0869
Outlet	49.2163	342.8506	01Jan2000, 17:05	7911.4359
Rain	4.8533	54.4178	01Jan2000, 13:20	844.5575
Reach-1	21.2093	174.3457	01Jan2000, 15:10	3559.4041
Reach-2	8.0164	88.0712	01Jan2000, 15:00	1332.4014
Reach-3	8.4876	103.4464	01Jan2000, 14:30	1428.9472
Reach-4	24.2486	187.5507	01Jan2000, 16:25	3963.1441
Reach-5	43.4349	327.3185	01Jan2000, 15:45	7086.8564
Reach-6	46.5092	337.0465	01Jan2000, 16:25	7497.8299
Reach-7	48.7246	341.8011	01Jan2000, 17:05	7810.3489
Scheme Inflow	24.2486	187.5577	01Jan2000, 15:05	4089.3024
Scheme Outflow	43.4349	327.3185	01Jan2000, 14:50	7245.3087

Global Summary Results for Run "Existing-Q100-existing-CC 3"

Show Elements: All Elements $\, \smallsetminus \,$

Project: Warkworth South Plan Change Simulation Run: Existing-Q100-existing-CC 3

 Start of Run:
 01Jan2000, 00:00

 End of Run:
 02Jan2000, 00:00
 Compute Time: DATA CHANGED, RECOMPUTE Control Specifications: 24hr (Maven)

Basin Model: Existing Land-Use V2 Meteorologic Model: 100yr-CC-existing-land-use

Sorting: Alphabetic \vee

Hydrologic	Drainage Area	Peak Discharge	Time of Peak	Volume
Element	(KM2)	(M3/S)		(1000 M3)
Α	3.3380	40.9965	01Jan2000, 13:30	674.7382
В	4.1220	52.6242	01Jan2000, 13:25	837.4442
С	2.9156	40.0810	01Jan2000, 13:15	592.9827
D	5.1008	63.9639	01Jan2000, 13:25	1029.6393
E	5.7329	68.8647	01Jan2000, 13:35	1153.7010
F	3.0393	45.5513	01Jan2000, 13:00	621.8082
G	5.8454	73.8226	01Jan2000, 13:25	1183.8716
н	8.4876	121.2557	01Jan2000, 13:05	1730.0024
I	0.2357	5.9360	01Jan2000, 12:20	53.7416
3	2.8386	42.7049	01Jan2000, 13:00	582.9794
Junction - ABE	21.2093	204.0993	01Jan2000, 14:35	4231.3183
Junction-CD	8.0164	103.2917	01Jan2000, 13:20	1622.6219
Junction-HG	14.3330	171.8731	01Jan2000, 14:25	2862.0979
Junction-IJ	46.5092	394.9782	01Jan2000, 15:45	8964.8247
Junction-KLM	48.7246	400.3957	01Jan2000, 16:25	9346.3239
к	0.7215	19.6426	01Jan2000, 12:20	179.8769
L	0.2179	5.9791	01Jan2000, 12:10	45.3680
M	1.2760	28.7999	01Jan2000, 12:30	308.3478
N	0.4917	9.9788	01Jan2000, 12:40	116.7730
Outlet	49.2163	401.5918	01Jan2000, 17:05	9290.6148
Rain	4.8533	63.7196	01Jan2000, 13:20	990.6374
Reach-1	21.2093	203.9602	01Jan2000, 15:05	4180.6487
Reach-2	8.0164	103.2240	01Jan2000, 15:00	1565.4349
Reach-3	8.4876	121.2557	01Jan2000, 14:30	1678.2264
Reach-4	24.2486	219.3093	01Jan2000, 16:25	4657.4784
Reach-5	43.4349	383.7495	01Jan2000, 15:45	8328.1037
Reach-6	46.5092	394.9782	01Jan2000, 16:25	8812.7311
Reach-7	48.7246	400.3957	01Jan2000, 17:05	9173.8418
Scheme Inflow	24.2486	219.3397	01Jan2000, 15:00	4802.4570
Scheme Outflow	43.4349	383.7495	01Jan2000, 14:50	8510.2137

Volume Units: O MM () 1000 M3

 \times

Global Summary Results for Run "Developed-Q100-CC 2"

 \times

Project: Warkworth South Plan Change Simulation Run: Developed-Q100-CC 2

Start of Run: 01Jan2000, 00:00

Start of Run:01Jan2000, 00:00Basin Model:Developed Land-UseEnd of Run:02Jan2000, 00:00Meteorologic Model:100yr-CC-developed-land-useCompute Time:18Jan2023, 16:57:18Control Specifications:24hr (Maven) Basin Model: Developed Land-Use

Show Elements: All Elements $\, \smallsetminus \,$

Volume Units: O MM () 1000 M3

Sorting: Alphabetic ~

Hydrologic	Drainage Area	Peak Discharge	Time of Peak	Volume
Element	(KM2)	(M3/S)		(1000 M3)
A	3.3380	40.9965	01Jan2000, 13:30	674.7382
В	4.1220	52.6242	01Jan2000, 13:25	837.4442
С	2.9156	40.0810	01Jan2000, 13:15	592.9827
D	5.1008	63.9639	01Jan2000, 13:25	1029.6393
E	5.7329	68.8647	01Jan2000, 13:35	1153.7010
F	3.0393	46.2770	01Jan2000, 13:00	628.6363
G	5.8454	73.8226	01Jan2000, 13:25	1183.8716
н	8.4876	121.2557	01Jan2000, 13:05	1730.0024
I	0.2357	5.9360	01Jan2000, 12:20	53.7416
1	2.8386	42.7049	01Jan2000, 13:00	582.9794
Junction - ABE	21.2093	204.0993	01Jan2000, 14:35	4231.3183
Junction-CD	8.0164	103.2917	01Jan2000, 13:20	1622.6219
Junction-HG	14.3330	171.8731	01Jan2000, 14:25	2862.0979
Junction-IJ	46.5092	394.2776	01Jan2000, 15:45	9139.8410
Junction-KLM	48.7246	399.6951	01Jan2000, 16:25	9520.7166
к	0.7215	19.6426	01Jan2000, 12:20	179.8769
L	0.2179	5.9791	01Jan2000, 12:10	45.3680
M	1.2760	28.7999	01Jan2000, 12:30	308.3478
N	0.4917	9.9788	01Jan2000, 12:40	116.7730
Outlet	49.2163	400.8912	01Jan2000, 17:05	9464.4429
Rain	4.8533	78.2525	01Jan2000, 13:10	1159.7915
Reach-1	21.2093	203.9602	01Jan2000, 15:05	4180.6487
Reach-2	8.0164	103.2240	01Jan2000, 15:00	1565.4349
Reach-3	8.4876	121.2557	01Jan2000, 14:30	1678.2264
Reach-4	24.2486	219.2942	01Jan2000, 16:25	4664.2349
Reach-5	43.4349	383.0489	01Jan2000, 15:45	8503.1199
Reach-6	46.5092	394.2776	01Jan2000, 16:25	8987.1238
Reach-7	48.7246	399.6951	01Jan2000, 17:05	9347.6699
Scheme Inflow	24.2486	219.3239	01Jan2000, 15:00	4809.2850
Scheme Outflow	43.4349	383.0489	01Jan2000, 14:50	8686.1244

2.5.2 Effects of the proposed development

A graph of the flows at the scheme outflow of the existing catchment flow with climate change against flow of the developed catchment with climate change can be found in the appendix, the table below summaries the findings.

Rain event	Land-use	Climate change	Catchments A-F (m3/s)	Rain (m3/s)	Catchmen t H & G (m3/s)	Scheme Outflow (m3/s)
100yr	Existing	Yes	219.3	63.7	171.9	383.7
100yr	Developed	Yes	219.3	78.2	171.9	383.0

Table 2.3 – Peak flow comparison, 100-year, climate change, existing vs developed

Table 2.3 shows that the peak flow for 100year storm events exiting the scheme area (Scheme outflow) decreases by $0.7m^3/s$, even though there is an increase in impervious area of the development. This is explained by the decrease in time of concentration of the developed Rain catchment, which results in the runoff from the catchment reaching the Scheme outflow before the runoff from the upstream catchments (A-F). As shown in figure 2.10, for the developed catchment, the 100year time of peak flow of the *Rain* catchment is 13:10 and for the upstream catchments, *A to F* (Reach 4) is 16:25. This demonstrates the peak flow from the *Rain* catchment exits the catchment boundary three hour prior to the arrival of upper catchment peak flow.

Downstream effects

Table 2.4 below shows the peak 100year stormwater events at the catchment junctions downstream of the site. Similarly to the effects described above the it is noted that the peak flows decrease as a result of the development. This is explained by the decrease in time of concentration of the developed Rain catchment, which results in the runoff from the catchment reaching the Scheme outflow before the runoff from the upstream catchments (A-F).

Rain event	Land-use	Climate change	Junction IJ	Junction KLM
100yr	Existing	Yes	395.0	400.4
100yr	Developed	Yes	394.3	399.7

Table 2.4 Peak 100yr flows at junctions downstream of the proposed development

3 HYDRAULIC MODELLING WITH HEC-RAS

3.1 METHODOLOGY

The analysis was done using the following steps:

- 1. Delineate the perimeter for the grid,
- 2. Create a grid and sub-grid areas,
- 3. Input flow hydrographs and other boundaries
- 4. Input structures,
- 5. Run scenarios.

3.2 HEC-RAS MODEL LAYOUT

HEC-RAS software was used to generate water levels throughout the catchment. A 2D model was developed using a combination of LINZ Terrain data and site-specific LiDAR and topographical survey. A Manning's n of 0.1 was used in the grid.A 5m x 5m grid was used. Figure 3.1 shows the grid and its boundary conditions. Appendix B shows culvert details used in the model.

Figure 3.1 – HEC-RAS model set-up 17

There are three boundaries. These are:

- Rain on grid as per figure 3.1.
- Main inflow for mahurangi river
- Downstream boundary using a normal depth method with a gradient of 0.01.

3.4 FLOODPLAIN COMPARISON

Figure 3.4 compares the Geomaps floodplain against the 100-year storm for developed land and climate change rainfall. The patterns are similar. The flow at critical pinch points in the north-east at the confluence have similar widths.

The only difference of note is in the central scheme area, area A. Geomaps shows more flooding while the new model is more defined in the channels due to a specific site survey of the stream being modelled. In general, the new model appears to replicate the Geomaps floodplain.

Figure 3.2 – Floodplain comparison – 100yr-storm

3.5 FLOW CHECK

All watercourse arrive at the point of confluence from the east making up about 332ha. The estimate TP108 graphical method 100-year peak flow is estimated at 47m³/s. This is the existing rainfall and land-use. The modelled peak flow at this point is 53m³/s. The model is higher than what TP108 estimates catchment run-off should be. However, the 2D terrain model uses a Manning's n of 0.1 which might be smoother than reality, but it also encourages higher flows. Importantly the model gives reasonable peak flows even though the finite volume method in HEC-RAS has pockets of water "stuck in hollows" inside the 5m grid. However, this does not affect the peak flow.

3.6 HYDRAULIC GRADE LINE

Figures 3.3 shows the HGL along the Mahurangi River on the west boundary of the scheme plan. The 100-year developed scenario ranges from RL32.4m to RL26.6m NZVD at a grade of 1 in 240. The range of water levels from 10-year to 100-year is about 1.3m.

Figure 3.3 – HGL– Mahurangi River boundary (NZVD)

Figure 3.4 shows the HGL along the main scheme stream from east of the SH1 culverts across to the confluence with the Mahurangi River. The SH1 Culverts will cause a pond that is 200m long and 135m wide.

Figure 3.4 – HGL– Main east to west stream (NZVD)

3.7 FLOW HYDROGRAPHS

Figure 3.5 shows the flow hydrographs in the east-west stream just before the connection to the Mahurangi River. The existing 100-year storm flows (blue) changes to a 20-year storm flow (yellow) due to the development.

Figure 3.5 – Flow hydrograph for east-west stream outlet 3.8 CHECK ON DOWNSTREAM LEVEL

The model grid stops at Woodcocks Road bridge. The estimate road deck is RL23.5m. If the road deck was 1m deep this makes the soffit RL22.5m. The peak level at this location is RL21.90m. Therefore, the bridge is not impeding flow. This needs to be confirmed by a survey.

3.9 OUTFLOW VOLUME VALIDATION

HEC-RAS uses an Implicit Finite Volume Algorithm. The consequence of this is to have small volumes of water in the base of a cell that does not escape. A method to remove the potential holding back of water is to run the models with low flows in the initial stages to fill the hollows. The main storm run-off can then flow over the top. This is not a problem as long as there is volume continuity.

Figure 3.6 shows the volume generated in HEC-HMS for the existing land-use and 100-year historical rainfall. The volume is 4,942,000m³. Figure 3.7 shows the volume accumulated at the HEC-RAS downstream boundary after 36 hours of simulation. The volume is 4,908,000m³. This is an error of 0.0007% which is extremely small. The volume integrity is excellent.

Figure 3.6 – HEC-HMS volume of run-off

Figure 3.7 – HEC-RAS outflow boundary cumulative volume

3.10 HEALTHY WATERS MODELLING

Auckland Council HealthyWaters have supplied flow data of their modelling of the Warkworth catchment, for Mahurangi River. A comparison of this reports results and Healthywaters are summarised in the table below;

	SCHEME INFLOW (m3/s)					
	10yr Developed CC			100yr Developed CC		
Scenario	Peak Time	Peak Flow	Water level	Peak Time	Peak Flow	Water level
Healthy waters	13:45	199	31.34	13:40	340	32.88
Maven	13:40	156	31.96	13:35	299	33.22

	SCHEME OUTFLOW (m3/s)					
	10yr Developed CC			100yr Developed CC		
Scenario	Peak Time	Peak Flow	Water level	Peak Time	Peak Flow	Water Level
Healthy waters	14:10	223	22.16	13:40	323	23.74
Maven	14:05	171	21.12	13:35	325	22.56

Figure 3.8 MPD Modelling results comparison to Healthy waters model

Two notable points of comparison of modelling results are the times of peak flows and the water levels. The peak flow time are in general accordance with each other, this provides validation of the times of concentration used in the model. However, comparison of the water levels show significant difference in peak flood levels up to 1.2m. This discrepancy is likely a result of the difference in terrain model used. As the terrain used in this reports model uses a combination of site survey and drone data, it has a higher degree of accuracy in comparison to the Lidar survey used in the Healthwaters model.

APPENDIX A - 100YR YEAR FLOW HYDROGRAPH

APPENDIX B – HEC RAS CULVERT DETAIL

Northern Culvert - Details

🐨 Connect	ion Data Editor - Existing v2	– 🗆 ×	Culvert Data Editor
File View	Options Help		Culvert Group: Culvert #1 💽 🖬 🖄 🖿
Connection:	Northern Culvert		Solution Criteria: Computed Flow Control 🔻
Description	Breach (plan data)		Shape: Box Span: 1.8 Rise: 1.21
Connections			
From:	2D Flow Area: Grid Set SA/2D Weir Length: 51.00		
To:	2D Flow Area: Grid Set SA/2D Centerline Length: 51.02		Chart #: 8 - flared wingwalls
Overflow Cor C Normal 2D	Equation Domain Centerline GIS Coords		Scale #: 1 - Wingwall flared 30 to 75 deg.
Structure Type	: Weir, Gates, Culverts, Outlet RC and Outlet TS Cut profile from terrain		Culvert Length: 26 Depth to use Bottom n: 0
Flap Gates:	No Flap Gates Clip Weir Profile to 2D Cells		Entrance Loss Coeff: 1 Depth Blocked: 0
Weir / Embaikment	Northern Culvert		Exit Loss Coeff: 1 Upstream Invert Elev: 38.3
			Manning's n for Top: 0.013 Downstream Invert Elev: 38
Gate			Manning's n for Bottom: 0.013
I I I I I I I I I I I I I I I I I I I	41.0	Legend	Culvert Barrel Data Barrel #1
Culvert		Spillway	Barrel Centerline Stations #Barrels: 1 Length: 26.2
		Extend/Trim to Face Points	Barrel Name US Sta DS Sta GIS Sta ▲ X Y ▲ 1 Barrel#1 28 28 28 11 1748267.29 i968519.723
Outlet		HW Cell Min Elev	2 2 1748241.56 1968524.526
		TW Cell Min Elev	3 4
Outlet .TS	39.5	Current Terrain	5
l Carlo and a second se			Individual Parrol Contactingon Chaw on Man Contactingon Halo
	39.0		
	38.5		pelect curvert to eart
	38.0 10 20 30 40 50		
	Station (m)		
4		- F	
		2.52, 40.10	

Culvert mid - Details

▼ Connection Data Editor - Existing v2	- 🗆 X	Culvert Data Editor
File View Options Help		Culvert Group: Culvert #1
Connection: Culvert-mid Apply Data	Breach (plan data)	Solution Criteria: Computed Flow Control
Description	breach (pian data)	Shape: Circular Span: 1.8 Diameter: 1.8
From: 2D Flow Area: Grid Set SA/2D	Weir Length: 122.97	
To: 2D Flow Area: Grid Set SA/2D	Centerline Length: 122.97	Charle (L. County Day Columb
Overflow Computation Method O Normal 2D Equation Domain Use Weir Equation	Centerline GIS Coords	Scale #: 1 - Square edge entrance with headwall
Structure Type: Weir, Gates, Culverts, Outlet RC and Outlet TS	Cut profile from terrain	Culvert Length: 20 Depth to use Bottom n: 0
Flap Gates: No Flap Gates	Clip Weir Profile to 2D Cells	Entrance Loss Coeff: 1 Depth Blocked: 0
Weir/enclasheed	Culvert-mid Legend Spilway Extend/Trim to Face Points HW Cell Min Elev TW Cell Min Elev Current Terrain 80 100 120 140	Exit Loss Coeff: 1 Upstream Invert Elev: 39.8 Manning's n for Top: 0.013 0.013 Downstream Invert Elev: 38.9 Manning's n for Bottom: 0.013 Image: Collection of the collection
	14.56, 40.35	5

Culvert south - Details

🐨 Connection Data Editor - Existing v2		- 🗆 🗙	Culvert Data Editor
File View Options Help			Culvert Group: Culvert #1 🔽 🖬
Connection: culvert-south			Solution Criteria: Computed Flow Control
Description	Breach (plan data)		Shape: Circular Span: 0.825 Diameter: 0.825
Connections Eromy 2D Flow Area: Grid Set SA/2D	Weir Length: 116.48		
To: 2D Flow Area: Grid Set SA/2D	Centerline Length: 116.48		
Overflow Computation Method			Chart #: 1 - Concrete Pipe Culvert
C Normal 2D Equation Domain © Use Weir Equation	Centerline GIS Coords		Scale #: 1 - Square edge entrance with headwall
Structure Type: Weir, Gates, Culverts, Outlet RC and Outlet TS	Cut profile from terrain		Culvert Length: 29 Depth to use Bottom n: 0
Flap Gates: No Flap Gates	Clip Weir Profile to 2D Cells		Entrance Loss Coeff: 1 Depth Blocked: 0
Weir / Embakment	ulvert-south	<u>^</u>	Exit Loss Coeff: 1 Upstream Invert Elev: 41.9
			Manning's n for Top: 0.013
			Culvert Barrel Data
40		Legend	Barrel Centerline Stations # Barrels : 2 Length: 29.6
47 47		Spillway	Barrel Name US Sta DS Sta GIS Sta 🔺 X Y
Outlet 46		HW Cell Min Fley	1 Barrel#1 63.3 63.3 64.7 1 747833.208 968047.569 2 Barrel#2 64.3 64.3 62.6 2 747813.551 968069.739
		TW Cell Min Elev	3
Outlet TS		Current Terrain	
			Individual Barrel Centerlines Show on Man OK Cancel Help
43			Select culvert to edit
42			
4 0 20 40 60	80 100 120		
Station (r	n)		
		17.30, 43.84	

Culvert m south - Details

🐨 Conne	tion Data Editor - Existing v2 - 🗆 🗙	Culvert Data Editor
File View	Options Help	Culvert Group: Culvert #1 💽 🚺 🔛 🗈
Connection:	Southern m culv 💽 📕 🕇 Apply Data	Solution Criteria: Computed Flow Control 💌
Description	Breach (plan data)	Shape: Circular Span: 0.8 Diameter: 0.8
Connection	5	
From:	2D Flow Area: Grid Set SA/2D Weir Length: 37.10	
To:	2D Flow Area: Grid Set SA/2D Centerline Length: 37.13	Chart #: 1 - Concrete Pipe Culvert
Overflow O O Normal	D Equation Domain (* Use Weir Equation Centerline GIS Coords	Scale #: 1 - Square edge entrance with headwall
Structure Ty	e: Weir, Gates, Culverts, Outlet RC and Outlet TS	Culvert Length: 18 Depth to use Bottom n: 0
Flap Gates:	No Flap Gates Clip Weir Profile to 2D Cells	Entrance Loss Coeff: 1 Depth Blocked: 0
Embaskment	Southern m culv	▲ Exit Loss Coeff: 1 Upstream Invert Elev: 46.8 Manning's n for Top: 0.013 ① Downstream Invert Elev: 46.58
Gate		Manning's n for Bottom: 0.013
I H	51 Legend	Culvert Barrel GIS Data: Barrel#1
Culvert	Spillway	Barrel Centenine Statuons # Barrels : 11 Length: 39.5
	50 Extend/Trim to Face Points	1 Barrel#1 18.1 18.1 18.1 18.1 1 1747645.555 i967853.886
Outlet	HW Cell Min Elev	2
	49 TW Cell Min Elev	
TS		5
		Individual Barrel Centerlines Show on Map OK Cancel Help
		Select culvert to edit
	0 5 10 15 20 25 30 35 40	
	Station (m)	<u>_</u>
4		-
	13.94, 46.27	

APPENDIX C – Preliminary Pre & Post Development Flood Extent Plan

APPENDIX D – TP108 and Time of concentration calculations

(Calculating the Slope (Sc) using the equal area method)

(This graph is from the ARC TP 108, April 1999, pg.14)

Pre-development

Point	RL (m)	(m)	(m)	(m)	(m)	
		h	x	Δx	\overline{h}	$\Delta A (= h \Delta x)$
1	42	0	0			
2	45	3	1729	1729	1.5	2593.5
3	56	14	3232	1503	8.5	12775.5
4	112	70	4054	822	42	34524
5		0		0	0	0
6		0		0	0	0
7		0		0	0	0
8		0		0	0	0
9		0		0	0	0
10		0		0	0	0
11		0		0	0	0
12		0		0	Ō	Ō
			TOTAL =	4054	TOTAL =	49893

Point	RL (m)	(m)	(m)	(m)	(m)	$\Delta A (= \overline{h} \Delta x)$
		h	x	Δx	\overline{h}	
1	42	0	0			
2	45	3	1729	1729	1.5	2593.5
3	56	14	3232	1503	8.5	12775.5
4	112	70	4054	822	42	34524
5		0		0	0	0
6		0		0	0	0
7		0		0	0	0
8		0		0	0	0
9		0		0	0	0
10		0		0	0	0
11		0		0	0	0
12		0		0	0	0
			TOTAL =	4054	TOTAL =	49893

(Calculating the Slope (Sc) using the equal area method)

(This graph is from the ARC TP 108, April 1999, pg.14)

Pre-development

Point	RL (m)	(m)	(m)	(m)	(m)	_
		h	x	Δx	\overline{h}	$\Delta A (= h \Delta x)$
1	42	0	0			
2	43	1	1688	1688	0.5	844
3	50	8	2808	1120	4.5	5040
4	70	28	3630	822	18	14796
5	169	127	4289	659	77.5	51072.5
6		0		0	0	0
7		0		0	0	0
8		0		0	0	0
9		0		0	0	0
10		0		0	0	0
11		0		0	0	0
12		0		0	0	0
			TOTAL =	4289	TOTAL =	71752.5

S. =	0.008
U _c –	0.000

Point	RL (m)	(m)	(m)	(m)	(m)	$\Delta A (= \overline{h} \Delta x)$
		h	x	Δx	\overline{h}	$\Delta n (-n \omega)$
1	42	0	0			
2	43	1	1688	1688	0.5	844
3	50	8	2808	1120	4.5	5040
4	70	28	3630	822	18	14796
5	169	127	4289	659	77.5	51072.5
6		0		0	0	0
7		0		0	0	0
8		0		0	0	0
9		0		0	0	0
10		0		0	0	0
11		0		0	0	0
12		0		0	0	0
			TOTAL =	4289	TOTAL =	71752.5

(Calculating the Slope (Sc) using the equal area method)

(This graph is from the ARC TP 108, April 1999, pg.14)

Pre-development

Point	RL (m)	(m)	(m)	(m)	(m)	_
		h	x	Δx	\overline{h}	$\Delta A (= h \Delta x)$
1	43	0	0			
2	46	3	912	912	1.5	1368
3	74	31	2682	1770	17	30090
4	110	67	4378	1696	49	83104
5	219	176	5802	1424	121.5	173016
6		0		0	0	0
7		0		0	0	0
8		0		0	0	0
9		0		0	0	0
10		0		0	0	0
11		0		0	0	0
12		0		0	0	0
			TOTAL =	5802	TOTAL =	287578

Point	RL (m)	(m)	(m)	(m)	(m)	$\Delta A (= \overline{h} \Delta x)$
		h	x	Δx	h	
1	42	0	0			
2	45	3	1729	1729	1.5	2593.5
3	56	14	3232	1503	8.5	12775.5
4	112	70	4054	822	42	34524
5		0		0	0	0
6		0		0	0	0
7		0		0	0	0
8		0		0	0	0
9		0		0	0	0
10		0		0	0	0
11		0		0	0	0
12		0		0	0	0
			TOTAL =	4054	TOTAL =	49893

(Calculating the Slope (Sc) using the equal area method)

(This graph is from the ARC TP 108, April 1999, pg.14)

Pre-development

Point	RL (m)	(m)	(m)	(m)	(m)	_
		h	x	Δx	\overline{h}	$\Delta A (= h \Delta x)$
1	43	0	0			
2	46	3	912	912	1.5	1368
3	81	38	3222	2310	20.5	47355
4	137	94	5206	1984	66	130944
5	204	161	6553	1347	127.5	171742.5
6	315	272	7599	1046	216.5	226459
7		0		0	0	0
8		0		0	0	0
9		0		0	0	0
10		0		0	0	0
11		0		0	0	0
12		0		0	0	0
			TOTAL =	7599	TOTAL =	577868.5

e –	0.020
U _c –	0.020

Post-development

Point	RL (m)	(m)	(m)	(m)	(m)	$\Delta A (= \overline{h} \Delta x)$	
		h h	x	Δx	h		
1	43	0	0				
2	46	3	912	912	1.5	1368	
3	81	38	3222	2310	20.5	47355	
4	137	94	5206	1984	66	130944	D
5	204	161	6553	1347	127.5	171742.5	
6	315	272	7599	1046	216.5	226459	
7		0		0	0	0	
8		0		0	0	0	
9		0		0	0	0	
10		0		0	0	0	
11		0		0	0	0	
12		0		0	0	0	
			TOTAL =	7599	TOTAL =	577868.5	

S_c = 0.02

(Calculating the Slope (Sc) using the equal area method)

(This graph is from the ARC TP 108, April 1999, pg.14)

Pre-development

Point	RL (m)	(m)	(m)	(m)	(m)	_
		h	x	Δx	\overline{h}	$\Delta A (= h \Delta x)$
1	42	0	0			
2	51	9	2659	2659	4.5	11965.5
3	67	25	3838	1179	17	20043
4	121	79	5124	1286	52	66872
5	275	233	6720	1596	156	248976
6	345	303	7154	434	268	116312
7		0		0	0	0
8		0		0	0	0
9		0		0	0	0
10		0		0	0	0
11		0		0	0	0
12		0		0	Ō	Ō
			TOTAL =	7154	TOTAL =	464168.5

S =	0.018
$S_c -$	0.010

Point	RL (m)	(m) <i>h</i>	(m) <i>X</i>	(m) Δx	$\frac{(m)}{h}$	$\Delta A (= \overline{h} \Delta x)$
		"			n	
1	42	0	0			
2	51	9	2659	2659	4.5	11965.5
3	67	25	3838	1179	17	20043
4	121	79	5124	1286	52	66872
5	275	233	6720	1596	156	248976
6	345	303	7154	434	268	116312
7		0		0	0	0
8		0		0	0	0
9		0		0	0	0
10		0		0	0	0
11		0		0	0	0
12		0		0	0	0
			TOTAL =	7154	TOTAL =	464168.5

(Calculating the Slope (Sc) using the equal area method)

(This graph is from the ARC TP 108, April 1999, pg.14)

Pre-development

Point	RL (m)	(m)	(m)	(m)	(m)	_
		h	x	Δx	\overline{h}	$\Delta A (= h \Delta x)$
1	30	0	0			
2	42	12	1345	1345	6	8070
3	69	39	3029	1684	25.5	42942
4	165	135	3940	911	87	79257
5	296	266	4597	657	200.5	131728.5
6		0		0	0	0
7		0		0	0	0
8		0		0	0	0
9		0		0	0	0
10		0		0	0	0
11		0		0	0	0
12		0		0	Ô	Ō
			TOTAL =	4597	TOTAL =	261997.5

S _c =	0.025
- 0	

Point	RL (m)	(m)	(m)	(m)	(m)	$\Lambda A(=\overline{h}\Lambda r)$
		h	x	Δx	\overline{h}	$\Delta n(-n\Delta x)$
1	30	0	0			
2	42	12	1345	1345	6	8070
3	69	39	3029	1684	25.5	42942
4	165	135	3940	911	87	79257
5	296	266	4597	657	200.5	131728.5
6		0		0	0	0
7		0		0	0	0
8		0		0	0	0
9		0		0	0	0
10		0		0	0	0
11		0		0	0	0
12		0		0	0	0
			TOTAL =	4597	TOTAL =	261997.5

(Calculating the Slope (Sc) using the equal area method)

(This graph is from the ARC TP 108, April 1999, pg.14)

Pre-development

Point	RL (m)	(m)	(m)	(m)	(m)	_
		h	x	Δx	\overline{h}	$\Delta A (= h \Delta x)$
1	17	0	0			
2	30	13	1098	1098	6.5	7137
3	35	18	2750	1652	15.5	25606
4	42	25	4847	2097	21.5	45085.5
5	47	30	6349	1502	27.5	41305
6	54	37	7725	1376	33.5	46096
7	287	270	9878	2153	153.5	330485.5
8		0		0	0	0
9		0		0	0	0
10		0		0	0	0
11		0		0	0	0
12		0		0	0	0
			TOTAL =	9878	TOTAL =	495715

S _c =	0.010
- 0	

Point	RL (m)	(m)	(m)	(m)	(m)	$\Delta A (= \overline{h} \Delta x)$
		h	x	Δx	\overline{h}	$\Delta n(-n\Delta x)$
1	17	0	0			
2	30	13	1098	1098	6.5	7137
3	35	18	2750	1652	15.5	25606
4	42	25	4847	2097	21.5	45085.5
5	47	30	6349	1502	27.5	41305
6	54	37	7725	1376	33.5	46096
7	287	270	9878	2153	153.5	330485.5
8		0		0	0	0
9		0		0	0	0
10		0		0	0	0
11		0		0	0	0
12		0		0	0	0
			TOTAL =	9878	TOTAL =	495715

(Calculating the Slope (Sc) using the equal area method)

(This graph is from the ARC TP 108, April 1999, pg.14)

Pre-development

Point	RL (m)	(m)	(m)	(m)	(m)	_
		h	x	Δx	\overline{h}	$\Delta A (= h \Delta x)$
1	42	0	0			
2	47	5	1502	1502	2.5	3755
3	54	12	2878	1376	8.5	11696
4	287	245	5031	2153	128.5	276660.5
5		0		0	0	0
6		0		0	0	0
7		0		0	0	0
8		0		0	0	0
9		0		0	0	0
10		0		0	0	0
11		0		0	0	0
12		0		0	Ō	Ō
			TOTAL =	5031	TOTAL =	292111.5

Point	RL (m)	(m)	(m)	(m)	(m)	$\Lambda A(-\overline{h}\Lambda r)$
		h	x	Δx	\overline{h}	$\Delta n(-n\Delta x)$
1	42	0	0			
2	47	5	1502	1502	2.5	3755
3	54	12	2878	1376	8.5	11696
4	287	245	5031	2153	128.5	276660.5
5		0		0	0	0
6		0		0	0	0
7		0		0	0	0
8		0		0	0	0
9		0		0	0	0
10		0		0	0	0
11		0		0	0	0
12		0		0	0	0
			TOTAL =	5031	TOTAL =	292111.5

(Calculating the Slope (Sc) using the equal area method)

(This graph is from the ARC TP 108, April 1999, pg.14)

Pre-development

Point	RL (m)	(m)	(m)	(m)	(m)	_
		h	x	Δx	\overline{h}	$\Delta A (= h \Delta x)$
1	17	0	0			
2	29	12	1018	1018	6	6108
3		0	1018	0	0	0
4		0		0	0	0
5		0		0	0	0
6		0		0	0	0
7		0		0	0	0
8		0		0	0	0
9		0		0	0	0
10		0		0	0	0
11		0		0	0	0
12		0		0	Ō	Ō
			TOTAL =	1018	TOTAL =	6108

S _c =	0.012

Point	RL (m)	(m)	(m)	(m)	(m)	$\Delta A (= \overline{h} \Delta x)$
		h	x	Δx	\overline{h}	
1	17	0	0			
2	29	12	1018	1018	6	6108
3		0	1018	0	0	0
4		0		0	0	0
5		0		0	0	0
6		0		0	0	0
7		0		0	0	0
8		0		0	0	0
9		0		0	0	0
10		0		0	0	0
11		0		0	0	0
12		0		0	Ō	Ō
			TOTAL =	1018	TOTAL =	6108

(Calculating the Slope (Sc) using the equal area method)

(This graph is from the ARC TP 108, April 1999, pg.14)

Pre-development

Point	RL (m)	(m)	(m)	(m)	(m)	
		h	x	Δx	\overline{h}	$\Delta A (= h \Delta x)$
1	17	0	0			
2	21	4	808	808	2	1616
3	33	16	2536	1728	10	17280
4	87	70	3056	520	43	22360
5		0		0	0	0
6		0		0	0	0
7		0		0	0	0
8		0		0	0	0
9		0		0	0	0
10		0		0	0	0
11		0		0	0	0
12		0		0	Ō	Ō
			TOTAL =	3056	TOTAL =	41256

Point	RL (m)	(m)	(m)	(m)	(m)	$\Delta A (= \overline{h} \Delta r)$	
		h	x	Δx	\overline{h}	$\Delta \Pi(-n\Delta x)$	
1	17	0	0				
2	21	4	808	808	2	1616	
3	33	16	2536	1728	10	17280	
4	87	70	3056	520	43	22360	C
5		0		0	0	0	
6		0		0	0	0	
7		0		0	0	0	
8		0		0	0	0	
9		0		0	0	0	
10		0		0	0	0	
11		0		0	0	0	
12		0		0	0	0	
			TOTAL =	3056	TOTAL =	41256	

(Calculating the Slope (Sc) using the equal area method)

(This graph is from the ARC TP 108, April 1999, pg.14)

Pre-development

Point	RL (m)	(m)	(m)	(m)	(m)	_
		h	x	Δx	\overline{h}	$\Delta A (= h \Delta x)$
1	8	0	0			
2	57	49	1665	1665	24.5	40792.5
3		0	1665	0	0	0
4		0		0	0	0
5		0		0	0	0
6		0		0	0	0
7		0		0	0	0
8		0		0	0	0
9		0		0	0	0
10		0		0	0	0
11		0		0	0	0
12		0		0	Ō	Ō
			TOTAL =	1665	TOTAL =	40792.5

S _c =	0.029
-0	

Point	RL (m)	(m)	(m)	(m)	(m)	$\Delta A (= \overline{h} \Delta x)$
		h	x	Δx	h	
1	8	0	0			
2	57	49	1665	1665	24.5	40792.5
3		0	1665	0	0	0
4		0		0	0	0
5		0		0	0	0
6		0		0	0	0
7		0		0	0	0
8		0		0	0	0
9		0		0	0	0
10		0		0	0	0
11		0		0	0	0
12		0		0	0	0
			TOTAL =	1665	TOTAL =	40792.5

(Calculating the Slope (Sc) using the equal area method)

(This graph is from the ARC TP 108, April 1999, pg.14)

Pre-development

Point	RL (m)	(m)	(m)	(m)	(m)	_
		h	x	Δx	\overline{h}	$\Delta A (= h \Delta x)$
1	8	0	0			
2	84	76	1076	1076	38	40888
3		0	1076	0	0	0
4		0		0	0	0
5		0		0	0	0
6		0		0	0	0
7		0		0	0	0
8		0		0	0	0
9		0		0	0	0
10		0		0	0	0
11		0		0	0	0
12		0		0	Ō	Ō
			TOTAL =	1076	TOTAL =	40888

S _c =	0.071

Point	RL (m)	(m)	(m)	(m)	(m)	$\Delta A (= \overline{h} \Delta x)$
		h	x	Δx	h	
1	8	0	0			
2	84	76	1076	1076	38	40888
3		0	1076	0	0	0
4		0		0	0	0
5		0		0	0	0
6		0		0	0	0
7		0		0	0	0
8		0		0	0	0
9		0		0	0	0
10		0		0	0	0
11		0		0	0	0
12		0		0	0	0
			TOTAL =	1076	TOTAL =	40888

(Calculating the Slope (Sc) using the equal area method)

(This graph is from the ARC TP 108, April 1999, pg.14)

Pre-development

Point	RL (m)	(m)	(m)	(m)	(m)	_
		h	x	Δx	\overline{h}	$\Delta A (= h \Delta x)$
1	8	0	0			
2	21	13	770	770	6.5	5005
3	35	27	1372	602	20	12040
4	73	65	2412	1040	46	47840
5		0		0	0	0
6		0		0	0	0
7		0		0	0	0
8		0		0	0	0
9		0		0	0	0
10		0		0	0	0
11		0		0	0	0
12		0		0	Ō	Ō
			TOTAL =	2412	TOTAL =	64885

S _c =	0.022

Point	RL (m)	(m)	(m)	(m)	(m)	$\Delta A (= \overline{h} \Delta r)$	
		h	x	Δx	\overline{h}	$\Delta \Pi(-n\Delta x)$	
1	8	0	0				
2	21	13	770	770	6.5	5005	
3	35	27	1372	602	20	12040	
4	73	65	2412	1040	46	47840	C
5		0		0	0	0	
6		0		0	0	0	
7		0		0	0	0	
8		0		0	0	0	
9		0		0	0	0	
10		0		0	0	0	
11		0		0	0	0	
12		0		0	0	0	
			TOTAL =	2412	TOTAL =	64885	

(Calculating the Slope (Sc) using the equal area method)

(This graph is from the ARC TP 108, April 1999, pg.14)

Pre-development

Point	RL (m)	(m)	(m)	(m)	(m)	_
		h	x	Δx	\overline{h}	$\Delta A(=h\Delta x)$
1	3	0	0			
2	8	5	1112	1112	2.5	2780
3		0	1112	0	0	0
4		0		0	0	0
5		0		0	0	0
6		0		0	0	0
7		0		0	0	0
8		0		0	0	0
9		0		0	0	0
10		0		0	0	0
11		0		0	0	0
12		0		0	Ō	Ō
			TOTAL =	1112	TOTAL =	2780

S _c =	0.004

Point	RL (m)	(m) <i>h</i>	(m) x	(m) (x	$\frac{(m)}{1}$	$\Delta A (= \overline{h} \Delta x)$
		n	л	Δn	h	
1	3	0	0			
2	8	5	1112	1112	2.5	2780
3		0	1112	0	0	0
4		0		0	0	0
5		0		0	0	0
6		0		0	0	0
7		0		0	0	0
8		0		0	0	0
9		0		0	0	0
10		0		0	0	0
11		0		0	0	0
12		0		0	0	0
			TOTAL =	1112	TOTAL =	2780

	MAVEN ASSOCIA	MAVEN ASSOCIATES			Sheet 1	Rev A		
Job Title Calc Title	Warkworth South Plan C TP108 Calculation - Pre-Dev Catchment A	Warkworth South Plan Change TP108 Calculation - Pre-Development Catchment A			Date 18/01/2023	Checked		
1. Runoff Curve Num	ber (CN) and initial Abstractic	on (la)						
Soil name and classification C C	Cover description (cover hydrologic co Total Impe Total Per	Cover description (cover type, treatment, and hydrologic condition) Total Impervious Total Pervious			Area (ha) 10000m2= 1ha 6.0077 327.7623	Product of CN x area 588.75 24254.41		
* from Appendix B				Totals =	333.770	24843.16		
CN (weighted) =	CN (weighted) = $total product = 24843.16 = 74.4$ total area 333.770							
la (average) = 2. Time of Concentrat	<u>5 x pervious area</u> = total area ion	<u> </u>	327.7623 .770	4.9	mm			
Channelisation factor	C =	1	(From Table	4.2)				
Catchment length	L =	4.117	km (along di	rainage path)			
Catchment Slope	Sc=	0.006	m/m (by equ	ial area meth	nod)			
Runoff factor,	<u>CN</u> = 200 - CN 200-	74.4 74.4	=	0.59				
$t_c = 0.14 \text{ C L}^{0.66} \text{ (CN/20)}$	00-CN) ^{-0.55} Sc ^{-0.30}							
= 0.1	4 1 2.54	1.33	4.64	=	2.20	hrs		
SCS Lag for HEC-HMS	$t_p = 2/3 t_c$			=	1.48	hrs		
					OK use 2.2040513	hrs		
	Worksheet 1: Runoff Para	ameters and	I Time of Co	ncentration				

	MAVEN ASSOCIATES			Job Numb 211001	ber	Sheet 2	Rev A
Job Title Calc Title	Warkworth South I TP108 Calculation - Pr Catchmer	Plan Chang re-Develop nt A	je ment	Author YW		Date 18/01/2023	Checked 0
1 Data							
Catchment Are	ea	A=	3.3377	km2(100ha =1km	12)		
Runoff curve n	umber	CN=	74.4	(from worksheet 1)		
Initial abstracti	on	la=	4.9	mm (from workshe	eet 1)		
Time of conce	ntration	tc=	2.20	hrs (from workshe	et 1)		
2. Calculate stora	age, S =(1000/CN - 10)2	5.4		=	87.3	mm	
 Average recur 24 hour rainfal Compute c* = 	rence interval, ARI I depth, P24 P24 - 2la/P24 - 2la+2S				(yr) (mm)		
6. Specific peak t	flow rate q*			0.045			
7. Peak flow rate	, q _p =q*A*P ₂₄			42.205	m3/s		
8. Runoff depth,	Q ₂₄ = (P ₂₄ -la) ² /(P ₂₄ -la)+S	i		209.8			
9. Runoff volume	e, V ₂₄ = 1000xQ ₂₄ A			700219.32	(m3)		
			Grandia	al Dook Flow Pot			

	MAVEN ASSOCIA	VEN ASSOCIATES		umber 001	Sheet 1	Rev A
Job Title Calc Title	Warkworth South Plan TP108 Calculation - Pre-D Catchment B	Warkworth South Plan ChangeAuTP108 Calculation - Pre-DevelopmentYCatchment B			Date 18/01/2023	Checked
1. Runoff Curve Num	ber (CN) and initial Abstract	ion (la)				
Soil name and classification C C	Cover description (cove hydrologic Total Imp Total Pe	Cover description (cover type, treatment, and hydrologic condition) Total Impervious Total Pervious			Area (ha) 10000m2= 1ha 10.3517 401.8183	Product of CN x area 1014.47 29734.55
* from Appendix B	total product -	20740.02	_	Totals =	412.170	30749.02
	total area	412.170		74.0	-	
la (average) = 2. Time of Concentrat	<u>5 x pervious area</u> = total area :ion	<u> </u>	401.8183 1.170	4.9	mm	
Channelisation factor	C =	1	(From Table	4.2)		
Catchment length	L =	4.29	km (along di	rainage path)	
Catchment Slope	Sc=	0.008	m/m (by equ	ial area meth	nod)	
Runoff factor,	<u>CN</u> = 200 - CN 200	74.6 - 74.6	.=	0.59	-	
$t_c = 0.14 \text{ C L}^{0.66} (\text{CN}/20)$	00-CN) ^{-0.55} Sc ^{-0.30}					
= 0.1	4 1 2.6	1 1.33	4.26	=	2.07	hrs
SCS Lag for HEC-HMS	5 $t_p = 2/3 t_c$			=	1.39	hrs
					OK use 2.0733185	hrs
	Worksheet 1: Runoff Pa	rameters and	I Time of Co	ncentration		

	MAVEN ASSOCIATES			Job Numl 211001	ber	Sheet 2	Rev A
Job Title Calc Title	Warkworth South I TP108 Calculation - Pr Catchmer	Plan Chang re-Develop it B	ge oment	Author YW	,	Date 18/01/2023	Checked 0
1. Data Catchment A	vrea	A=	4.1217	km2(100ha =1km	12)		
Runoff curve	number	CN=	74.6	(from worksheet 1)		
Initial abstrac	ction	la=	4.9	mm (from worksh	eet 1)		
Time of cond	centration	tc=	2.07	hrs (from workshe	et 1)		
2. Calculate sto	orage, S =(1000/CN - 10)2	5.4		=	86.5	mm	
3. Average rect	urrence interval, ARI			100	(yr)		
4. 24 hour rainf	all depth, P24			281	(mm)		
5. Compute c* :	= P24 - 2Ia/P24 - 2Ia+2S			0.61			
6. Specific peal	k flow rate q*			0.047			
7. Peak flow rat	te, q _p =q*A*P ₂₄			54.435	m3/s		
8. Runoff depth	$P_{24} = (P_{24} - Ia)^2 / (P_{24} - Ia) + S$;		210.3			
9. Runoff volum	ne, V ₂₄ = 1000xQ ₂₄ A			866696.79	(m3)		
	Wo	rksheet 2	: Graphic	al Peak Flow Rat	e		

	MAVEN ASSOC	CIATES	Job N 211	umber 001	Sheet 1	Rev A			
Job Title Calc Title	Warkworth South F TP108 Calculation - Pr Catchmen	Plan Change e-Development t C	hange Author elopment YW			Checked			
1. Runoff Curve Num	ber (CN) and initial Abstr	raction (Ia)							
Soil name and classification C C	Cover description (c hydrolo Total Tota	Cover description (cover type, treatmer hydrologic condition) Total Impervious Total Pervious			Area (ha) 10000m2= 1ha 3.8056 287.7544	Product of CN x area 372.95 21293.83			
* from Appendix B				Totals =	291.560	21666.77			
CN (weighted) =	CN (weighted) = $\frac{\text{total product =}}{\text{total area}}$ $\frac{21666.77}{291.560}$ = 74.3								
la (average) = 2. Time of Concentrat	<u>5 x pervious area</u> = total area t ion	<u>5 x</u> 291	287.7544 .560	4.9	mm				
Channelisation factor	C =	1	(From Table	4.2)					
Catchment length	L =	4.89	km (along di	rainage path)				
Catchment Slope	Sc=	0.017	m/m (by equ	ial area meth	nod)				
Runoff factor,	<u>CN</u> = 200 - CN	74.3 200- 74.3	=	0.59					
$t_c = 0.14 \text{ C L}^{0.66} \text{ (CN/20)}$	00-CN) ^{-0.55} Sc ^{-0.30}								
= 0.1	4 1	2.85 1.34	3.40	=	1.81	hrs			
SCS Lag for HEC-HMS	S t _p = 2/3 t	c		=	1.21	hrs			
					OK use 1.809089	hrs			
	Worksheet 1: Runoff	Parameters and	d Time of Co	oncentration	L				

	MAVEN ASSOCIATES			Job Numl 211001	ber	Sheet 2	Rev A
Job Title Calc Title	Warkworth South TP108 Calculation - P Catchmer	Plan Chang re-Develop nt C	ge ment	Author YW		Date 18/01/2023	Checked 0
1. Data Catchment A	vrea	A=	2.9156	km2(100ha =1km	12)		
Runoff curve	number	CN=	74.3	(from worksheet 1)		
Initial abstrac	ction	la=	4.9	mm (from worksho	eet 1)		
Time of cond	centration	tc=	1.81	hrs (from workshe	et 1)		
2. Calculate sto	orage, S =(1000/CN - 10)2	5.4		=	87.8	mm	
3. Average recu	urrence interval, ARI			100	(yr)		
4. 24 hour rainf	all depth, P24			281	(mm)		
5. Compute c* :	= P24 - 2Ia/P24 - 2Ia+2S			0.61			
6. Specific peal	k flow rate q*			0.049			
7. Peak flow rat	te, q _p =q*A*P ₂₄			40.145	m3/s		
8. Runoff depth	n, Q ₂₄ = (P ₂₄ -la) ² /(P ₂₄ -la)+S	6		209.5			
9. Runoff volum	ne, V ₂₄ = 1000xQ ₂₄ A			610682.18	(m3)		
	Wo	orksheet 2	: Graphic	al Peak Flow Rat	9		

	MAVEN ASSOCIA	MAVEN ASSOCIATES		Job Number 211001		Rev A
Job Title Calc Title	Warkworth South Plan C TP108 Calculation - Pre-Dev Catchment D	Warkworth South Plan ChangeAuTP108 Calculation - Pre-DevelopmentYCatchment D			Date 18/01/2023	Checked
1. Runoff Curve Numb	per (CN) and initial Abstractio	on (la)				
Soil name and classification C C	Cover description (cover type, treatment, and hydrologic condition) Total Impervious Total Pervious			Curve Number CN* 98 74	Area (ha) 10000m2= 1ha 4.8100 505.2700	Product of CN x area 471.38 37389.98
* from Appendix B CN (weighted) =	total product =	37861.36		Totals = 74.2	510.080	37861.36
la (average) = 2. Time of Concentrat	<u>5 x</u> 510	505.2700 .080	5.0	mm		
Channelisation factor	C =	1	(From Table	4.2)		
Catchment length	L =	6.687	km (along di	ainage path)	
Catchment Slope	Sc=	0.02	m/m (by equ	ial area meth	iod)	
Runoff factor,	<u>CN</u> = 200 - CN 200-	74.2 74.2	=	0.59		
t _c = 0.14 C L ^{0.66} (CN/20	0-CN) ^{-0.55} Sc ^{-0.30}					
= 0.14	4 1 3.50	1.34	3.23	=	2.12	hrs
SCS Lag for HEC-HMS	$t_{p} = 2/3 t_{c}$			=	1.42	hrs
					OK use 2.1205047	hrs
	Worksheet 1: Runoff Para	ameters and	Time of Co	ncentration		

	MAVEN ASSOCIATES		Job Numl 211001	ber	Sheet 2	Rev A	
Job Title Calc Title	Warkworth South I TP108 Calculation - Pi Catchmer	Plan Chang re-Develop nt D	ge ment	Author YW	,	Date 18/01/2023	Checked 0
1. Data Catchment A	rea	A=	5.1008	km2(100ha =1km	12)		
Runoff curve	number	CN=	74.2	(from worksheet 1)		
Initial abstrac	ction	la=	5.0	mm (from worksh	eet 1)		
Time of conc	centration	tc=	2.12	hrs (from workshe	et 1)		
2. Calculate sto	orage, S =(1000/CN - 10)2	5.4		=	88.2	mm	
3. Average rect	urrence interval, ARI			100	(yr)		
4. 24 hour rainf	all depth, P24			281	(mm)		
5. Compute c* :	= P24 - 2Ia/P24 - 2Ia+2S			0.61			
6. Specific peal	k flow rate q*			0.045			
7. Peak flow rat	te, q _p =q*A*P ₂₄			64.500	m3/s		
8. Runoff depth	ı, Q ₂₄ = (P ₂₄ -la)²/(P ₂₄ -la)+S	5		209.2			
9. Runoff volum	ne, V ₂₄ = 1000xQ ₂₄ A			1067118.42	(m3)		
	Wa	rksheet 2	: Graphic	al Peak Flow Rat	e		

	MAVEN ASSOCIATES		Job Number 211001		Sheet 1	Rev A			
Job Title Calc Title	Warkworth S TP108 Calculati Cat	South Plan C on - Pre-Dev chment E	hange velopment	Aut Y	thor W	Date 18/01/2023	Checked		
1. Runoff Curve Num	ber (CN) and initial	Abstraction	n (la)						
Soil name and classification C C	Cover descrip	Cover description (cover type, treatment, and hydrologic condition) Total Impervious Total Pervious			Curve Number CN* 98 74	Area (ha) 10000m2= 1ha 5.7200 567.5700	Product of CN x area 560.56 42000.18		
* from Appendix B					Totals =	573.290	42560.74		
CN (weighted) =	$CN (weighted) = \underbrace{total \ product =}_{total \ area} \underbrace{42560.74}_{573.290} = \underbrace{74.2}_{74.2}$								
la (average) = 2. Time of Concentrat	<u>5 x pervious area</u> total area t ion	= .	<u>5 x 567.5700</u> 5.0 mm 573.290						
Channelisation factor	C		1	_(From Table 4.2)					
Catchment length	L:		7.153	km (along di	rainage path)			
Catchment Slope	Sc	;= -	0.018	m/m (by equ	ial area meth	iod)			
Runoff factor,	<u>CN</u> = 200 - CN	200-	74.2 74.2	=	0.59				
$t_c = 0.14 \text{ C L}^{0.66} \text{ (CN/20)}$	00-CN) ^{-0.55} Sc ^{-0.30}								
= 0.1	4 1	3.66	1.34	3.34	=	2.29	hrs		
SCS Lag for HEC-HMS	8 t _p :	= 2/3 t _c			=	1.53	hrs		
						OK use 2.2877512	hrs		
	Worksheet 1: F	Runoff Para	meters and	Time of Co	ncentration				

	MAVEN ASSOCIATES			Job Numl 211001	ber	Sheet 2	Rev A
Job Title Calc Title	Warkworth South TP108 Calculation - P Catchme	Plan Chang re-Develop nt E	ge oment	Author YW		Date 18/01/2023	Checked 0
1. Data Catchment A	Area	A=	5.7329	km2(100ha =1km	12)		
Runoff curve	number	CN=	74.2	(from worksheet 1)		
Initial abstrac	ction	la=	5.0	mm (from worksh	eet 1)		
Time of cond	centration	tc=	2.29	hrs (from workshe	et 1)		
2. Calculate sto	orage, S =(1000/CN - 10)2	25.4		=	88.1	mm	
3. Average rect	urrence interval, ARI			100	(yr)		
4. 24 hour rainf	fall depth, P24			281	(mm)		
5. Compute c*	= P24 - 21a/P24 - 21a+2S			0.61			
6. Specific peal	k flow rate q*			0.042			
7. Peak flow ra	te, q _p =q*A*P ₂₄			67.660	m3/s		
8. Runoff depth	$P_{24} = (P_{24} - Ia)^2 / (P_{24} - Ia) + 5$	3		209.2			
9. Runoff volun	ne, V ₂₄ = 1000xQ ₂₄ A			1199571.87	(m3)		
	Wo	orksheet 2	: Graphic	al Peak Flow Rat	e		

	MAVEN ASS	MAVEN ASSOCIATES		Job Number 211001		Rev A
Job Title Calc Title	Warkworth Sc TP108 Calculatio Catc	outh Plan Change n - Pre-Development hment F	Aut Y	thor W	Date 18/01/2023	Checked
1. Runoff Curve Num	ber (CN) and initial /	Abstraction (Ia)				
Soil name and classification C C	Cover descript	on (cover type, treatm drologic condition) Fotal Impervious Total Pervious	nent, and	Curve Number CN* 98 74	Area (ha) 10000m2= 1ha 4.8193 299.1107	Product of CN x area 472.29 22134.19
* from Appendix B				Totals =	303.930	22606.48
$CN \text{ (weighted)} = \underbrace{\text{total product} =}_{\text{total area}} \underbrace{22606.48}_{303.930} = \underbrace{-}$					-	
la (average) = 2. Time of Concentrat	<u>5 x pervious area</u> = total area t ion	= <u>5 x</u> 303	<u>5 x 299.1107</u> 4.9 mm 303.930			
Channelisation factor	C =	1	(From Table	: 4.2)		
Catchment length	L =	4.596	km (along d	rainage path)	
Catchment Slope	Sc=	0.025	_m/m (by equ	ial area meth	nod)	
Runoff factor,	<u>CN =</u> 200 - CN	74.4 200- 74.4	=	0.59		
$t_c = 0.14 \text{ C L}^{0.66} \text{ (CN/20)}$	00-CN) ^{-0.55} Sc ^{-0.30}					
= 0.1	4 1	2.74 1.33	3.02	=	1.55	hrs
SCS Lag for HEC-HMS	S t _p =	2/3 t _c		=	1.04	hrs
					OK use 1.545594	hrs
	Worksheet 1: Ru	unoff Parameters and	d Time of Co	oncentration		

	MAVEN ASSOCIATES		Job Numb 211001	ber	Sheet 2	Rev A	
Job Title Calc Title	Warkworth South TP108 Calculation - P Catchme	Plan Chang re-Develop nt F	ge ment	Author YW		Date 18/01/2023	Checked 0
1. Data Catchment A	Area	A=	3.0393	km2(100ha =1km	12)		
Runoff curve	e number	CN=	74.4	(from worksheet 1)		
Initial abstrac	ction	la=	4.9	mm (from workshe	eet 1)		
Time of cond	centration	tc=	1.55	hrs (from workshe	et 1)		
2. Calculate sto	orage, S =(1000/CN - 10)2	5.4		=	87.5	mm	
3. Average rect	urrence interval, ARI			100	(yr)		
4. 24 hour rainf	fall depth, P24			281	(mm)		
5. Compute c*	= P24 - 2Ia/P24 - 2Ia+2S			0.61			
6. Specific peal	k flow rate q*			0.055			
7. Peak flow rat	te, q _p =q*A*P ₂₄			46.972	m3/s		
8. Runoff depth	n, Q ₂₄ = (P ₂₄ -la) ² /(P ₂₄ -la)+5	6		209.6			
9. Runoff volum	ne, V ₂₄ = 1000xQ ₂₄ A			637173.21	(m3)		
	Wo	orksheet 2	: Graphic	al Peak Flow Rate	9		

	MAVEN ASSOC	MAVEN ASSOCIATES		Job Number 211001		Rev A
Job Title Calc Title	Warkworth South P TP108 Calculation - Pos Catchmen	lan Change st Development t F	Aut Y	hor W	Date 18/01/2023	Checked
1. Runoff Curve Num	ber (CN) and initial Abstra	action (la)				
Soil name and classification C C	Cover description (c hydrolog Total Total	Cover description (cover type, treatment, and hydrologic condition) Total Impervious Total Pervious			Area (ha) 10000m2= 1ha 15.1030 288.8270	Product of CN x area 1480.09 21373.20
* from Appendix B				Totals =	303.930	22853.29
$CN \text{ (weighted)} = \underbrace{\text{total product}}_{\text{total area}} = \underbrace{22853.29}_{303.930} = \underbrace{75.2}_{75.2}$						
la (average) = 2. Time of Concentrat	<u>5 x pervious area</u> = total area ion	5 x 303	<u>5 x 288.8270</u> 4.8 mm 303.930			
Channelisation factor	C =	1	(From Table	4.2)		
Catchment length	L =	4.596	km (along di	rainage path)	
Catchment Slope	Sc=	0.025	m/m (by equ	ial area meth	iod)	
Runoff factor,	<u>CN</u> = 200 - CN 2	75.2 200- 75.2	=	0.60		
$t_c = 0.14 \text{ C L}^{0.66} \text{ (CN/20)}$	00-CN) ^{-0.55} Sc ^{-0.30}					
= 0.1	4 1 :	2.74 1.32	3.02	=	1.53	hrs
SCS Lag for HEC-HMS	$t_p = 2/3 t_c$			=	1.03	hrs
					OK use 1.5309205	hrs
	Worksheet 1: Runoff	Parameters and	d Time of Co	ncentration		

MAVEN ASSOCIATES		Job Number 211001		Sheet 2	Rev A
uth Plan Chang - Post Develop hment F	ge oment	Author YW	,	Date 18/01/2023	Checked
A=	3.0393	km2(100ha =1km	12)		
CN=	75.2	(from worksheet 1)		
la=	4.8	mm (from worksh	eet 1)		
tc=	1.53	hrs (from workshe	et 1)		
10)25.4		=	83.8	mm	
		100	(yr)		
20		281	(mm)		
-25		0.62			
		46.972	m3/s		
a)+S		212.0			
		644189.15	(m3)		
	SSOCIAT	SSOCIATES	SSOCIATES Job Numi 211001 outh Plan Change - Post Development hment F Author YW A= 3.0393 km2(100ha =1km CN= 75.2 CN= 75.2 (from worksheet 1) Ia= 4.8 mm (from worksheet 1) Ia= 4.8 mm (from worksheet 1) 10)25.4 = 100 22S 0.62 0.055 46.972 0.055 46.972 Ia)+S 212.0 644189.15	SSOCIATES Job Number 211001 Juth Plan Change 1- Post Development hment F Author YW A= 3.0393 km2(100ha =1km2) CN= 75.2 (from worksheet 1) la= CN= 75.2 (from worksheet 1) la= 4.8 mm (from worksheet 1) tc= 10)25.4 = 83.8 1000 (yr) 281 (mm) •28 0.62 0.055 a)+S 212.0 644189.15 (m3)	SSOCIATES Job Number 211001 Sheet 2 uth Plan Change 1-Post Development hment F Author YW Date 18/01/2023 A= 3.0393 km2(100ha =1km2) CN= 75.2 (from worksheet 1) Ia= 4.8 mm (from worksheet 1) Ic= 1.53 hrs (from worksheet 1) 10)25.4 = 83.8 mm -2S 0.62 0.055 0.62 0.055 a)+S 212.0 644189.15 (m3)

	MAVEN ASS	MAVEN ASSOCIATES		Job Number 211001		Sheet 1	Rev A
Job Title Calc Title	Warkworth So TP108 Calculatio Catc	outh Plan Change n - Pre-Developmer hment G	nt	Aut Y	hor W	Date 18/01/2023	Checked
1. Runoff Curve Num	ber (CN) and initial	Abstraction (Ia)					
Soil name and classification C C	Cover descript	ion (cover type, tre drologic condition) Total Impervious Total Pervious	atment, a	and	Curve Number CN* 98 74	Area (ha) 10000m2= 1ha 9.4054 575.1346	Product of CN x area 921.73 42559.96
* from Appendix B					Totals =	584.540	43481.69
$CN \text{ (weighted)} = \frac{\text{total product} =}{\text{total area}} \frac{43481.69}{584.540} = \frac{74.4}{74.4}$							
la (average) = 2. Time of Concentrat	<u>5 x pervious area</u> total area t ion	=	<u>5 x 57</u> 584.540	<u>/5.1346</u>	4.9	mm	
Channelisation factor	C =	·	1 (Froi	m Table	4.2)		
Catchment length	L =	4.8	48 km (along dr	ainage path)	
Catchment Slope	Sc	=0	. <u>01_</u> m/m	(by equ	al area meth	iod)	
Runoff factor,	<u>CN</u> = 200 - CN	200- 74	<u>4.4</u> = 4.4		0.59		
$t_c = 0.14 \text{ C L}^{0.66} \text{ (CN/20)}$	00-CN) ^{-0.55} Sc ^{-0.30}						
= 0.1	4 1	2.83 1	33	3.98	=	2.11	hrs
SCS Lag for HEC-HMS	S t _p =	= 2/3 t _c			=	1.41	hrs
						OK use 2.1074111	hrs
	Worksheet 1: R	unoff Parameters	and Tim	e of Co	ncentration		

	MAVEN ASSOCIATES		Job Numl 211001	ber	Sheet 2	Rev A	
Job Title Calc Title	Warkworth South I TP108 Calculation - Pr Catchmer	Plan Chang re-Develop it G	ge ment	Author YW		Date 18/01/2023	Checked 0
1. Data Catchment A	Area	A=	5.8454	km2(100ha =1km	12)		
Runoff curve	e number	CN=	74.4	(from worksheet 1)		
Initial abstrac	ction	la=	4.9	mm (from worksh	eet 1)		
Time of cond	centration	tc=	2.11	hrs (from workshe	et 1)		
2. Calculate sto	orage, S =(1000/CN - 10)2	5.4		=	87.5	mm	
3. Average rect	urrence interval, ARI			100	(yr)		
4. 24 hour rainf	fall depth, P24			281	(mm)		
5. Compute c*	= P24 - 2Ia/P24 - 2Ia+2S			0.61			
6. Specific pea	k flow rate q*			0.045			
7. Peak flow ra	te, q _p =q*A*P ₂₄			73.915	m3/s		
8. Runoff depth	n, Q ₂₄ = (P ₂₄ -la) ² /(P ₂₄ -la)+S	6		209.7			
9. Runoff volun	ne, V ₂₄ = 1000xQ ₂₄ A			1225550.48	(m3)		
	Wo	rksheet 2	: Graphic	al Peak Flow Rat	9		

	MAVEN ASS	MAVEN ASSOCIATES		Job Number 211001		Rev A
Job Title Calc Title	Warkworth Sc TP108 Calculatio Catcl	outh Plan Change n - Pre-Development hment H	Aut Y	hor W	Date 18/01/2023	Checked
1. Runoff Curve Num	ber (CN) and initial /	Abstraction (Ia)				
Soil name and classification C C	Cover descripti	on (cover type, treatm drologic condition) Total Impervious Total Pervious	nent, and	Curve Number CN* 98 74	Area (ha) 10000m2= 1ha 12.0476 836.7124	Product of CN x area 1180.66 61916.72
* from Appendix B				Totals =	848.760	63097.38
CN (weighted) =	.=	74.3				
la (average) = 2. Time of Concentrat	<u>5 x pervious area</u> = total area t ion	= <u>5 x</u> 848	836.7124 3.760	4.9	mm	
Channelisation factor	C =	1	(From Table	4.2)		
Catchment length	L =	5.031	km (along d	rainage path)	
Catchment Slope	Sc=	0.023	_m/m (by equ	ial area meth	iod)	
Runoff factor,	<u>CN =</u> 200 - CN	74.3 200- 74.3	_=	0.59		
$t_c = 0.14 \text{ C L}^{0.66} \text{ (CN/20)}$	00-CN) ^{-0.55} Sc ^{-0.30}					
= 0.1	4 1	2.90 1.33	3.10	=	1.68	hrs
SCS Lag for HEC-HMS	S t _p =	2/3 t _c		=	1.13	hrs
					OK use 1.683	hrs
	Worksheet 1: Ru	unoff Parameters and	d Time of Co	ncentration		

	MAVEN ASSOCIATES		Job Numb 211001	per	Sheet 2	Rev A	
Job Title Calc Title	Warkworth South TP108 Calculation - P Catchmer	Plan Chang re-Develop nt H	ge ment	Author YW		Date 18/01/2023	Checked 0
1. Data Catchment A	Area	A=	8.4876	km2(100ha =1km	12)		
Runoff curve	e number	CN=	74.3	(from worksheet 1)		
Initial abstra	ction	la=	4.9	mm (from worksho	eet 1)		
Time of cond	centration	tc=	1.68	hrs (from workshe	et 1)		
2. Calculate sto	orage, S =(1000/CN - 10)2	5.4		=	87.7	mm	
3. Average rec	urrence interval, ARI			100	(yr)		
4. 24 hour raint	fall depth, P24			281	(mm)		
5. Compute c*	= P24 - 2Ia/P24 - 2Ia+2S			0.61			
6. Specific pea	k flow rate q*			0.053			
7. Peak flow ra	te, q _p =q*A*P ₂₄			126.406	m3/s		
8. Runoff depth	n, Q ₂₄ = (P ₂₄ -la) ² /(P ₂₄ -la)+S	6		209.5			
9. Runoff volun	ne, V ₂₄ = 1000xQ ₂₄ A			1778417.67	(m3)		
	Wo	orksheet 2	: Graphic	al Peak Flow Rat	9		

	MAVEN ASSO	CIATES	Job Number 211001		Sheet 1	Rev A
Job Title Calc Title	Warkworth South TP108 Calculation - F Catchmo	Plan Change Pre-Development ent I	Au Y	thor W	Date 18/01/2023	Checked
1. Runoff Curve Num	ber (CN) and initial Abs	straction (la)				
Soil name and classification C C	Cover description hydrol Tota Tot	(cover type, treatn ogic condition) Il Impervious al Pervious	nent, and	Curve Number CN* 98 74	Area (ha) 10000m2= 1ha 7.3200 16.2500	Product of CN x area 717.36 1202.50
* from Appendix B				Totals =	23.570	1919.86
CN (weighted) =	total product = total area	<u>1919.86</u> 23.570	=	81.5	-	
la (average) = 2. Time of Concentra	<u>5 x pervious area</u> = total area tion	<u>5 x</u> 23	<u>16.2500</u> 3.570	. 3.4	mm	
Channelisation factor	C =	1	(From Table	4.2)		
Catchment length	L =	1.018	km (along d	rainage path)	
Catchment Slope	Sc=	0.012	m/m (by equ	ial area meth	iod)	
Runoff factor,	<u>CN</u> = 200 - CN	81.5 200- 81.5	=	0.69		
$t_c = 0.14 \text{ C L}^{0.66} (\text{CN/20})$	00-CN) ^{-0.55} Sc ^{-0.30}					
= 0.1	14 1	1.01 1.23	3.77	=	0.66	hrs
SCS Lag for HEC-HM	S t _p = 2/3	3 t _c		=	0.44	hrs
					OK use 0.6563348	hrs
	Worksheet 1: Runo	ff Parameters an	d Time of C	oncentratio	1	

	MAVEN ASS	OCIAI	ΓES	Job Numb 211001	ber	Sheet 2	Rev A
Job Title Calc Title	Warkworth South I TP108 Calculation - Pr Catchme	Plan Chang re-Develop nt I	ge oment	Author YW	,	Date 18/01/2023	Checked 0
1. Data Catchment A	Area	A=	0.2357	km2(100ha =1km	12)		
Runoff curve	e number	CN=	81.5	(from worksheet 1)		
Initial abstrac	ction	la=	3.4	mm (from worksho	eet 1)		
Time of cond	centration	tc=	0.66	hrs (from workshe	et 1)		
2. Calculate sto	orage, S =(1000/CN - 10)2	5.4		=	57.8	mm	
3. Average rec	urrence interval, ARI			100	(yr)		
4. 24 hour rainf	fall depth, P24			281	(mm)		
5. Compute c*	= P24 - 21a/P24 - 21a+2S			0.70			
 Specific pear Peak flow rate 	te, q _p =q*A*P ₂₄			5.961	m3/s		
8. Runoff depth	n, Q ₂₄ = (P ₂₄ -la) ² /(P ₂₄ -la)+S	8		229.7			
9. Runoff volun	ne, V ₂₄ = 1000xQ ₂₄ A			54138.30	(m3)		
	Wo	orksheet 2	: Graphic	al Peak Flow Rat	e		

	MAVEN A	MAVEN ASSOCIATES		Job Number 211001		Sheet 1	Rev A
Job Title Calc Title	Warkwortl TP108 Calcul C	h South Plan C ation - Pre-Dev Catchment J	change velopment	Aut Y	hor W	Date 18/01/2023	Checked
1. Runoff Curve Num	ber (CN) and init	ial Abstractio	on (la)			_	
Soil name and classification C C	Cover desc	ription (cover hydrologic co Total Impe Total Perv	type, treatm ondition) rvious rious	nent, and	Curve Number CN* 98 74	Area (ha) 10000m2= 1ha 8.4586 275.4014	Product of CN x area 828.94 20379.70
* from Appendix B					Totals =	283.860	21208.65
$CN \text{ (weighted)} = \underbrace{\text{total product}}_{\text{total area}} \underbrace{21208.65}_{283.860} = \underbrace{74.7}_{74.7}$							
la (average) = 2. Time of Concentra	<u>5 x pervious ar</u> total area tion	<u>ea</u> =	<u> </u>	<u>5 x 275.4014</u> 4.9 mm 283.860			
Channelisation factor		C =	1	(From Table	4.2)		
Catchment length		L =	3.056	km (along d	rainage path)	
Catchment Slope		Sc=	0.009	m/m (by equ	ial area meth	iod)	
Runoff factor,	CN 200 - CN	= 200-	74.7 74.7	=	0.60		
$t_c = 0.14 \text{ C L}^{0.66} \text{ (CN/20)}$	00-CN) ^{-0.55} Sc ^{-0.30}						
= 0.1	14 1	2.09	1.33	4.11	=	1.60	hrs
SCS Lag for HEC-HMS	3	$t_{\rm p}$ = 2/3 $t_{\rm c}$			=	1.07	hrs
						OK use 1.5978127	hrs
	Worksheet 1	: Runoff Para	meters and	d Time of Co	ncentration		

	MAVEN ASSOCIATES		Job Numb 211001	ber	Sheet 2	Rev A	
Job Title Calc Title	Warkworth South F TP108 Calculation - Pr Catchmer	Plan Chang re-Develop nt J	ge ment	Author YW		Date 18/01/2023	Checked 0
1. Data Catchment A	rea	A=	2.8386	km2(100ha =1km	12)		
Runoff curve	number	CN=	74.7	(from worksheet 1)		
Initial abstrac	tion	la=	4.9	mm (from workshe	eet 1)		
Time of conc	entration	tc=	1.60	hrs (from workshe	et 1)		
2. Calculate sto	rage, S =(1000/CN - 10)2	5.4		=	86.0	mm	
3. Average recu	irrence interval, ARI			100	(yr)		
4. 24 hour rainfa	all depth, P24			281	(mm)		
5. Compute c* =	= P24 - 2Ia/P24 - 2Ia+2S			0.61			
6. Specific peak	t flow rate q*			0.055			
7. Peak flow rat	e, q _p =q*A*P ₂₄			43.871	m3/s		
8. Runoff depth	, Q ₂₄ = (P ₂₄ -Ia) ² /(P ₂₄ -Ia)+S	;		210.6			
9. Runoff volum	ie, V ₂₄ = 1000xQ ₂₄ A			597798.05	(m3)		
	Wo	rksheet 2	: Graphic	al Peak Flow Rat	e		
	MAVEN ASSOCI.	ATES	Job N 211	umber 001	Sheet 1	Rev A	
---	--	--	------------------------------------	--	---	----------	
Job Title Calc Title	Warkworth South Plan TP108 Calculation - Pre-D Catchment K	n Change Jevelopment	Au Y	thor W	Date 18/01/2023	Checked	
1. Runoff Curve Num	ber (CN) and initial Abstrac	ction (la)					
Soil name and classification C C	Cover description (cover hydrologic Total Imp Total Pe	er type, treatr condition) pervious ervious	Curve Number CN* 98 74	Area (ha) 10000m2= 1ha 45.2715 26.8785	Product of CN x area 4436.61 1989.01		
* from Appendix B				Totals =	72.150	6425.62	
CN (weighted) =	total product = total area	<u>6425.62</u> 72.150	=	89.1	-		
la (average) = 2. Time of Concentra	<u>5 x pervious area</u> = total area tion	<u> </u>	26.8785 2.150	. 1.9	mm		
Channelisation factor	C =	1	(From Table	: 4.2)			
Catchment length	L =	1.665	km (along d	rainage path)		
Catchment Slope	Sc=	0.029	m/m (by equ	ial area meth	iod)		
Runoff factor,	<u>CN =</u> 200 - CN 20	89.1 00- 89.1	=	0.80			
t _c = 0.14 C L ^{0.66} (CN/2	00-CN) ^{-0.55} Sc ^{-0.30}						
= 0.1	14 1 1.	40 1.13	2.89	=	0.64	hrs	
SCS Lag for HEC-HMS $t_p = 2/3 t_c$				=	0.43	hrs	
					OK use 0.6397632	hrs	
	Worksheet 1: Runoff Pa	arameters an	d Time of C	oncentratio	า		

	MAVEN ASS(JCIA [−]	ΓES	Job Numt 211001	ber	Sheet 2	Rev A
Job Title Calc Title	Warkworth South F TP108 Calculation - Pr Catchmer	Plan Chang re-Develop at K	ge oment	Author YW		Date 18/01/2023	Checked 0
1. Data		•	0 7045	here 0/ 400h a - 41ma			
Catchment A	rea	A=	0.7215	km2(100na =1km	12)		
Runoff curve	number	CN=	89.1	(from worksheet 1)		
Initial abstrac	tion	la=	1.9	mm (from workshe	eet 1)		
Time of conc	entration	tc=	0.64	hrs (from workshe	et 1)		
2. Calculate sto	rage, S =(1000/CN - 10)2	5.4		=	31.2	mm	_
3. Average recu	irrence interval, ARI			100	(yr)		
4. 24 hour rainfa	all depth, P24			281	(mm)		
5. Compute c* =	= P24 - 2Ia/P24 - 2Ia+2S			0.82			
6. Specific peak	flow rate q*			0.100			
7. Peak flow rat	e, q _p =q*A*P ₂₄			20.274	m3/s		
8. Runoff depth	, Q ₂₄ = (P ₂₄ -Ia) ² /(P ₂₄ -Ia)+S	;		251.1			
9. Runoff volum	e, V ₂₄ = 1000xQ ₂₄ A			181147.71	(m3)		
	Wo	rksheet 2	: Graphic	al Peak Flow Rate	e		

	MAVEN ASSOC	CIATES	Job N 211	umber 001	Sheet 1	Rev A
Job Title Calc Title	Warkworth South P TP108 Calculation - Pre Catchment	an Change -Development L	Aut Y	thor W	Date 18/01/2023	Checked
1. Runoff Curve Num	ber (CN) and initial Abstr	action (la)				
Soil name and classification C C	Cover description (co hydrolog Total I Total	over type, treatn ic condition) mpervious Pervious	Curve Number CN* 98 74	Area (ha) 10000m2= 1ha 0.2200 21.5700	Product of CN x area 21.56 1596.18	
* from Appendix B				Totals =	21.790	1617.74
CN (weighted) =	total product = total area	<u>1617.74</u> 21.790	=	74.2		
la (average) = 2. Time of Concentra	<u>5 x pervious area</u> = total area t tion	<u>5 x</u> 21	21.5700 .790	4.9	mm	
Channelisation factor	C =	1	(From Table	4.2)		
Catchment length	L =	1.076	km (along di	rainage path)	
Catchment Slope	Sc=	0.071	m/m (by equ	ial area meth	iod)	
Runoff factor,	<u>CN</u> = 200 - CN	74.2 200- 74.2	=	0.59		
t _c = 0.14 C L ^{0.66} (CN/2	00-CN) ^{-0.55} Sc ^{-0.30}					
= 0.	14 1	1.05 1.34	2.21	=	0.43	hrs
SCS Lag for HEC-HMS $t_p = 2/3 t_c$		c		=	0.29	hrs
					OK use 0.4341425	hrs
	Worksheet 1: Runoff	Parameters an	d Time of C	oncentration	۱ <u> </u>	

	MAVEN ASS	OCIATES	Job Number 211001		Sheet 1	Rev A		
Job Title Calc Title	Warkworth Son TP108 Calculation Catch	uth Plan Change - Pre-Development ment M	Aut Y	Author YW		Checked		
1. Runoff Curve Num	ber (CN) and initial A	bstraction (la)						
Soil name and classification C C	Cover description	on (cover type, treatm rologic condition) otal Impervious Fotal Pervious	nent, and	Curve Number CN* 98 74	Area (ha) 10000m2= 1ha 67.7100 59.8900	Product of CN x area 6635.58 4431.86		
* from Appendix B				Totals =	127.600	11067.44		
$CN \text{ (weighted)} = \underbrace{ \text{total product} =}_{\text{total area}} \underbrace{ 11067.44}_{127.600} = \underbrace{ 86.7}_{127.600}$								
la (average) = 2. Time of Concentra	<u>5 x pervious area</u> = total area t ion	<u>5 x</u> 127	5 x 59.8900 2.3 mm 127.600					
Channelisation factor	C =	1	(From Table	4.2)				
Catchment length	L =	2.412	km (along d	xm (along drainage path)				
Catchment Slope	Sc=	0.022	m/m (by equ	ial area meth	nod)			
Runoff factor,	<u>CN</u> = 200 - CN	86.7 200- 86.7	.=	0.77	-			
$t_c = 0.14 \text{ C L}^{0.66} \text{ (CN/20)}$	00-CN) ^{-0.55} Sc ^{-0.30}							
= 0.1	4 1	1.79 1.16	3.14	=	0.91	hrs		
SCS Lag for HEC-HMS $t_p = 2/3 t_c$		2/3 t _c		=	0.61	hrs		
					OK use 0.9109907	hrs		
	Worksheet 1: Ru	noff Parameters and	d Time of Co	ncentration	I			

	MAVEN ASS	OCIAT	ES	Job Numl 211001	ber	Sheet 2	Rev A
Job Title Calc Title	Warkworth South TP108 Calculation - P Catchmer	Plan Chang re-Developi nt M	le ment	Author YW	,	Date 18/01/2023	Checked 0
1. Data Catchment A	rea	A=	1.276	km2(100ha =1km	12)		
Runoff curve	number	CN=	86.7	(from worksheet 1)		
Initial abstrac	otion	la=	2.3	mm (from worksh	eet 1)		
Time of conc	entration	tc=	0.91	hrs (from workshe	et 1)		
2. Calculate sto	rage, S =(1000/CN - 10)2	5.4		=	38.8	mm	
3. Average recu	irrence interval, ARI			100	(yr)		
4. 24 hour rainfa	all depth, P24			281	(mm)		
5. Compute c* =	= P24 - 2Ia/P24 - 2Ia+2S			0.78			
6. Specific peak	t flow rate q*			0.082			
7. Peak flow rat	e, q _p =q*A*P ₂₄			29.402	m3/s		
8. Runoff depth	, Q ₂₄ = (P ₂₄ -la) ² /(P ₂₄ -la)+S	3		244.6			
9. Runoff volum	ne, V ₂₄ = 1000xQ ₂₄ A			312059.96	(m3)		
	We	rksheet ?	Granhic	al Peak Flow Pat	٩		

	MAVEN ASSOCIA ⁻	TES	Job N 211	umber 001	Sheet 1	Rev A
Job Title Calc Title	Warkworth South Plan Cl TP108 Calculation - Pre-Deve Catchment N	hange elopment	Aut Y	thor W	Date 18/01/2023	Checked
1. Runoff Curve Num	ber (CN) and initial Abstractio	on (la)				
Soil name and classification C C	Cover description (cover t hydrologic co Total Imper Total Pervi	ype, treatn ndition) vious ious	nent, and	Curve Number CN* 98 74	Area (ha) 10000m2= 1ha 23.6020 25.5680	Product of CN x area 2313.00 1892.03
* from Appendix B				Totals =	49.170	4205.03
CN (weighted) =	total product = total area	4205.03 49.170	=	85.5	-	
la (average) = 2. Time of Concentra	<u>5 x pervious area</u> = total area t ion	<u> </u>	<u>25.5680</u> .170	2.6	mm	
Channelisation factor	C =	1	(From Table	4.2)		
Catchment length	L =	1.471	km (along di	rainage path)	
Catchment Slope	Sc=	0.004	m/m (by equ	ial area meth	nod)	
Runoff factor,	<u>CN</u> = 200 - CN 200-	85.5 85.5	=	0.75	-	
t _c = 0.14 C L ^{0.66} (CN/2	00-CN) ^{-0.55} Sc ^{-0.30}					
= 0.	14 1 1.29	1.17	5.24	=	1.11	hrs
SCS Lag for HEC-HMS $t_p = 2/3 t_c$				=	0.74	hrs
					OK use 1.1112135	hrs
	Worksheet 1: Runoff Para	meters an	d Time of C	oncentratio	n	

	MAVEN ASSOCIATES			Job Numl 211001	ber	Sheet 2	Rev A
Job Title Calc Title	Warkworth South I TP108 Calculation - Pr Catchmer	Plan Chang re-Develop nt N	ge oment	Author YW	,	Date 18/01/2023	Checked 0
1. Data Catchment A	Area	A=	0.4917	km2(100ha =1km	12)		
Runoff curve	enumber	CN=	85.5	(from worksheet 1)		
Initial abstrac	ction	la=	2.6	mm (from worksh	eet 1)		
Time of cond	centration	tc=	1.11	hrs (from workshe	et 1)		
2. Calculate sto	orage, S =(1000/CN - 10)2	5.4		=	43.0	mm	
3. Average rec	urrence interval, ARI			100	(yr)		
4. 24 nour raini	= P24 - 2la/P24 - 2la+2S			0.76	(mm)		
6. Specific peal	k flow rate q*			0.078			
7. Peak flow ra	te, q _p =q*A*P ₂₄			10.777	m3/s		
8. Runoff depth	n, Q ₂₄ = (P ₂₄ -la) ² /(P ₂₄ -la)+S	6		241.1			
9. Runoff volun	ne, V ₂₄ = 1000xQ ₂₄ A			118572.76	(m3)		
	Wo	orksheet 2	: Graphic	al Peak Flow Rat	e		

	MAVEN ASS	OCIATES	Job Number 211001		Sheet 1	Rev A	
Job Title Calc Title	Warkworth So TP108 Calculation Catchr	uth Plan Change n - Pre-Development nent Rain	Aut Y	thor W	Date 18/01/2023	Checked	
1. Runoff Curve Num	ber (CN) and initial A	Abstraction (Ia)			-		
Soil name and classification C C	Cover descripti	on (cover type, treatm drologic condition) Fotal Impervious Total Pervious	nent, and	Curve Number CN* 98 74	Area (ha) 10000m2= 1ha 16.4233 468.9067	Product of CN x area 1609.48 34699.10	
* from Appendix B				Totals =	485.330	36308.58	
$CN \text{ (weighted)} = \underbrace{\text{total product}}_{\text{total area}} \underbrace{36308.58}_{485.330} = \underbrace{74.8}_{74.8}$							
la (average) = 2. Time of Concentrat	<u>5 x pervious area</u> = total area t ion	= <u>5 x</u> 485	<u>5 x 468.9067</u> 4.8 mm 485.330				
Channelisation factor	C =	1	(From Table	: 4.2)			
Catchment length	L =	4.054	km (along d	rainage path)		
Catchment Slope	Sc=	0.008	_m/m (by equ	ial area metł	nod)		
Runoff factor,	<u>CN</u> = 200 - CN	74.8 200- 74.8	-	0.60	-		
$t_c = 0.14 \text{ C L}^{0.66} \text{ (CN/20)}$	00-CN) ^{-0.55} Sc ^{-0.30}						
= 0.1	4 1	2.52 1.33	4.26	=	1.99	hrs	
SCS Lag for HEC-HMS $t_p = 2/3 t_c$		2/3 t _c		=	1.33	hrs	
					OK use 1.9924106	hrs	
	Worksheet 1: Ru	inoff Parameters and	d Time of Co	ncentration	I		

	MAVEN ASSOCIATES			Job Numl 211001	ber	Sheet 2	Rev A
Job Title Calc Title	Warkworth South TP108 Calculation - P Catchment	Plan Chang re-Develop Rain	ge oment	Author YW		Date 18/01/2023	Checked 0
1. Data Catchment A	rea	A=	4.8533	km2(100ha =1km	12)		
Runoff curve	number	CN=	74.8	(from worksheet 1)		
Initial abstrac	tion	la=	4.8	mm (from worksh	eet 1)		
Time of conc	entration	tc=	1.99	hrs (from workshe	et 1)		
2. Calculate sto	rage, S =(1000/CN - 10)2	5.4		=	85.5	mm	
3. Average recu	ırrence interval, ARI			100	(yr)		
4. 24 hour rainfa	all depth, P24			281	(mm)		
5. Compute c* =	= P24 - 2Ia/P24 - 2Ia+2S			0.61			
 Specific peak Peak flow rate 	t flow rate q^*			68 189	m3/s		
8. Runoff depth	, Q ₂₄ = (P ₂₄ -la) ² /(P ₂₄ -la)+S	6		210.9			
9. Runoff volum	e, V ₂₄ = 1000xQ ₂₄ A			1023424.02	(m3)		
	Wo	orksheet 2	: Graphic	al Peak Flow Rat	e		

	MAVEN ASSOCIA	MAVEN ASSOCIATES			Sheet 1	Rev A		
Job Title Calc Title	2 - 4 Ronald Road, Gree TP108 Calculation - Post De Catchment Rain	nhithe velopment	Aut Y	Author YW		Checked		
1. Runoff Curve Numb	per (CN) and initial Abstractio	on (la)						
Soil name and classification C C	Cover description (cover hydrologic co Total Impe Total Perv	Cover description (cover type, treatment, a hydrologic condition) Total Impervious Total Pervious				Product of CN x area 25652.07 16544.49		
* from Appendix B				Totals =	485.330	42196.56		
CN (weighted) = $\frac{\text{total product =}}{\text{total area}} = \frac{42196.56}{485.330} = \frac{86.9}{485.330}$								
la (average) = 2. Time of Concentrati	<u>5 x pervious area</u> = total area ion	<u> </u>	223.5742 .330	. 2.3	mm			
Channelisation factor	C =	1 (From Table 4.2)						
Catchment length	L =	4.054 km (along drainage path)						
Catchment Slope	Sc=	0.008	m/m (by equ	ial area meth	nod)			
Runoff factor,	<u>CN</u> = 200 - CN 200-	86.9 86.9	=	0.77				
t _c = 0.14 C L ^{0.66} (CN/20	0-CN) ^{-0.55} Sc ^{-0.30}							
= 0.14	4 1 2.52	1.16	4.26	=	1.73	hrs		
SCS Lag for HEC-HMS	$t_{\rm p} = 2/3 t_{\rm c}$			=	1.16	hrs		
					OK use 1.734338	hrs		
	Worksheet 1: Runoff Para	ameters and	I Time of Co	ncentration				

	MAVEN ASSOCIATES			Job Numl 211001	ber	Sheet 2	Rev A
Job Title Calc Title	2 - 4 Ronald Road, TP108 Calculation - Po Catchment	Greenhitl st Develo Rain	he pment	Author YW		Date 18/01/2023	Checked
1. Data			4 0 5 0 0		0)		
Catchment A	rea	A=	4.8533	km2(100ha =1km	12)		
Runoff curve	number	CN=	86.9	(from worksheet 1)		
Initial abstrac	tion	la=	2.3	mm (from worksho	eet 1)		
Time of conce	entration	tc=	1.73	hrs (from workshe	et 1)		
2. Calculate sto	rage, S =(1000/CN - 10)2	5.4		=	38.1	mm	
 Average recu 24 hour rainfa Compute c* = 	rrrence interval, ARI all depth, P24				(yr) (mm)		
 6. Specific peak 	flow rate q*			0.059			
7. Peak flow rate	e, q _p =q*A*P ₂₄			80.463	m3/s		
8. Runoff depth	, Q ₂₄ = (P ₂₄ -la) ² /(P ₂₄ -la)+S	6		245.1			
9. Runoff volum	e, V ₂₄ = 1000xQ ₂₄ A			1189769.15	(m3)		

MAEN	MAVEN A	AVEN ASSOCIATES				Job Number 211001			Rev A	
Job Title Calc Title	Warkwort Rea Time	h South Ich CD to of Conce	Plan Cha ABE entration	nge	Author YW		Date 18/01/2023	Checked		
2. Time of Concentration										
Channelisation factor		C =	_	1	(From Ta	ible 4.2)				
Catchment length		L =	_	2.6	km (alon	g drainage p	oath)			
Catchment Slope		Sc=0.0015 m/m (by equal area method)								
Runoff factor,	<u>CN</u> 200 - CN	=	200-	74.0 74.0	=	(0.59			
t _c = 0.14 C L ^{0.66} (CN/20	00-CN) ^{-0.55} Sc ^{-0.3}	0								
= 0.7	14	1	1.88	1.34	7.	03	=_	2.48	hrs	
SCS Lag for HEC-HM	S	t _p = 2/3	3 t _c				=_	1.66	hrs	
								OK use 2.4791878	hrs	
	Worksheet 1	: Runof	f Parame	eters ar	id Time c	of Concentr	ratior	ı		

	AVEN A	SSO	CIAT	ES	Jol	0 Number 211001	Sheet 1	Rev A		
Job Title Calc Title	Warkworth Reach AB Time o	n South F E to Sch of Conce	Plan Cha neme Inf	inge Iow		Author YW	Date 18/01/2023	Checked		
2. Time of Concentration										
Channelisation factor		C =	-	1	(From Ta	ble 4.2)				
Catchment length		L =	-	1.187	km (along	ı drainage path	ı)			
Catchment Slope	Sc= 0.01 m/m (by equal area method)									
Runoff factor,	CN 200 - CN	=	200-	74.0 74.0	=	0.59	<u>)</u>			
t _c = 0.14 C L ^{0.66} (CN/200-	$t_c = 0.14 \text{ C L}^{0.66} (CN/200-CN)^{-0.55} \text{ Sc}^{-0.30}$									
= 0.14	1		1.12	1.34	3.	98 =	0.84	hrs		
SCS Lag for HEC-HMS		t _p = 2/3	8 t _c			=	0.56	hrs		
							OK use 0.8363573	hrs		
Worksheet 1: Runoff Parameters and Time of Concentration										

MAEN	MAVEN A	Job Number 211001			Sheet 1	Rev A					
Job Title Calc Title	Warkwort Reach Scher Time	Author YW			Date 18/01/2023	Checked					
2. Time of Concentra	2. Time of Concentration										
Channelisation factor		C =	-	1	(From Ta	able 4.2)					
Catchment length		L =	-	2.986	km (alon	g drainage	path)				
Catchment Slope		Sc=	-	0.004	m/m (by	equal area	metho	od)			
Runoff factor,	<u>CN</u> 200 - CN	=	200-	74.0 74.0	=		0.59				
t _c = 0.14 C L ^{0.66} (CN/2	$t_c = 0.14 \text{ C L}^{0.66} (\text{CN}/200\text{-CN})^{-0.55} \text{ Sc}^{-0.30}$										
= 0.1	14	1	2.06	1.34	5	.24	=_	2.02	hrs		
SCS Lag for HEC-HM	S	t _p = 2/	3 t _c				=_	1.36	hrs		
								OK use 2.0239308	hrs		
Worksheet 1: Runoff Parameters and Time of Concentration											

MAEN	MAVEN ASSOCIATES					lob Number 211001		Sheet 1	Rev A		
Job Title Calc Title	Warkwort Reach Scher Time	Author YW			Date 18/01/2023	Checked					
2. Time of Concentra	2. Time of Concentration										
Channelisation factor		C =	-	1	(From 1	Table 4.2)					
Catchment length		L =	-	4.848	km (alo	ng drainage	path)				
Catchment Slope		Sc= 0.01 m/m (by equal area method)									
Runoff factor,	CN 200 - CN	=	200-	74.0 74.0	=		0.59				
t _c = 0.14 C L ^{0.66} (CN/2	$t_c = 0.14 \text{ C L}^{0.66} (CN/200-CN)^{-0.55} \text{ Sc}^{-0.30}$										
= 0.1	14	1	2.83	1.34		3.98	=	2.12	hrs		
SCS Lag for HEC-HM	S	t _p = 2	/3 t _c				=	1.42	hrs		
								OK use 2.1170237	hrs		
Worksheet 1: Runoff Parameters and Time of Concentration											

	MAVEN A	SSO		ΞS	Job 2 [.]	Number 11001	Sheet 1	Rev A			
Job Title Calc Title	Warkwort Reach Time	Warkworth South Plan Change Reach Scheme out to IJ Time of Concentration				uthor YW	Date 18/01/2023	Checked			
2. Time of Concentra	2. Time of Concentration										
Channelisation factor		C =	_	1	(From Tab	le 4.2)					
Catchment length		L =	_	0.926	km (along	drainage path)				
Catchment Slope		Sc=		0.0011	m/m (by e	qual area metl	nod)				
Runoff factor,	CN 200 - CN	=	200-	74.0 74.0	=	0.59	-				
t _c = 0.14 C L ^{0.66} (CN/20	$t_c = 0.14 \text{ C L}^{0.66} (CN/200-CN)^{-0.55} \text{ Sc}^{-0.30}$										
= 0.1	4	1	0.95	1.34	7.7	6 =	1.38	hrs			
SCS Lag for HEC-HMS	S	t _p = 2/3	8 t _c			=	0.93	hrs			
							OK use 1.3842067	hrs			
Worksheet 1: Runoff Parameters and Time of Concentration											

	MAVEN A	SSO		ΞS	Job 2	Number 11001	Sheet 1	Rev A			
Job Title Calc Title	Warkwort Rea Time	h South I Ich IJ TC of Conce	Plan Cha D KLM Intration	nge	A	uthor YW	Date 18/01/2023	Checked			
2. Time of Concentrat	2. Time of Concentration										
Channelisation factor		C =	_	1	(From Tab	ble 4.2)					
Catchment length		L = <u>1.283</u> km (along drainage path)									
Catchment Slope		Sc=		0.0062	m/m (by e	qual area meti	hod)				
Runoff factor,	CN 200 - CN	=	200-	74.0 74.0	=	0.59	<u>-</u>				
t _c = 0.14 C L ^{0.66} (CN/20	$t_c = 0.14 \text{ C L}^{0.66} (CN/200-CN)^{-0.55} \text{ Sc}^{-0.30}$										
= 0.1	4	1	1.18	1.34	4.5	9 =	1.01	hrs			
SCS Lag for HEC-HMS	S	t _p = 2/3	B t _c			=	0.68	hrs			
							OK use 1.0144368	hrs			
Worksheet 1: Runoff Parameters and Time of Concentration											

	MAVENA	.sso	CIATI	ΞS	Job 2	Number 11001	Sheet 1	Rev A			
Job Title Calc Title	Warkwort Re Time	h South each IJ ⊺ of Conc	Plan Cha ГО KL entration	nge	A	uthor YW	Date 18/01/2023	Checked			
2. Time of Concentra	2. Time of Concentration										
Channelisation factor		C =	_	1	(From Tab	ble 4.2)					
Catchment length		L = <u>1.112</u> km (along drainage path)									
Catchment Slope		Sc= 0.0045 m/m (by equal area method)									
Runoff factor,	<u>CN</u> 200 - CN	=	200-	74.0 74.0	=	0.59	<u>-</u>				
t _c = 0.14 C L ^{0.66} (CN/20	$t_c = 0.14 \text{ C L}^{0.66} (CN/200-CN)^{-0.55} \text{ Sc}^{-0.30}$										
= 0.1	14	1	1.07	1.34	5.0	6 =	1.02	hrs			
SCS Lag for HEC-HMS	S	t _p = 2/	3 t _c			=	0.68	hrs			
							OK use 1.0181786	hrs			
Worksheet 1: Runoff Parameters and Time of Concentration											