

11 February 2022

PENCARROW ESTATE

1491 STATE HIGHWAY 2, PONGAKAWA

GEOTECHNICAL INVESTIGATION REPORT FOR PLAN CHANGE

Kevin and Andrea Marsh

TGA2021-0096AC Rev 0

TGA2021-0096AC							
Date	Revision	Comments					
3 February 2022	A	Initial draft for internal review					
11 February 2022	0	Final issue to support Plan Change Application					

	Name	Signature	Position
Prepared by	Lydia Lysaght	Lu	Project Engineering Geologist
Reviewed by	Rob Telford	Tellord	Associate Engineering Geologist Accredited Category 1 Geo- professional
Authorised by	Matt Packard	Milaehad	Principal Geotechnical Engineer CMEngNZ, CPEng (Geotechnical) Accredited Category 1 Geo- professional

TABLE OF CONTENTS

1	INTRODUCTION	1
2	SITE DESCRIPTION	1
	 2.1 Site Location 2.2 Landform 2.3 Historic Aerial Photographs 	1
3	PROPOSED DEVELOPMENT	2
4	INVESTIGATION SCOPE	2
5	GROUND MODEL	3
	 5.1 Published Geology 5.2 Stratigraphic Units 5.3 Groundwater 	4
6	GEOHAZARDS ASSESSMENT	4
	 6.1 Seismicity 6.2 Preliminary Liquefaction Assessment	5 5 6 6 6 7 7
7	GEOTECHNICAL RECOMMENDATIONS	8
	 7.1 Seismic Site Subsoil Category	8 9 9 9 9 9 9 9
8	FURTHER WORK	
9	Conclusion	.11
U	SE OF THIS REPORT	.12

Appendices

Appendix A: Drawings

- Appendix B: MPAD Development Plans
- Appendix C: Investigation Results
- Appendix D: Liquefaction Analyses
- Appendix E: Settlement Analyses
- Appendix F: Lateral Spread Analyses

1 INTRODUCTION

CMW Geosciences (CMW) was engaged by Kevin and Andrea Marsh to carry out a geotechnical investigation of a rural site located at 1491 State Highway 2, Pongakawa, which is being considered for a residential plan change.

The scope of work and associated terms and conditions of our engagement were detailed in our services proposal Ref. TGA2021-0096AB Rev 0, dated 3 November 2021. The purpose of this report is to describe the investigation completed, the ground conditions encountered and to provide recommendations with respect to geotechnical considerations for the proposed plan change.

This report may be used as one of the documents to support a plan change application to Western Bay of Plenty District Council (WBoPDC).

2 SITE DESCRIPTION

2.1 Site Location

The site comprises an area of approximately 8.8ha and is located at 1491 State Highway 2 as shown on Figure 1 below.

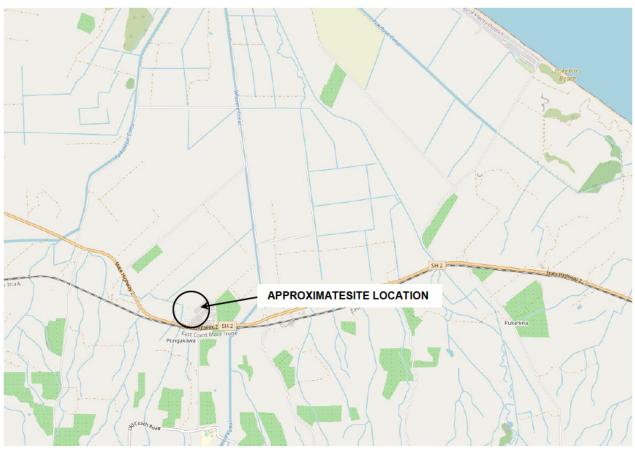


Figure 1: Site Location Plan (openstreetmaps.org)

2.2 Landform

The current general landform, together with associated features located within and adjacent to the site is presented on the attached Geotechnical Investigation Plan as *Drawing 01*.

The majority of the site is essentially near level and occupies a broad plateau with existing ground levels ranging from RL 6m to 8m (Moturiki Datum). Several shallow swales bisect the plateau in the south, centre

and north-eastern areas. Immediately to the north, the site grades gently down to level, low lying topography at RL 3m.

The site is occupied by farmland, with a small dwelling and ancillary sheds in the south. It is bound to the north, west and south by rural properties and farm buildings, and to the east by residential properties and Arawa Road. A small pond is present in the far west.

2.3 Historic Aerial Photographs

Historical aerial photographs¹ show:

- 1943: The site was in grazed pasture, with small farm sheds in the west. Localised depressions (swales) are evident in the south, central and north-eastern areas of the site;
- 1961: The site remained in grazed pasture, with several hedgerows and a central accessway present;
- 2003: The majority of the hedgerows had been removed. The small pond in the west of the site was evident. Residential dwellings along Arawa Road, immediately to the east had been constructed;
- 2007: A cropped area was present in the west of the site, adjacent to the small pond and farm building. The dwelling was present in the central/southern area;

Little change was noted from 2007 until the present day.

No signs of significant earthworks were noted in our review. Minor earthworks in the west of the site are likely to have occurred as a result of cropping and pond construction.

3 PROPOSED DEVELOPMENT

At the time of undertaking this investigation and of writing this report the project was in the early planning stages and a scheme plan had not been supplied. However, it is understood that the site is being considered for a plan change application, to rezone the land from its existing 'rural' status to 'residential'.

Due to the level nature of the site, minor levelling earthworks are anticipated to form building areas and associated roads and infrastructure.

Localised peat undercuts within the swales or low-lying parts of the site may also be undertaken.

Based on discussion with the project planners, Momentum Planning and Design Ltd (MPAD), it is understood that the strip of land immediately to the north of the site (as depicted on *Drawing 01*) is being considered as a future wastewater disposal zone.

The stormwater disposal method(s) for a future residential development at this site is currently unknown.

4 INVESTIGATION SCOPE

Following a dial before you dig search, and onsite service location, the field investigation was carried out between 17th and 18th February 2022. All fieldwork was carried out under the direction of CMW Geosciences in general accordance with the NZGS specifications² and logged in accordance with NZGS guidance³.

The scope of fieldwork completed was as follows:

• An engineering geologist undertook a walkover survey of the site to assess the general landform, site conditions and adjacent structures / infrastructure;

¹ Retrolens website, Sourced from http://retrolens.nz and licensed by LINZ CC-BY 3.0

² NZ Geotechnical Society (2017) NZ Ground Investigation Specification, Volume 1 – Master Specification

³ NZ Geotechnical Society (2005), Field Description of Soil and Rock, Guideline for the field classification and description of soil and rock for engineering purposes.

- An on-site services search was carried out by a specialist contractor to identify the presence of any underground obstructions or hazards prior to the field investigation program commencing;
- Nine Cone Penetrometer Tests (CPTs) and two seismic CPTs (sCPTs) denoted CPT01 to CPT08, and CPT10 to sCPT12 were pushed to depths of up to 20m to define the ground model through the site and for use in liquefaction and static settlement analyses. Results of the CPT's, presented as traces of tip resistance (qc), sleeve friction (fs), dynamic pore pressure (u2) and friction ratio (Rf) are presented in *Appendix C*;
- Twenty test pits, denoted TP01 to TP20, were excavated using a 12-tonne hydraulic excavator to depths of between 2.2m and 4m below existing ground levels. Shear vane readings and dynamic cone penetrometer tests were taken at regular intervals to provide strength information. Engineering logs and photographs of the test pits are presented in *Appendix C.*

The approximate locations of the respective investigation sites referred to above are shown on the Geotechnical Investigation Plan (*Drawing 01*). Test locations were approximated using onsite features.

5 GROUND MODEL

5.1 Published Geology

The published geological map⁴ depicts the regional geology for the area as comprising Pleistocene alluvium consisting of variably degraded terraces dominated by pumiceous soils (Tauranga Group- IQa), as illustrated in Figure 2 below. To the north and west of the site, swamp deposits comprising dark brown to black peat, organic-rich mud, silt and sand (Tauranga Group- Q1a) are anticipated.

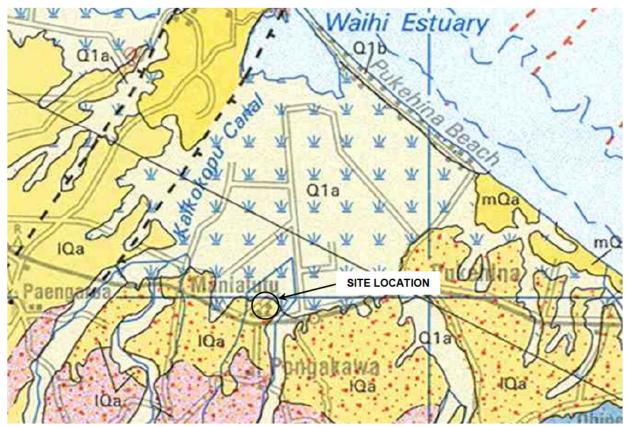


Figure 2: Regional Geology (Leonard and Begg 2010)

⁴ Leonard and Begg (2010). Geology of the Rotorua Area. GNS, Geological Map 5.

Based on the known history of the site and surrounding land levels, some superficial depths of fill could be anticipated as a result of soft landscaping.

5.2 Stratigraphic Units

The ground conditions encountered and inferred from the investigation were generally consistent with the published geology for the area and can be generalised according to the following subsurface sequences.

The distribution of the various units encountered is presented on the appended Geological Section on *Drawing 02* and summarised below.

Table 1: Summary of Strata Encountered									
Unit	Top of U	nit (mbgl)	Thickness (m)						
	Min	Мах	Min	Max					
Topsoil – Organic silt	Sur	0.4							
Peat* – Fibrous, soft to stiff	0.4	0.5	0.1	3.0					
Pleistocene Alluvium** – Interbedded stiff to very stiff silts and loose to medium dense sands	0.2	3.5	3.0	12.3					
Pleistocene Alluvium – Medium dense sands	6.5	12.5	3.0	7.0					
Pleistocene Alluvium – Dense to very dense sands	12.5	15.5	>10						
Notes: * Strata only encountered in the low lying far north of site ** Areas of loose sand were noted in the upper 1m at set			the site						

5.3 Groundwater

During the investigation, which was completed in summer conditions (January 2022), groundwater was encountered within the CPTs and test pits at depths ranging from 1.0m to 4.3m below ground level, which equates to a reduced level of approximately RL 2m to RL4m.

6 GEOHAZARDS ASSESSMENT

6.1 Seismicity

A seismic assessment has been carried out in general accordance with NZGS guidance⁵. The ultimate limit state (ULS) and serviceability limit state (SLS) peak ground accelerations (PGAs) were assessed based on a 50-year design life and Importance Level (IL) 2 buildings in accordance with the New Zealand Building Code.

The recommended PGA values for geotechnical assessment at this site are presented in *Table 2* below. Structural designers working on this site should assess seismic parameters in accordance with NZS1170:2004 and using the recommended Site Subsoil Class presented in Section 7.1 below.

Table 2: Design Peak Ground Acceleration (PGA) for Various Limit States									
Limit State	AEP	R	PGA(g) ¹	Magnitude _{eff}					
SLS	1/25	0.25	0.08	6.0					

⁵ NZ Geotechnical Society publication "Earthquake geotechnical engineering practice, Module 1: Overview of the standards", (November 2021)

Table 2: Design Peak Ground Acceleration (PGA) for Various Limit States									
Limit State AEP R PGA(g) ¹ Magnitu									
ULS	1/500	1.0	0.32	6.0					
Note: R = return period factor; AEP = annual exceedance probability ¹ As per Appendix A1 of NZGS Module 1									

6.2 Preliminary Liquefaction Assessment

6.2.1 General

Soil liquefaction is a process where typically saturated, granular soils develop excess pore water pressures during cyclic (earthquake) loading. Following the onset of liguefaction, the shear strength and stiffness of the liquefied soil is effectively lost causing excessive differential settlement of the ground surface, bearing capacity failure and collapse of structures and low-angle lateral spreading of slopes in liquefiable soils.

In accordance with NZGS guidance⁶ the liquefaction susceptibility of the soils at the site has been considered with respect to geological age, soil fabric and soil consistency / density as follows:

- The peat soils are of Holocene geological age, and the silt/sand alluvial deposits are of Pleistocene geological age. Therefore, in terms of geological age, the soils are the site may be susceptible to liquefaction;
- Soils below the water table are predominantly sandy, and therefore are considered susceptible to liquefaction where saturated; and
- Sandy soils below the water table are generally medium dense to dense, and therefore in terms of soil density, may be susceptible to liquefaction.

Based on this, preliminary specific liquefaction analyses were undertaken as detailed below.

6.2.2 Specific Analyses

Liguefaction analyses were undertaken using the software package CLig by comparing the cyclic stress ratio (CSR) to the cyclic resistance ratio (CRR) from the conventional CPT.

Calculations were carried out to consider the potential for liquefaction across the full depth of the CPT tests (i.e. 20m). Additional calculations were also undertaken to assess the effects of liquefaction within the upper 10m of the soil profile only to allow the results to be classified in accordance with the estimated 'index settlements' as per MBIE guidance⁵.

Due to the geological age of the underlying deposits we assessed the potential for aging effects and reduced liquefaction susceptibility in accordance with Robertson⁷. The calculations followed the method proposed by Havati and Andrus⁸, which compares the ratio of measured to estimated shear wave velocities within effected soils as derived from seismic sCPTs. The calculations indicate that the soils beneath this site are not affected by significant soil aging and the effects of aging where therefore discounted in the liquefaction analyses.

The results of the liquefaction assessment are summarised in **Table 3**, below and are presented in terms of the ULS 'index' settlements and the depth at which significant liquefaction occurs as this defines the thickness of the crust of non-liquefiable soils below the site Outputs of the calculations are given in Appendix D.

⁶MBIE, Canterbury Residential Technical Guidance, Part D: Guidelines for the geotechnical investigation and assessment of ³ P. K. Robertson (2015). Comparing CPT and Vs Liquefaction Triggering Methods, Journal of Geotechnical and Geoenvironmental

Engineering, May 2015 ⁸ Hayati, H., and Andrus, R. D. (2009). "Updated liquefaction resistance correction factors for aged sands." J. Geotech. Geoenviron.

Eng., 10.1061/(ASCE)GT.1943-5606.0000118, 1683-1692.

CPT No.	SLS Settlement (mm)	ULS Index Settlement (mm)	ULS Liquefiable Layers (mbgl ²)	ULS Crust Thickness (m)		
01		110	4.0 – 9.5 ¹	4.0 ¹		
02		85	4.0 – 5.5, 6.5 – 10 ¹	4.0 ¹		
03		110	3.5 – 10 ¹	3.5 ¹		
04		90	5.0 – 10	5.0		
05	-10	45	7.0 – 10	7.0		
06	<10	100	3.5 – 5, 6 – 9.5 ¹	3.5 ¹		
07		110	4.0 – 10	4.0		
08		60	4.5 – 6.5, 8.5 – 10	4.5		
10		60	4.5 – 101	4.5 ¹		
11		100 4.5 – 10				
12		<10	N/A	N/A		

3. N/A = not applicable due to there being no ULS liquefiable layers

Liquefaction mitigation recommendations are discussed in Section 7.2.

6.3 Slope Stability

6.3.1 General

The site is near level to gently graded with no significant slopes or escarpments. The risk of slope movement under static (i.e. non-earthquake) conditions is therefore assessed as 'low' and specific static slope stability analyses have not been undertaken.

6.3.2 Lateral Spread Assessment

Following the onset of liquefaction, the liquefied soils behave as a very weak undrained material, which can give rise to lateral spreading where a free face is present within the vicinity of the site or where slopes are present over or within liquefied soils. To the north of the site, a gently graded, 2m high slope is present where the subject site slopes down towards the near level peat area in the north. Due to the presence of potentially liquefiable soils and low strength peat in this area, lateral spread analyses were undertaken for this slope.

Seismic stability analyses were undertaken for Geological Section A (**Drawing 02**). A liquefied soil strength ratio of 0.1 was applied to the upper interbedded silts/sands of the Pleistocene Alluvium. Liquefied strengths were not applied to the deeper, dense sand of the Pleistocene Alluvium or to soils above the groundwater table as calculations indicated that these are unlikely to liquefy in the SLS or ULS earthquakes.

The calculations considered to stability cases:

- 1. The stability of the slope assuming liquefied soil conditions under peak (ULS) ground acceleration to assess lateral spreading risk; and
- 2. The stability of the slope with liquefied soil parameters and zero ground acceleration to assess the risk of post-earthquake failure (termed 'flow failure').

Outputs from the stability models are presented in *Appendix F*. The calculations indicate that the slope is unlikely to be affected by lateral spreading in an SLS event but may have a low factor of safety (i.e. < 1.0)

against lateral spreading in a ULS earthquake. Further analyses using the empirical methods by Bray & Travasarou (2007) and Jibson (2007) indicate that horizontal displacements along the affected slope would be less than approximately 100mm. Displacements of this magnitude would classify the land adjacent to the northern slope as Technical Category 2 (TC2) as defined by the MBIE guidelines for assessing liquefaction risk developed filling the Canterbury earthquakes⁹.

The calculations to assess flow failure risk indicate that the northern slope has a factor of safety >1.0 in these conditions and the slope is therefore unlikely to be affected by post-earthquake flow failure.

6.4 Load Induced Settlement

6.4.1 General

Г

Load-induced settlements occur in soils that are subject to static loading (e.g. by placing fill and/or building loads) where the magnitude of settlement is governed by the soil stiffness and the applied pressure.

Preliminary analyses have been undertaken to assess the likely magnitudes of settlement on account of future residential building loads. As the magnitude of earthworks is currently unknown, any potential future fill induced settlements have not been assessed.

6.4.2 Preliminary Settlement Analyses for Residential Buildings

Analyses have been undertaken to quantify the predicted settlements on account of future building loads, using the geotechnical software package CPeT-IT. This program calculates the change in vertical stress due to the loading according to Boussinesq, with a 1-D constrained soil modulus parameter estimated from CPT data.

Table	e 4: Preliminary Static Settlement Ma	gnitudes for Anticipated F	loor Loads		
CPT No.	Widespread Load (kPa) – To represent a single level dwelling	Peat present? (Y/N)	Primary Settlement (mm)		
01		Y	60		
02		Y	40		
03		Y	80		
04		Transition	35		
05		Ν	12		
06	10	Y	10		
07		Ν	20		
08		Ν	15		
10		Y	25		
11		Ν	10		
12		Ν	22		

The results of our analyses are presented in Table 4, below.

⁹ MBIE, 'Canterbury Residential Technical Guidance – Part D: Subdivisions', December 2012.

The results of the preliminary settlement analyses suggest that areas of the site which are underlain by peat soils are likely to experience load induced settlements in excess of the NZ Building Code limits of 1 in 240 (approximately 25mm over a 6-metre length of building).

Additionally, the peat soils are likely to experience significant secondary (creep) settlements, in excess of the reported primary settlement magnitudes in Table 4 above, which are likely to continue for a number of years following construction.

Predicted static settlements due to typical residential building loads on parts of the site not underlain by peat are expected to be within the limits recommended in the NZ Building Code.

Recommendations for remediation of the areas of the site which are underlain by peat soils are provided in Section 7.3.

7 GEOTECHNICAL RECOMMENDATIONS

7.1 Seismic Site Subsoil Category

The geological units encountered beneath the site comprise soil strength materials, which with respect to the seismic site subsoil category defined in Section 3.1.3 of NZS1170.5, is defined as having an unconfined compressive strength (UCS) < 1MPa.

Based on those ground conditions and the results, the seismic site subsoil category is assessed as being Class D (deep soil site) in accordance with NZS1170.5.

7.2 Liquefaction Mitigation

Under the ULS event, the NZ Building Code requires that dwellings do not collapse and therefore preserve life but do not need to remain serviceable. The predicted free-field liquefaction induced settlements under the ULS seismic event are in the order of 45 to 110mm over a 10m depth, with the larger settlements generally occurring beneath more low-lying parts of the site where the non-liquefiable surface crust is less thick.

Reference is made to Ishihara (1985)¹⁰ with respect to assessing the contribution of a non-liquefiable crust and the risk of surface manifestation. This assessment suggests a minimum 6m thick non-liquefiable crust may be required to prevent liquefaction induced ground damage for a ULS seismic event and an Importance Level 2 (IL2) building at this site. Given that the existing crust thickness ranged from 3.5m to 7m, there is the potential for surface manifestation (e.g. sand boils) to occur during a ULS seismic event which can result in further exaggerated differential settlements and affect the ultimate bearing capacity beneath shallow footings.

Therefore, based on the index liquefaction settlement values presented in Table 3 and the marginal nonliquefiable crust present at the site, we recommend adopting an MBIE TC2/TC3 hybrid foundation solution as outlined in Section 15.4.6 of the MBIE Part C Canterbury Rebuild Technical Guidance¹¹ to address the liquefaction hazard for the proposed development.

Further detail on this has been detailed in Section 7.2.1, below.

7.2.1 Enhanced TC2/TC3 Raft

A TC2/TC3 hybrid solution involves the construction of an 800mm thick, geogrid reinforced granular fill raft supporting an engineer designed or proprietary TC2 raft foundation.

 ¹⁰ Ishihara, K., (1985) "Stability of Natural Deposits During Earthquakes," Proc. Of the Eleventh International Conference on Soil Mechanics and Foundation Engineering, San Francisco, 12-16th August 1985, Vol. 1, Theme Lectures Conferences, pp321-376.
 ¹¹ Repairing and Rebuilding Houses Affected by the Canterbury Earthquake: TC3 Technical Guidance, Part C, MBIE (2015).

Prior to the construction of the gravel raft, ground improvement will be required in some areas of the site (such as to undercut loose near surface sands or remediate peat soils). This has been detailed in Section 7.3 and 7.4.2 below.

7.3 Ground Improvement for Static Settlement

To minimise post construction static ground settlements on account of the presence of compressible peat, several options have been proposed, including the following:

- Locating buildings and infrastructure on the more elevated plateau areas of the site which are unlikely to experience excessive static settlements under typical residential building loads. Less critical infrastructure such as stormwater ponds may be located within the swales and peat areas, subject to appropriate engineering design;
- Construct a temporary pre-load embankment over and above design ground levels where peat is present to reduce post construction total and differential settlements;
- Remove (excavated) the peat and replace with engineered fill. This would likely require significant dewatering to achieve; and
- Pile building foundations to intercept the dense sands at depths of between approximately 14m and 20m below ground level, which are shown not to be susceptible to liquefaction.

7.4 Earthworks

7.4.1 General

All earthwork activities must be carried out in general accordance with the requirements of NZS 4431¹² and the requirements of the Western Bay of Plenty District Council Development Code under the guidance of a Category 1 Geo-professional.

High level earthworks recommendations have been provided in Sections 7.4.2 to 7.4.4 below.

7.4.2 Subgrade Preparation

Preparation of the stiff and loose/medium dense subgrade beneath the proposed fill areas should comprise stripping of all vegetation, topsoil, any pre-existing fill materials or loose sands/weak silts.

Where any particularly weak materials are encountered (such as the upper 1m of loose sands), they should be undercut and reworked prior to placing engineered fill.

As discussed in Section 7.3, the peat soils will require specific ground improvement/remediation.

7.4.3 Cut and Fill Batters

To reduce the effects of ongoing minor slumping or scour, self-supporting long term cut and fill batters in the friable volcanic ashes should be formed to no steeper than 1(V):2.5(H).

All formed batters should be covered by topsoil and then grassed as soon as practicable following construction to reduce the effects of surficial scour or alternatively supported to full height by specifically designed retaining walls.

7.4.4 Quality Control

The source and / or type of material used for engineered fill will dictate the type of quality control testing undertaken.

¹² Standards New Zealand (1989) Code of practice for earth fill for residential development, incorporating Amendment No. 1, NZS 4431:1989, NZ Standard

Most of the on-site soils material, excluding the peat, should be suitable for reuse as Engineer Certified Fill. Soil textures and moisture contents will however vary widely and careful management, conditioning and compaction control will be required.

For granular (sand and gravel) fill materials, testing following compaction should be principally in terms of the maximum dry density within the appropriate water content range, with accompanying Dynamic Cone Penetrometers (DCPs).

Where silts and clays are used as filling, alternative test criteria using vane shear strength and air voids should be used.

7.4.5 Service Trenches

We anticipate that service trenches could be several metres deep. Based on the field investigation results, the soils to be encountered within this depth are likely to comprise stiff silts and/or loose to medium dense sands across the terrace but with fresh and fibrous peat deposits present within the swale areas.

Provided any organic or otherwise unsuitable material is cut to waste, the natural soils excavated for the trench may be used as backfill. The backfill should be compacted in thin lifts to a strength and consistency equal to the surrounding ground.

7.5 Stormwater Disposal

The depth of groundwater beneath the more elevated parts of the site is such that disposal of stormwater to ground soakage could be considered for building sites on the main plateau. Shallow groundwater below the more low-lying areas and the swales may preclude the use of ground soakage in these areas.

Stormwater pond(s) and/or raingardens would also be a suitable method of stormwater disposal for flows from future roofs and hardstand areas. An appropriate location for permanent ponds would be within the swales which cut through the site.

Stormwater disposal options should be further assessed at the resource consent stage for the development.

7.6 Wastewater Disposal

Based on discussions with the project planners, MPAD, it is understood that the strip of land immediately to the north of the site (depicted on *Drawing 01*) is being considered as a potential wastewater disposal field.

Although this has not been assessed in detail, it is anticipated that for wastewater disposal in this zone, a raft of fill would be required to separate the standing groundwater table from the disposal field. There would also need to be an acceptance that differential settlement magnitudes in this area may be significant, particularly on account of fill placement. The effects of this settlement on the disposal system may be reduced by pre-loading the filled disposal field and/or by using a pressure compensating drip line irrigation network.

Further geotechnical input would be required during design of the system (by others), to confirm suitability.

7.7 Roading and Services

The main roads are expected to extend across the terrace. Following earthworks and subgrade trimming, a CBR of between 3 and 5 is anticipated for the natural subsoils, whilst for Engineer Certified Fill areas a CBR of 7 may be adopted.

We recommend that a programme of penetration resistance testing is carried out when the roads and pavement areas are being formed to their final levels to confirm actual CBR values.

8 FURTHER WORK

Additional geotechnical inputs to support the design and construction of a residential development at this site may include, but not be limited to:

- Investigations including additional test pits, hand auger boreholes, machine boreholes and/or Cone Penetrometer Tests (CPTs) to refine ground model and further assess the extent and depth of peat soils;
- Additional analyses for the proposed development, including liquefaction, static settlement and bearing capacity, to confirm the preliminary recommendations provided in this report;
- Preparation of geotechnical reports to support the resource consent application and detailed design process; and
- Earthworks and construction observations to confirm fill compaction and finished landform.

9 CONCLUSION

Provided the recommendations given in this report are followed and subject to appropriate assessment during the resource consent process, the property is considered geotechnically suitable for rezoning and residential development.

Elevated parts of the site would be classified as Technical Category TC2 or TC3 due to potential for liquefaction induced settlement as defined by the MBIE earthquake design guidelines developed for the Christchurch rebuild. Ground adjacent to the slope along the site's northern boundary may also be classified as TC2 due to the potential for lateral spreading in this area.

Residential buildings on this site would therefore require specifically designed foundations. The hybrid TC2/TC3 fill/raft foundation solutions developed in Christchurch would be appropriate for this site.

USE OF THIS REPORT

Site subsurface conditions cause more construction problems than any other factor and therefore are generally the largest technical risk to a project. These notes have been prepared to help you understand the limitations of your geotechnical report.

Your geotechnical report is based on project specific criteria

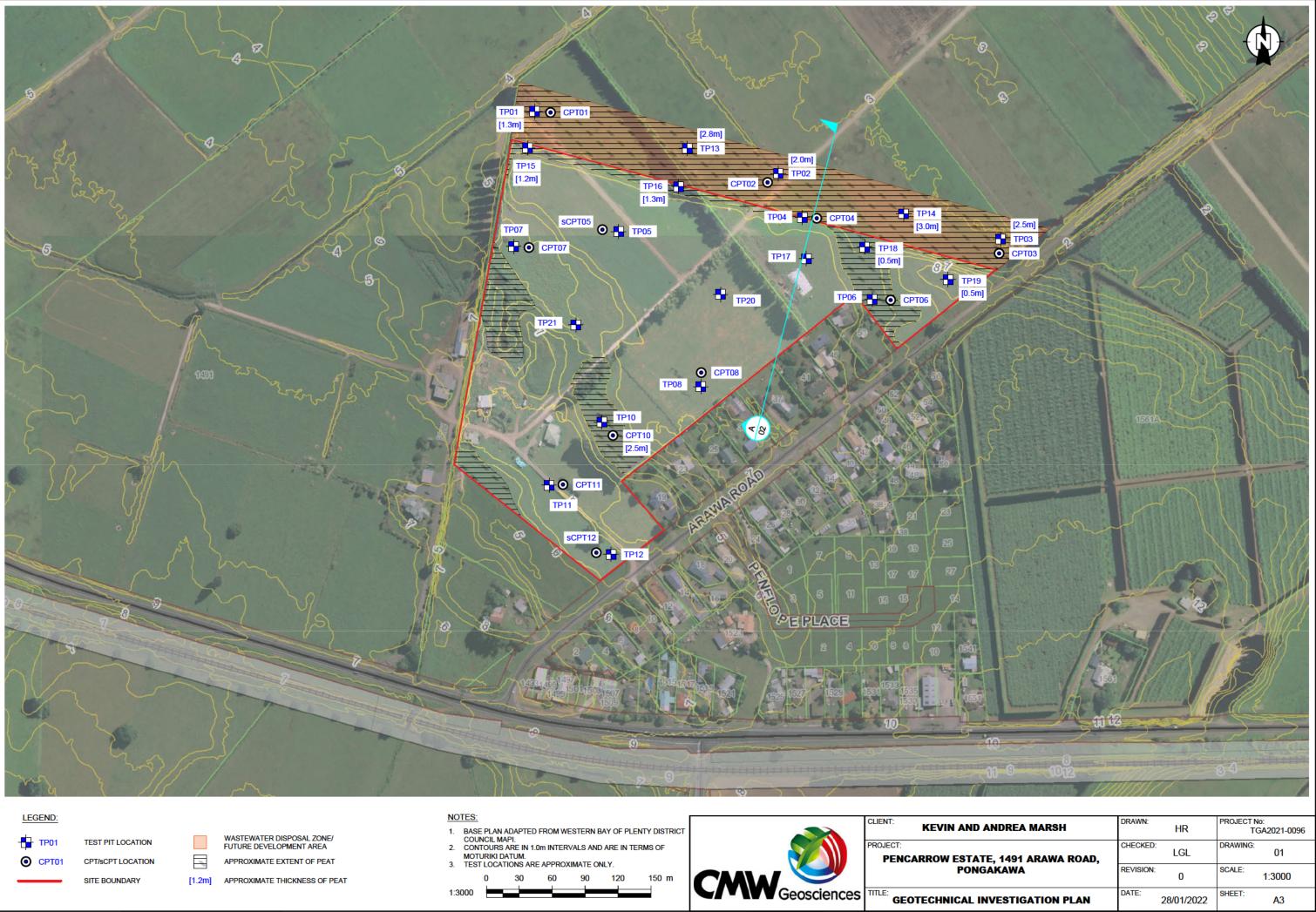
Your geotechnical report has been developed on the basis of our understanding of your project specific requirements and applies only to the site area investigated. Project requirements could include the general nature of the project; its size and configuration; the location of any structures on or around the site; and the presence of underground utilities. If there are any subsequent changes to your project you should seek geotechnical advice as to how such changes affect your report's recommendations. Your geotechnical report should not be applied to a different project given the inherent differences between projects and sites.

Subsurface conditions can change

Subsurface conditions are created by natural processes and the activity of man. For example, water levels can vary with time, fill may be placed on a site and pollutants may migrate with time. Because a report is based on conditions which existed at the time of subsurface investigation, the conditions may have changed, particularly when large periods of time have elapsed since the investigations were performed.

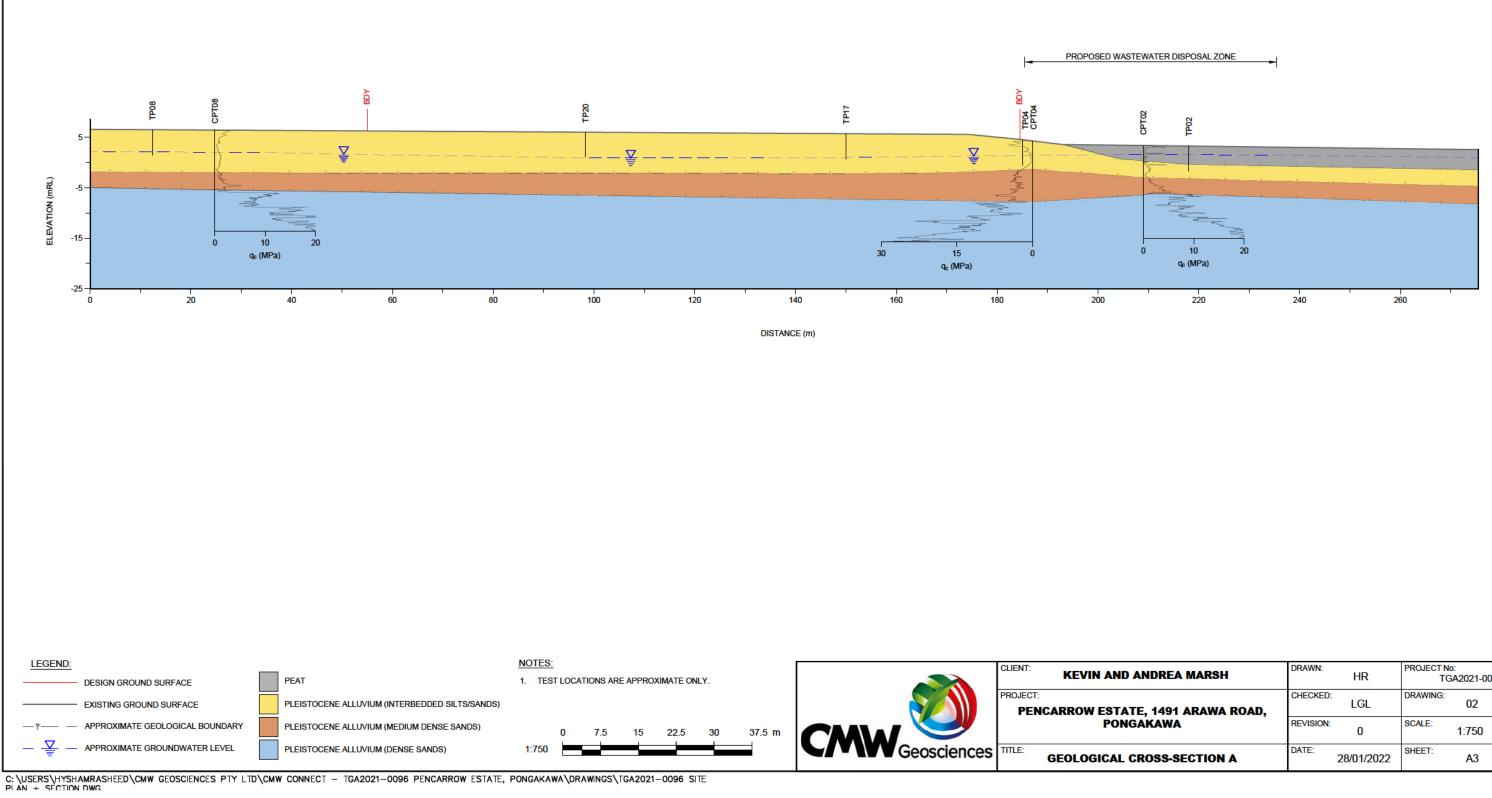
Interpretation of factual data

Site investigations identify actual subsurface conditions at points where samples are taken. Additional geotechnical information (e.g., literature and external data source review, laboratory testing on samples, etc) are interpreted by geologists, engineers or scientists to provide an opinion about overall site conditions, their likely impact on the proposed development and recommended actions. Actual conditions may differ from those inferred to exist, because no professional, no matter how qualified, can exactly predict what is hidden by earth, rock and time. The actual interface between materials may be far more gradual or abrupt than assumed based on the facts obtained. Nothing can be done to change the actual site conditions which exist, but steps can be taken to reduce the impact of unexpected conditions.


Your report's recommendations require confirmation during construction

Your report is based on the assumption that the site conditions as revealed through selective point sampling are indicative of actual conditions throughout an area. This assumption cannot be substantiated until project implementation has commenced. For this reason, you should retain geotechnical services throughout the construction stage, to identify variances, conduct additional tests if required, and recommend solutions to problems encountered on site. A geotechnical designer, who is fully familiar with the background information, is able to assess whether the report's recommendations are valid and whether changes should be considered as the project develops. An unfamiliar party using this report increases the risk that the report will be misinterpreted.

Interpretation by other design professionals


Costly problems can occur when other design professionals develop their plans based on misinterpretations of a geotechnical report. Read all geotechnical documents closely and do not hesitate to ask any questions you may have. To help avoid misinterpretations, retain the assistance of geotechnical professionals familiar with the contents of the geotechnical report to work with other project design professionals who need to take account of the contents of the report. Have the report implications explained to design professionals who need to take account of them, and then have the design plans and specifications produced reviewed by a competent Geotechnical Engineer.

Appendix A: Drawings

C: USERS HYSHAMRASHEED CMW GEOSCIENCES PTY LTD CMW CONNECT - TGA2021-0096 PENCARROW ESTATE, PONGAKAWA DRAWINGS TGA2021-0096 SITE PI AN + SECTION DWG

REA MARSH	DRAWN:	HR	PROJECT NO	o: 6A2021-0096
91 ARAWA ROAD,	CHECKED:	LGL	DRAWING:	01
WA	REVISION:	0	SCALE:	1:3000
TIGATION PLAN	DATE:	28/01/2022	SHEET:	A3

REA MARSH	DRAWN: HR PROJECT No: TGA2021-0			
491 ARAWA ROAD,	CHECKED:	LGL	DRAWING:	02
WA	REVISION:	0	SCALE:	1:750
S-SECTION A	DATE:	28/01/2022	SHEET:	A3

Appendix B: MPAD Development Plans

Pencarrow Estate

Drawn - PF Review - RC Scale - 1:4000 @ A3 Drawing # - Pencarrow Constraints Map

Constraints Map

- Plan Change Boundary
- Flood effected area*
- Existing Building
- Contours with site area
- Open drains

* Flood data sourced from WBOPDC, flood data is modeled for a 1% flood event, adjusted for climate change and 1.25m sea level rise.

rea:	97722m ²
effected Area:	19471m ²
strained Land:	78250m ²
ld:	106*

 * Lot yield has been calculated assuming 25% of unconstrained land will be used for roads and reserves.

- Allow for 75% of land to be allocated to lots.
- Lot sized assumed to be 550m².
- Lot yield indicative and may change.

Appendix C: Investigation Results

CMW Geosciences – SOIL (Field Logging Guide)

Discontinuous pockets of a soil within a different soil mass

SEQUENCE OF TERMS:

Blocky

Lensoidal

breakdown

Fine: Soil Symbol – Soil Type – Colour – Structure – (Consistency) – (Moisture) – Bedding – Plasticity – Sensitivity – Additional Comments – Origin/Geological Unit Coarse: Soil Symbol – Soil Type – Colour – Structure – Grading – Particle shape – (Relative Density) – (Moisture) – Bedding – Additional Comments – Origin/Geological Unit

Origin/Geologica	al Unit															
BEHAVIOURAL	SOIL CLASS	IFICATION S	YSTEM				PR	OPORTIC	NAL TE	RMS DEFINIT	ION					
Major Divisions	(behaviour ba	sed logging)	Soil Symbol		Soil Na	ame	Fra	ction		Term	% 0	f Soil M	lass		Example	;
		Clean gravel	GW		grade el, fine		Мај	jor	() [l	JPPER CASE		50 (majo Instituer			GRAVE	L
	Gravel	<5%			se grav		Sub	oordinate	()	[lower case]	:	20 – 50			Sandy	
	>50% of coarse	smaller 0.075mm	GP	grav					wi	ith some		12 – 20			with some s	and
	fraction >2mm	Gravel with	GM	Silty	gravel		Min	ог	wi	ith minor		5 – 12			with minor s	
Coarse grained soils	- 211111	>12% fines	GC	Clay	ey grav	vel			with	n trace of (or slightly)		< 5		with	trace of san sandy)	d (slightly
more than 65%>0.06mm		Clean	sw	fine	to coar	d sand, 'se	VIS	UAL PRO	PORTIO	N PERCENTA	GE					
	Sand ≥50% of	sand	SP		rly grad	led	1			(6.	+7	1	-+-	
	coarse fraction	Sand	SM	Silfy	i sand		1.	• • •		1.	1:11	1	- >		(· · ·)
	<2mm	with >12%	SC		ey san	d	()	(.)	1)	4	s -)
		fines	ML	Silt				1%	/	3%	-	-	5%		109	*
	Exhibits dilatant	inorganic	MH	Silt	of high			170			-	-				
Fine grained	behaviour	organic	OL	plas Orga	ticity anic silt	t	1	14	10	(6	. 35	2	225	1.1
soils 35% or more		organio	CL	Clay	of low		1-	1		111		(55)	1141			(· · · ·
<0.06mm	No dilatant	inorganic		plas Clay	ticity of high	h	1.	·		111				Q	Mr. E-	345
	behaviour	orgonia	CH	plas	ticity		1		/	V		1	- 30	1	100.4	25/
High	ly Organic Soil	organic	OH Pt	Pea	anic cla t	iy		20%		309	6		40%		50	1%
GRAIN SIZE CF			•										ADDITI	ONAL	GRAPHIC	LOG
GRAIN SIZE CF			00	ARSE						FINE	ORGAN		SYMBO	DLS		
			1	Gravel			Sand			FINE	ORGAN		Term		Symbol	
TYPE																
TIFE	Boulders	Cobbles	cobbles 8	dium	medium fine coarse medium	dium	fine	Silt			:	Topsoil				
			Ő	â	, the second sec	8	a a	پ		Clay	Organio Soil		Fill			××
Size Range	200	60	20	6	2	0.6	0.2	0.06	0.002	-						<u> </u>
(mm)	200	00	20	2075	2	0.0	0.2	0.00			V. M. M.		Bitumer	n		
Graphic Symbol			340	QQQ	KY.		• • • • •	····	XXX		示 示 示	<u>~</u>	Concre	te		
Symbol		••	300	VOU	ЮU	•••			XXX		A A A A	23	Contro			
ORGANIC SOIL	S / DESCRIP	TORS											SHADE	e and	COLOUR	
Term	D	escription											1		2	3
Topsoil										nay occur at g						
-	0									e termed a buri stain; may ox			light dark		pinkish reddish	pink red
Organic clay, sil	t or sand D	escribe as for	inorganic	soils.		· · ·			.,,				mottle	d	yellowish brownish	orange yellow
		onsists predo i rm: Fibres alı											Sucak		greenish	brown
Peat		pongy: Very (lastic: Can be					fingers								bluish greyish	green blue
	Fi	ibrous: Plant	remains re	ecognis	able an	id retain s		ength							3 1	white
Rootlets	Fi	morphous: N ine, partly dec e.g. colluvium	omposed				the upp	er part of	a soil pro	ofile or in a red	deposited s	ioil				grey black
Carbonaceous		iscrete particle		ened (ca	arbonis	ed) plant	material									
SOIL STRUCTU	JRE									GRADING (GRAVELS	& SAN	IDS)			
Term	Description									Term	Descript	ion				
Homogeneous	The total lac	k of visible be	dding and	the sar	ne colo	our and ap	opearanc	e through	out	Well	Good re	present	tation of a	ll part	icle size ran	ges from
Bedded	The present	ce of layers								Graded	largest t					
Fissured	Breaks alon	g definite plan	es of fract	ure with	little re	esistance	to fractu	iring					ntation of	grain	sizes – furth	ner
Polished	Fracture pla	nes are polish	ed or glos	sy							divided i	nto:		-		
Slickensided		nes are striate								Poorly Graded	Unifo	rmly gr	aded	Mo	st particles a same siz	
Blocky	Cohesive so	il that can be	broken do	wn into	small a	angular lu	mps whi	ch resist f	urther	Graded	L			I —		

Gap graded

Absence of one or more

intermediate sizes

	Rounde	d		Subrour	nded		Suban	gular		An	gular
	\bigcirc)					4	1
CONSISTE	ENCY TERMS	FOR FINE	SOILS								
Descriptive	e term	Undrained S	Shear Strength	n (kPa)			Diagnostic Feature	s			Abbreviati
Very Soft			<12	Easily	exudes bet	ween fing	ers when squeezed				VS
Soft			12-25		indented by						S
Firm			25-50		-		essure and can be in	dented by thu	imb press	ure	F
Stiff			50-100		ot be indente	-					St
Very Stiff			100-200		e indented l	-					VSt
Hard			200-500	Difficu	It to indent I	by thumb r	nail				Н
DENSITY I	INDEX (RELAT	TIVE DENS	TY) TERMS	FOR COARSE SC							
Descriptive	e term 🛛 🖸	Density Inde	x (RD)	SPT "N" va (blows/300		Dyna	amic Cone (blows/100)mm)		Abbreviati	on
Very Dense	e	> 85		> 50			> 17			VD	
Dense		<mark>65 - 8</mark> 5	;	30 - 50			7 - 17			D	
Medium de	ense	35 - 65	;	10 - 30			3 - 7			MD	
Loose		15 - 35	;	4 - 10			1 - 3			L	
Note: •	No correl SPT "N" v	alues are u		< 4 itandard Penetrat			0 - 2 mamic Cone Penetro		-		
• MOISTURE	No correla SPT "N" v E CONDITION	ation is impli values are u Coarse	ncorrected.	tandard Penetrat	BEDDING		namic Cone Penetro ESS (Sedimentary)	BEDDING	-	Jes. TION	
Note: MOISTURE	No correla SPT "N" v E CONDITION Description	ation is impli values are u	Fine Soils	Abbreviation		G THICKN	namic Cone Penetro		INCLINA	Jes. TION	from horizont
Note:	No correls SPT "N" v E CONDITION Description	ation is implivalues are un coarse Soils Runs	Fine Soils Hard, powdery or friable	Abbreviation	BEDDING Term Thinly lan	G THICKN	ESS (Sedimentary) Bed Thickness	BEDDING Term Sub-horizo	INCLINA	Jes. TION Inclination (0º - 5º	from horizont
Note: MOISTURE	No correla SPT "N" v E CONDITION Description	ation is implivalues are un Coarse Solls Runs freely through	Fine Soils Hard, powdery or friable Weakened by	Abbreviation	BEDDING	G THICKN	namic Cone Penetro ESS (Sedimentary) Bed Thickness	BEDDING Term Sub-horizo Gently incl	INCLINA ontal	Jes. TION Inclination (0° - 5° 6° - 15°	from horizont
Note: MOISTURE Condition Dry	No correla SPT "N" v E CONDITION Description	ation is implivalues are un Coarse Solls Runs freely through	Fine Soils Hard, powdery or friable Weakened by moisture, but no free	Abbreviation	BEDDING Term Thinly lan	G THICKN ninated	ESS (Sedimentary) Bed Thickness	BEDDING Term Sub-horizo	INCLINA ontal	Jes. TION Inclination (0º - 5º	from horizont
Note: MOISTURE	No correl: SPT "N" N E CONDITION Description Looks and feels dry Feels cool,	ation is implivatives are un coarse soils Runs freely through hands	Fine Soils Hard, powdery or friable Weakened by moisture, but no free water on hands when	Abbreviation	BEDDING Term Thinly lan Laminate	G THICKN ninated	Prinamic Cone Penetro ESS (Sedimentary) Bed Thickness < 2mm 2mm - 6mm	BEDDING Term Sub-horizo Gently incl Moderately inclined Steeply inc	i INCLINA ontal lined y clined	Jes. TION Inclination (0° - 5° 6° - 15° 16° - 30° 31° - 60°	from horizont
Note: MOISTURE Condition Dry	E CONDITION Description Looks and feels dry	ation is implivalues are un Coarse Solls Runs freely through	Fine Soils Hard, powdery or friable Weakened by moisture, but no free water on hands	Abbreviation	BEDDING Term Thinly lan Laminate Very thin	G THICKN ninated	ESS (Sedimentary) Bed Thickness < 2mm 2mm - 6mm 6mm - 20mm	BEDDING Term Sub-horizo Gently incl Moderately inclined Steeply inc Very steep inclined	inclined y clined ply	Jes. TION Inclination (0° - 5° 6° - 15° 16° - 30° 31° - 60° 61° - 80°	from horizont
Note: MOISTURE Condition Dry	No correl: SPT "N" E CONDITION Description Looks and feels dry Feels cool, darkened	ation is implication is implication is implication of the second strength of the second str	Fine Soils Hard, powdery or friable Weakened by moisture, but no free water on hands when remoulding Weakened	Abbreviation	BEDDING Term Thinly lan Laminate Very thin Thin	G THICKN ninated ed	rnamic Cone Penetro ESS (Sedimentary) Bed Thickness < 2mm 2mm - 6mm 6mm - 20mm 20mm - 60mm	BEDDING Term Sub-horizo Gently incl Moderately inclined Steeply ind Very steep inclined Sub vertica	INCLINA ontal lined y clined oly al	Jes. TION Inclination (0° - 5° 6° - 15° 16° - 30° 31° - 60° 61° - 80° 81° - 90°	from horizont
Note: MOISTURE Condition Dry Moist	No correl: SPT "N" E CONDITION Description Looks and feels dry Feels cool, darkened	ation is implication is implication is implication of the second strength of the second str	Fine Soils Hard, powdery or friable Weakened by moisture, but no free water on hands when remoulding Weakened by moisture, free water	Abbreviation D M	BEDDING Term Thinly lan Laminate Very thin Thin Moderate	G THICKN ninated ed	 Red Thickness 2mm - 6mm 20mm - 60mm 60mm - 200mm 	BEDDING Term Sub-horizo Gently incl Moderately inclined Steeply inc Very steep inclined	INCLINA ontal lined y clined oly al	Jes. TION Inclination (0° - 5° 6° - 15° 16° - 30° 31° - 60° 61° - 80° 81° - 90° OIL	
Note: MOISTURE Condition Dry Moist	No correl: SPT "N" CONDITION Description Looks and feels dry Feels cool, darkened in colour Feels cool	ation is implivalues are un conservative are u	Fine Soils Hard, powdery or friable Weakened by moisture, but no free water on hands when remoulding Weakened by moisture, free water forms on hands when	Abbreviation D M	BEDDING Term Thinly lan Laminate Very thin Thin Moderate	G THICKN ninated ed ely thin ely thick	 Red Thickness Sed Thickness 2mm - 6mm 2mm - 6mm 20mm - 60mm 20mm - 200mm 60mm - 200mm 0.2m - 0.6m 	BEDDING Term Sub-horizo Gently incl Moderately inclined Steeply ind Very steep inclined Sub vertica	INCLINA ontal lined y clined oly al	Jes. TION Inclination (0° - 5° 6° - 15° 16° - 30° 31° - 60° 61° - 80° 81° - 90° OIL Shear	from horizont
Note: MOISTURE Condition Dry Moist Wet Saturated	No correl: SPT "N" CONDITION Description Looks and feels dry Feels cool, darkened in colour Feels cool	ation is implivatives are un coarse Soils Runs freely through hands Tends to cohere	Fine Soils Hard, powdery or friable Weakened by moisture, but no free water on hands when remoulding Weakened by moisture, free water forms on hands when hands when n colour and	Abbreviation D M W	BEDDING Term Thinly lan Laminate Very thin Thin Moderate Thick	G THICKN ninated ed ely thin ely thick	Image: Cone Penetro ESS (Sedimentary) Bed Thickness < 2mm	BEDDING Term Sub-horizo Gently incl Moderately inclined Steeply ind Very steep inclined Sub vertica	INCLINA ontal lined y clined oly al (ITY OF S e Term	Jes. TION Inclination (0° - 5° 6° - 15° 16° - 30° 31° - 60° 61° - 80° 81° - 90° OIL Shear	- Strength
Note: MOISTURE Condition Dry Moist Wet Saturated	Feels cool, darkened in colour	ation is implivatives are un coarse Soils Runs freely through hands Tends to cohere	Fine Soils Hard, powdery or friable Weakened by moisture, but no free water on hands when remoulding Weakened by moisture, free water forms on hands when handling n colour and the sample	Abbreviation D M W	BEDDING Term Thinly lan Laminate Very thin Thin Moderate Thick	G THICKN ninated ed ely thin ely thick	Image: Cone Penetro ESS (Sedimentary) Bed Thickness < 2mm	BEDDING Term Sub-horizo Gently incl Moderately inclined Steeply inc Very steep inclined Sub vertica Sub vertica	INCLINA ontal lined y clined oly al (ITY OF s e Term e, normal	Jes. TION Inclination (0° - 5° 6° - 15° 16° - 30° 31° - 60° 61° - 80° 81° - 90° OIL Shear Ratio	r Strength = undisturbee remoulded
Note: MOISTURE Condition Dry Moist Wet Saturated PLASTICIT	No correls SPT "N" N E CONDITION Description Looks and feels dry Feels cool, darkened in colour	ation is implivatives are un Coarse Soils Runs freely through hands Tends to cohere darkened in is present of SILTS) Descriptio Can be mo	Fine Soils Hard, powdery or friable Weakened by moisture, but no free water on hands when remoulding Weakened by moisture, free water forms on hands when handling n colour and n the sample	Abbreviation D M W	BEDDING Term Thinly lan Laminate Very thin Thin Moderate Thick Very thick	G THICKN ninated ed ely thin ely thick k	Image: Constant of	BEDDING Term Sub-horizo Gently incl Moderately inclined Steeply inc Very steep inclined Sub vertica SENSITIV Descriptive Insensitive	INCLINA ontal lined y clined oly al (ITY OF s e Term e, normal	Jes. TION Inclination (0° - 5° 6° - 15° 16° - 30° 31° - 60° 61° - 80° 81° - 90° OIL Shear Ratio	T Strength undisturbed remoulded < 2
Note: MOISTURE Condition Dry Moist Wet Saturated PLASTICIT Term	No correls SPT "N" N E CONDITION Description Looks and feels dry Feels cool, darkened in colour	ation is implivatives are un coarse Soils Runs freely through hands Tends to cohere darkened in s present of SILTS) Descriptio Can be mo cracking o	Fine Soils Hard, powdery or friable Weakened by moisture, but no free water on hands when remoulding Weakened by moisture, free water forms on hands when handling n colour and n the sample	Abbreviation D M W S rmed over a wide	BEDDING Term Thinly lan Laminate Very thin Thin Moderate Thick Very thick	G THICKN ninated ed ely thin ely thick k oisture cor	A constraints without	BEDDING Term Sub-horizo Gently incl Moderately inclined Steeply ind Very steep inclined Sub vertica Sub vertica SUS vertica Descriptive Insensitive Moderatel	INCLINA ontal lined y clined oly al 'ITY OF S e Term e, normal y sensitiv	Jes. TION Inclination (0° - 5° 6° - 15° 16° - 30° 31° - 60° 61° - 80° 81° - 90° OIL Shear Ratio	$T = \frac{undisturbee}{remoulded}$ < 2 $2 - 4$

Revision 2 April 2018

TEST PIT LOG - TP01 Client: Kevin & Andrea Marsh Project: Pencarrow Estate, 1491 Arawa Road, Pongakawa Site Location: Pongakawa Project No.: TGA2021-0096 Date: 17/01/2022

		t Location: Re							ed by: BM	Checked by: LGL		ale:		1:2		Sheet 1 of 1
F	Positio	n: 336457.1r	nE;	800	518.3	3mN	Projection		000	LOL				ns: m		
	1				1		Datum: N	loturiki			Sur		1	namic C		tablet Structure & Other Observations
Groundwater	Samp	ples & Insitu Tests Type & Results	RL (m)	Depth (m)	Graphic Log			e; colour; struc comments. (o	rigin/geological unit)	sity; sensitivity; additional prigin/geological unit)	Moisture Condition	Consistency/ Relative Density	(Bl	namic C enetrom ows/100	eter Imm)	Discontinuities: Depth; Defect Number; Defect Type; Dip; Defect Shape; Roughness; Aperture; Infili; Seepage; Spacing; Block Size;
						fine.	-	trace sand;	dark brownish bla	ck. No plasticity; sand,		- œ				Block Shape; Remarks
								rownish grey	y. Uniformly grade	d.						
	0.5	Peak = 17kPa		_		sensi	tive, organic, fibro	sh black. Low ous, tree stur	v plasticity, insensi nps.	tive to moderately						-
		Residual = 9kPa			νις × − × νις νις × − × νις	(Peat)									
						-					м					
				1 -								F				-
	1.2	Peak = 43kPa Residual = 17kPa														
				-												-
	1.7	Peak = 43kPa Residual = 17kPa						h grey mottle	ed orange brown.	Low plasticity,	w					
				2 -	× × ; (× × × × ; (× ×		rately sensitive. tocene Alluvium)				s	St				
	2.1	Peak = 78kPa Residual = 35kPa		2		>										
								Test pit term	ninated at 2.20 m							
				-												-
					-											
				3 -	-											
					-											
					-											
				-	-											-
					-											
				4 -	-											_
				-												
				5 -												
		ion Peacons 11-			-									1		-
		ion Reason: Ho ane No: 3403	ie col	apse	C	OCP No	:									
F	Remarks	:														
		This report	t is ba	ised c	on the	attache	ed field descript	ion for soil	and rock, CMW	Geosciences - Field	Loggi	ng Gu	iide, F	levisio	n 3 - /	April 2018.

TEST PIT LOG - TP02 Client: Kevin & Andrea Marsh Project: Pencarrow Estate, 1491 Arawa Road, Pongakawa Site Location: Pongakawa Project No.: TGA2021-0096 Date: 17/01/2022 Test Pit Location: Refer to Drawing 01 Logged by: BM

ר	est Pi	t Location: Re				g 01 Logge	ed by: BM	Checked by:	Sca			1:25		Sheet 1 of 1
F	Positio	n: 400761.8r	mE;	7935	560.9	-)00	LOL			nsion			
	1		-	1	1	Datum: Moturiki			Sur∖		Source		-	
Groundwater	Sam	ples & Insitu Tests	RL (m)	Depth (m)	Graphic Log	Soil: Soil symbol; soil type; colour; struc comments. (or	rigin/geological unit)		Moisture Condition	Consistency/ Relative Density	Pen	amic Cor etromete /s/100m	er	Structure & Other Observations Discontinuities: Depth; Defect Number; Defect Type; Dip; Defect Shape; Roughness; Aperture; Infill;
Gn G	Depth	Type & Results		ă	Gra	Rock: Colour; fabric; rock name; add	ditional comments. (orig	gin/geological unit)	≥ŏ	Con Relati	5 1	0 15	20	Seepage; Spacing; Block Size; Block Shape; Remarks
				-		OL: Organic SILT: with trace sand; of fine. (Topsoil) SP: Fine SAND : light brownish gre (Alluvial Sands) Pt: PEAT			м					
	0.7	Peak = 32kPa Residual = 17kPa		1-		: dark brownish black. Low plasticity organic, fibrous, tree stumps. (Peat)	γ, insensitive to mod	erately sensitive,	w					
▼	1.4	Peak = 29kPa Residual = 20kPa												
	2.0	Peak = 58kPa Residual = 26kPa		2						F				
	2.6	Peak = 41kPa Residual = 20kPa							s					-
	3.2	Peak = 32kPa Residual = 14kPa		3 —										
	3.6	Peak = 89kPa Residual = 30kPa				ML: SILT: with minor clay; light brow plasticity, moderately sensitive (Pleistocene Alluvium)	nish grey mottled o	range brown. Low	-	St				-
			1	4 -		Test pit term	ninated at 4.00 m							1 -
				5										-
		ion Reason: Tar	get D	epth										
	Shear Va Remarks		tic !	J		CP No:	and really ONNAL				ide D	ule'.	۰ ۲	
		I his report	i is ba	ised o	n the	attached field description for soil a	and rock, CMW G	eosciences - Field	Loggir	ng Gu	ide, Re	vision	3 - A	April 2018.

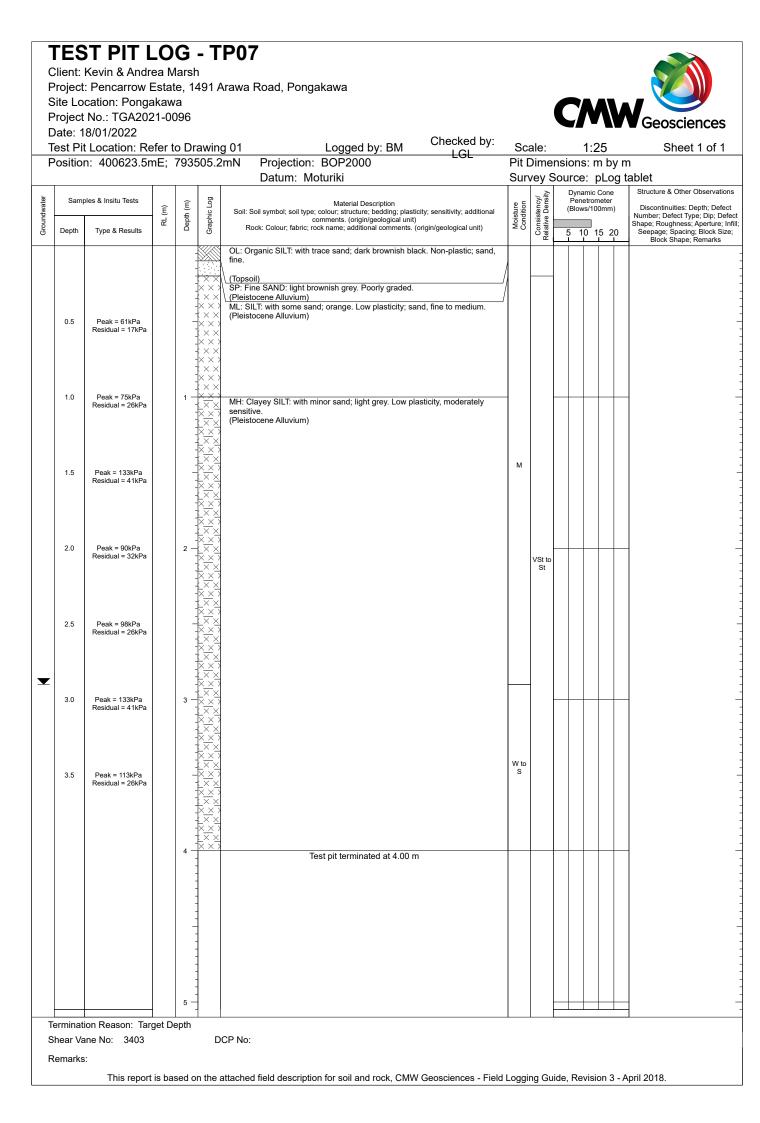
TEST PIT LOG - TP03 Client: Kevin & Andrea Marsh Project: Pencarrow Estate, 1491 Arawa Road, Pongakawa Site Location: Pongakawa Project No.: TGA2021-0096 Date: 17/01/2022 Test Pit Location: Refer to Drawing 01 Logged by: BM

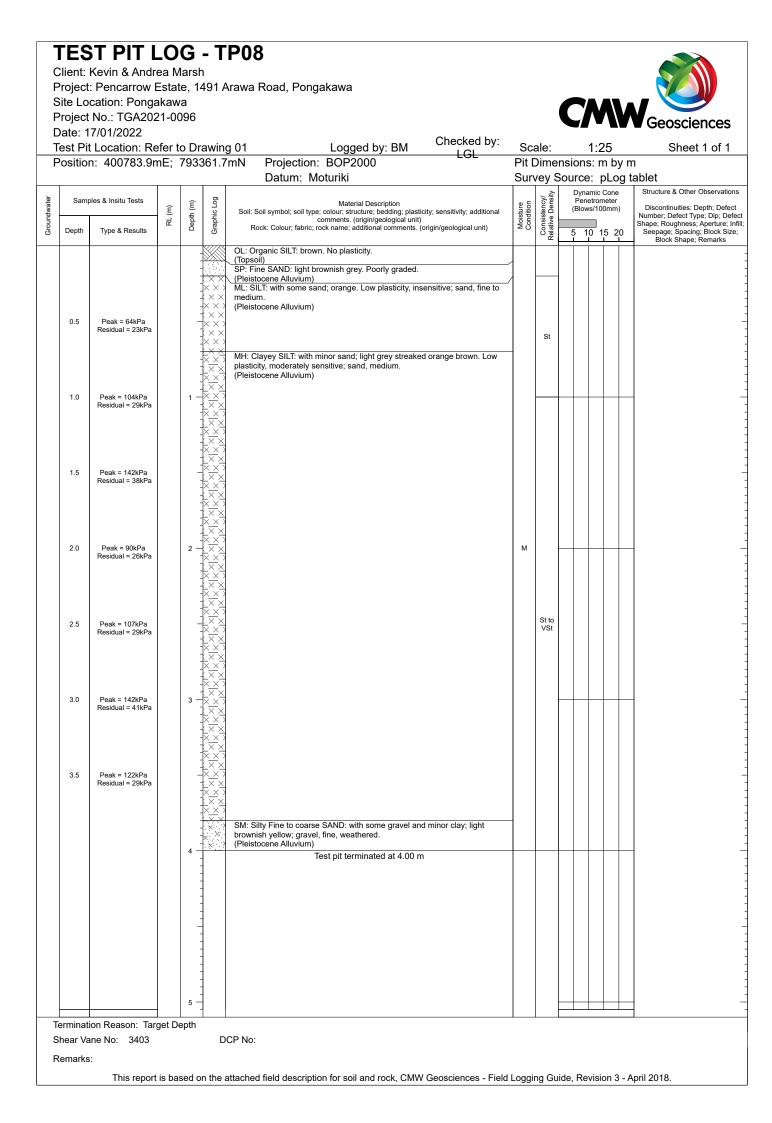
ר	lest Pit	Location: Re				g 01 Logged by: BM Checked by:		ale:			:25		Sheet 1 of 1
F	Positior	n: 401042.4r	nE;	793	471.9	mN Projection: BOP2000 Datum: Moturiki	Pit [
ater	Samp	les & Insitu Tests	2	Ê	Log	Material Description			-	Oynami Penetro Blows/1	ic Con ometer	e r	ablet Structure & Other Observations Discontinuities: Depth; Defect
Groundwater	Depth	Type & Results	RL (m)	Depth (m)	Graphic Log	Soil: Soil symbol; soil type; colour; structure; bedding; plasticity; sensitivity; additional comments. (origin/geological unit) Rock: Colour; fabric; rock name; additional comments. (origin/geological unit)	Moisture Condition	Consistency/ Relative Density	5	10			Number; Defect Type; Dip; Defect Shape; Roughness; Aperture; Infill; Seepage; Spacing; Block Size; Block Shape; Remarks
						OL: Organic SILT: with trace sand; dark brownish black. Non-plastic; sand, fine. (Topsoil) SP: Fine SAND: light brownish grey. Uniformly graded. (Alluvial Sands) Pt: PEAT: dark brownish black. Low plasticity, moderately sensitive, organic, fibrous, tree stumps.	D to M		-				
	0.6	Peak = 46kPa Residual = 17kPa		1 -		(Peat)	w						
◄	1.1	Peak = 41kPa Residual = 17kPa		-				F					
	1.6	Peak = 46kPa Residual = 14kPa											
	2.0	Peak = 72kPa Residual = 43kPa		2 -			S	St					
	2.5	Peak = 69kPa Residual = 41kPa		-		SP: Fine to medium SAND: brownish grey. Poorly graded, interbedded with							-
				3 -		sandy SILT. (Pleistocene Alluvium)		L to MD				2 3 2 2 3	
				-		Test pit terminated at 3.40 m							
				4 -									
				5 -									
s					C	CP No: 14 attached field description for soil and rock, CMW Geosciences - Field	l d Loggi	ng Gı	uide,	Revis	sion (3 - A	pril 2018.

TEST PIT LOG - TP04Client: Kevin & Andrea MarshProject: Pencarrow Estate, 1491 Arawa Road, PongakawaSite Location: PongakawaProject No.: TGA2021-0096Date: 17/01/2022Test Pit Location: Refer to Drawing 01Logge

1		Location: Re	efer	to Dr	awir	ng 01		Logged by	y: BM	Checked by: LGL	Sc	ale:			1:25	5	Sheet 1 of 1
		i: 400851.8r					Projection	: BOP2000		LGL	Pit [
-					1	1	Datum: M	oturiki			Sur				: pL mic Co		Structure & Other Observations
water	Samp	es & Insitu Tests	Ê	(E	c Log	50	il: Soil symbol; soil type	Material Desc	cription	r sensitivity: additional	ure	Consistency/ Relative Density		Pene	tromet s/100m	er	Discontinuities: Depth; Defect
Groundwater	Dunth	Time & Decelle	RL (m)	Depth (m)	Graphic Log	30		comments. (origin/ge	eological unit)	-	Moisture Condition	onsiste ative [,	Number; Defect Type; Dip; Defect Shape; Roughness; Aperture; Infill;
U	Depth	Type & Results			0							Ω.e		10) 15	20	Seepage; Spacing; Block Size; Block Shape; Remarks
					X	OL:		trace sand; dark b	prownish black	. Non-plastic; sand,	D to						
						(Top	osoil)				M						
					××	j∖ (Ple	Fine SAND: light b										
					××		Silty fine to mediur istocene Alluvium)	n SAND : light gre	yish yellow. P	oorly graded.							
					××		0										
					-× × - × ×	mod	Sandy SILT: greyis derately sensitive to			Low plasticity,							
	0.8	Peak = 148kPa Residual = 41kPa			-× × - × ×	a î	istocene Alluvium)										
				1 -	-× × - × ×							Vet					
												VSt					
	1.3	Peak = 156kPa			-× × - × ×												
		Residual = 35kPa															
				-	× × × ×												-
							: Clayey SILT: with i sticity, moderately s			ange brown. Low							
							istocene Alluvium)		re, sanu, inie.								
				2 -							м						-
					Ê							St to					
												VSt					-
	2.5	Peak = 75kPa		-													-
		Residual = 29kPa															
	3.0	Peak = 119kPa		3 -													
		Residual = 29kPa															
							Silty Fine to coarse			ninor clay; light	-					2	
					××	brov Ple	wnish yellow. Well g istocene Alluvium)	raded; gravel, fine	e, weathered.			L to MD				2	:
					× ×	2						1110				3	
					× ×	2										3	
∎					× ×	· > MI·	SILT: grey. Low pla	sticity sensitive								2	
	3.8	Peak = 75kPa Residual = 14kPa				(Ple	istocene Alluvium)	, ,			W to	St					
											S						
				4 -	-			Test pit terminate	ed at 4.00 m								-
					1												:
					-												
					-												
				-	1												-
					1												
					1												
			-	5 —	1												
Т	erminatio	on Reason: Tar	get D	epth	1	1					1	1					1
5	Shear Va	ne No: 3403			[DCP N	o: 14										
F	Remarks:																
		This report	t is ba	ased o	on the	attach	ned field descripti	on for soil and r	rock, CMW C	Seosciences - Field	Loggi	ng Gı	uide,	Rev	ision	13-A	April 2018.

TEST PIT LOG - TP05Client: Kevin & Andrea MarshProject: Pencarrow Estate, 1491 Arawa Road, PongakawaSite Location: PongakawaProject No.: TGA2021-0096Date: 18/01/2022Test Pit Location: Refer to Drawing 01Logged by: BM


Test Pit	Location: Re							Logged b	y: BM	Checked b	y:	Sca			1:25		Sheet 1 of 1
Position	n: 400626.1r	nE;	793	553.3	3mN	Projecti Datum:		30P2000 Jriki			1	Pit D Surv					n tablet
Sample Depth	les & Insitu Tests Type & Results	RL (m)	Depth (m)	Graphic Log	Soi	il: Soil symbol; soil	type; col	Material Desc lour; structure; b ments. (origin/ge	edding; plastic eological unit)	city; sensitivity; additio prigin/geological unit)		Moisture Condition	Consistency/ Relative Density	Dyna Pene Blow	mic Co tromet s/100m	ne er nm)	Structure & Other Observations Discontinuities: Depth; Defect Number; Defect Type; Dip; Defe Shape; Roughness; Aperture; Inf Seepage; Spacing; Block Size Block Shape; Remarks
			-		fine. (Top SM: (Ple	isoil) Silty Fine to ma istocene Alluviu	edium S. m) ht browr	AND: light bro	ownish yellov tled orange t	ck. Non-plastic; sa w. Poorly graded. prown. Low plastici	/		L			2 2 2 1 2 1	
1.0	Peak = 75kPa Residual = 20kPa		1 -			istocene Alluviu		ine to media									
2.0	Peak = 119kPa Residual = 20kPa		2 -		· · · · · · ·	at 2.20m, becon	ning clay	ey SILT				м	VSt to				
2.5	Peak = 87kPa Residual = 32kPa		-										St				
3.0	Peak = 84kPa Residual = 32kPa		3 -														
			4		whit	Silty Fine to co le. Well graded; istocene Alluviu	gravel, i m)	ND: with min fine to mediu pit terminate	m, weathered		sh						
	on Reason: Tar ne No: 3403	1 get D)epth	<u>1</u>	DCP N	0:	14								1		1


TEST PIT LOG - TP06
Client: Kevin & Andrea Marsh
Project: Pencarrow Estate, 1491 Arawa Road, Pongakawa
Site Location: Pongakawa
Project No.: TGA2021-0096
Date: 17/01/2022
Test Pit Location: Refer to Drawing 01 Logged
D

		t Location: Re						Checked by:		ale:		1:25		Sheet 1 of 1
F	Positio	n: 400935.7r	nE;	793	429.2	2mN		LOL			ensions			
	1						Datum: Moturiki		Sur		Source	: pLo	og t	
e	Sam	ples & Insitu Tests			D ₀					Consistency/ Relative Density	Dyna	mic Con etromete	e r	Structure & Other Observations
dwat	ouiii		RL (m)	ш ш	lic Lo	So	Material Description il: Soil symbol; soil type; colour; structure; bedding; plastic	ity; sensitivity; additional	Moisture Condition	stenc	(Blow	s/100mn	n)	Discontinuities: Depth; Defect Number; Defect Type; Dip; Defect
Groundwater	Depth	Type & Results	R	Depth (m)	Graphic Log		comments. (origin/geological unit) Rock: Colour; fabric; rock name; additional comments. (o	rigin/geological unit)	Con	consi lative	5 1	15	20	Shape; Roughness; Aperture; Infill; Seepage; Spacing; Block Size;
0	Dopui	Type & Results								Re C		0 15 3	20	Block Shape; Remarks
						OL:	: Organic SILT: with trace sand; dark brownish blac	ck. Non-plastic; sand,						
					1	(Toj	psoil)		1					-
					_		Fine SAND: light brownish grey. Poorly graded. uvial Sands)			LP				-
														-
				-	+×^- <u> </u>	Pt:	PEAT: dark brownish black. Low plasticity, organic	, fibrous, tree stumps.		S to F				-
					3 × ×		at) : SILT: orange. Low plasticity, moderately sensitive	,,	1					
	0.7	Peak = 46kPa			_X	(Ple	eistocene Alluvium)							-
		Residual = 17kPa				>								-
						>								-
				1 -	$-\times \times$	>								
					⊀ × × +× × ∶	>								
														-
					₹××									-
					- × × ; { × ×	×								
	1.5	Peak = 69kPa		-		мн	: Clayey SILT: with minor sand; light grey. Low pla	sticity moderately	_					-
		Residual = 35kPa			- <u>X_X</u> 7	sen	sitive; sand, fine to medium.	sticity, moderatery						-
						(Ple	eistocene Alluvium)							-
						>								
					Ł××									-
	2.0	Peak = 64kPa		2 -	- <u>× ×</u> ; -[_× ×	1			м					-
		Residual = 29kPa				>								
						>				VSt to				
					<u>k</u>	>				St				-
						>								-
	2.5	Peak = 107kPa		-		5								-
		Residual = 35kPa			Ł××									
						2								-
						>								-
					-12	>								-
	3.0	Peak = 116kPa		3 -	<u>+ × ×</u> × × :	>								
		Residual = 32kPa				>								-
					<u>}</u> xx									-
					<u>l</u> źź									-
						>								-
				-	FX									-
					<u>k</u> r	>								-
					$\frac{1}{1} \times \times \frac{1}{2}$	>								:
					<u>t X X</u>	5								
				4 -	<u> × × :</u> -		Test pit terminated at 4.00 m							
					1									:
					1									
					1									
					1									.
1				-	-									-
					1									
					1									
					1									
					1									
			-	5 -	1									
Г	Ferminat	ion Reason: Tar	get D	epth	1	1			1	1	I			1
		ane No: 3403			C	CP N	lo:							
F	Remarks	5												
			is ha	ised a	n the	attacl	hed field description for soil and rock, CMW	Geosciences - Field	Loggi	na Ci	iide Ro	vision	3. ^	opril 2018
		ттіз тероп	is pa	เงษน (, i ule	ลแสปไ	Teo nelo description for soil and fock, CMW	Geosciences - Field	Loggi	ng Gl	nue, Re		5 - A	φm 2010.

Checked by:

TEST PIT LOG - TP10 Client: Kevin & Andrea Marsh Project: Pencarrow Estate, 1491 Arawa Road, Pongakawa Site Location: Pongakawa Project No.: TGA2021-0096 Date: 17/01/2022

		Location: Re	efer t	to Dr	awin	g 01 Logged by: BM Checked by:	Sca	ale:		1::	25		Sheet 1 of 1
F	Positior	n: 400783.5r	nE;	793	359.2	2mN Projection: BOP2000 Datum: Moturiki			nsio				
					_				Dv	namic	Cone	•	ablet Structure & Other Observations
Groundwater	Samp	les & Insitu Tests	RL (m)	Depth (m)	Graphic Log	Material Description Soil: Soil symbol; soil type; colour; structure; bedding; plasticity; sensitivity; additional	Moisture Condition	stency e Dens	Pe (Ble	netro ws/10	meter 00mm)	Discontinuities: Depth; Defect Number; Defect Type; Dip; Defect
Groun	Depth	Type & Results	R	Dep	Grap	comments. (origin/geological unit) Rock: Colour, fabric; rock name; additional comments. (origin/geological unit)	Con	Consistency/ Relative Density	5	10	15 2	20	Shape; Roughness; Aperture; Infill; Seepage; Spacing; Block Size; Block Shape; Remarks
						OL: Organic SILT: dark brownish black. Non-plastic; sand, fine.				Ť			Block Shape, Kemarka
						(Topsoil)							
						SP: Fine SAND: light brownish grey. poorly graded. (Alluvial Sands)	M						-
								LP					-
]								
	0.8	Peak = 43kPa Residual = 20kPa			-X	Pt: PEAT: dark brownish black. Low plasticity, , moderately sensitive, organic, fibrous, tree stumps.							-
				1 -	1× m²	(Peat)				+			-
							W						
													-
		5 1 10 5			×								
	1.5	Peak = 46kPa Residual = 17kPa			-×								-
					-×								
					1 <u>1"</u> -×								
	2.0	Peak = 38kPa Residual = 17kPa		2 -				F		_			
					× <u>~</u> ×								
					-× ->								
	2.5	Peak = 43kPa Residual = 20kPa		-	-× %*- ***********************************								-
					->->->->->->->->->->->->->->->->->->->		W to S						
					×								
				з —	-×					+			-
					NIA X -	ML: SILT: light brownish grey. Low plasticity.							
						(Pleistocene Alluvium)							
	3.6	Peak = 104kPa											-
		Residual = 29kPa						VSt					
					{								
				4 -	<u>×x</u>	Test pit terminated at 4.00 m	_			+			-
													-
													-
				-									-
				5 -	1								-
F1	erminati	on Reason: Tar	l get e	pth		1							
		ne No: 3403			0	CP No:							
F	Remarks							~					10040
		This report	is ba	ised o	on the	attached field description for soil and rock, CMW Geosciences - Field	a Loggii	ng Gu	lide, R	evis	ion 3	5 - A	pril 2018.

TEST PIT LOG - TP11 Client: Kevin & Andrea Marsh Project: Pencarrow Estate, 1491 Arawa Road, Pongakawa Site Location: Pongakawa Project No.: TGA2021-0096 Date: 17/01/2022 Test Pit Location: Refer to Drawing 01 Logged by: BM

_						g 01			ogged by:		LGL	000	ale:		1:25)	Sheet 1 of 1
P	osition	: 400673.8n						on: B	OP2000		LGL			nsion		•	
			1				Datum:	Motu	riki			Sur∖					
Groundwater	Sample	es & Insitu Tests	RL (m)	Depth (m)	Graphic Log			comm	nents. (origin/geo	ding; plasticit logical unit)	y; sensitivity; additional	Moisture Condition	Consistency/ Relative Density	Per	amic Co ietrome ws/100n	ter	Structure & Other Observations Discontinuities: Depth; Defect Number; Defect Type; Dip; Defect Shape; Roughness; Aperture; Infill;
g	Depth	Type & Results			ő						gin/geological unit)	20	Rela	5	10 15	20	Seepage; Spacing; Block Size; Block Shape; Remarks
	0.5	Peak = 77kPa Residual = 30kPa				fine. (<u>Tops</u> ML: sand (Pleis	soil) SILT: with som , fine to mediu stocene Alluviu	e sand; o m. ım)	range. Low pla	asticity, mod	c. Non-plastic; sand, erately sensitive;		St				
	1.0	Peak = 122kPa Residual = 30kPa		1		plast	Clayey SILT: w icity, moderate stocene Alluviu	ly sensiti	sand; light gre	ey streaked to medium.	orange brown. Low						
	1.5	Peak = 107kPa Residual = 27kPa										м					
	2.0	Peak = 119kPa Residual = 30kPa		2		2						M	VSt				
	2.5	Peak = 137kPa Residual = 45kPa				2											
	3.0	Peak = 131kPa Residual = 42kPa		3		-											
	3.5	Peak = 140kPa Residual = 45kPa		4		brow		ell gradeo um)	ND: with some d, weathered; ; bit terminated	gravel, fine.	minor clay; light	M to W					
-				5 -													
Sh			-			OCP No		ription fo	or soil and ro	ck, CMW (Geosciences - Field	Loggir	ng Gu	ide, Re	evisior	n 3 - A	April 2018.

TEST PIT LOG - TP12Client: Kevin & Andrea MarshProject: Pencarrow Estate, 1491 Arawa Road, PongakawaSite Location: PongakawaProject No.: TGA2021-0096Date: 17/01/2022Test Pit Location: Refer to Drawing 01Logged by: BM

т	est Pit	Location: Re							Logged	by: BM	Checked b	y:	Sca			1:25		Sheet 1 of 1
F	osition	n: 400673.7r	nE;	793	197.0	OmN		ection: m: Mo	BOP200	0	LOL	ŀ			nsion			
Groundwater	Sampl	les & Insitu Tests	RL (m)	Depth (m)	Graphic Log	Soi		I; soil type;	Material D ; colour; structur	e; bedding; plast	ticity; sensitivity; additio			Consistency/ Relative Density	Dyn Per	amic Co etrome vs/100r	one ter	ablet Structure & Other Observations Discontinuities: Depth; Defect Number; Defect Type; Dip; Defect
Grour	Depth	Type & Results	R	Dep	Graph		Rock: Colou	c r; fabric; ro	comments. (origii ock name; additio	n/geological unit onal comments.) (origin/geological unit)		Moi Con	Consi Relative	5 '	0 15	20	Shape; Roughness; Aperture; Infill; Seepage; Spacing; Block Size; Block Shape; Remarks
	0.5	Peak = 61kPa Residual = 26kPa Peak = 119kPa		-		fine (Tor SP: (Ple ML: coa	Sine SAND sandy SIL) : light br luvium) T: orange	rownish grey.	Uniformly grac	ack. Non-plastic; sar ded. sensitive; sand fine			St				
	1.5	Residual = 26kPa Peak = 78kPa Residual = 29kPa		-		plas (Ple	: Clayey SIL sticity, mode istocene All	rately se	ninor sand; ligi nsitive to sens	nt grey streake itive; sand, m	ed orange brown. Lo edium.	W		VSt to St				
	2.0	Peak = 90kPa Residual = 26kPa		2 -									M					
	2.5	Peak = 104kPa Residual = 29kPa		-														
	3.0	Peak = 116kPa Residual = 29kPa		3 -										VSt				
	3.5	Peak = 130kPa Residual = 35kPa		-														
								Te	est pit termin	ated at 4.00 r	n							
			-	5 -														
		on Reason: Tar ne No: 3403	get D	epth	г	DCP N	0:											
	emarks:		ic F					000-1	n for coll -	drock Oth	N Cooccier	Field !	000	- C:	ide D			upril 2019
		i nis report	IS Da	ised c	n the	attach	iea ileia de	escriptio	on for soll an	u rock, CMV	V Geosciences - F	-ieid Li	uggir	ig Gu	ide, Re	visioi	13-F	λρπι 2018.

TEST PIT LOG - TP13 Client: Kevin & Andrea Marsh Project: Pencarrow Estate, 1491 Arawa Road, Pongakawa Site Location: Pongakawa Project No.: TGA2021-0096 Date: 17/01/2022 Test Pit Location: Refer to Drawing 01 Logg

		t Location: Re	efer t	o Dr	awin		Sca				1:2			Sheet 1 of 1
F	ositio	n:				Projection: BOP2000 Datum: Moturiki	Pit D							ı ablet
-										Dynar	nic C	one	<u>j</u> 16	Structure & Other Observations
Groundwater	Sam	ples & Insitu Tests	RL (m)	Depth (m)	Graphic Log	Material Description Soil: Soil symbol; soil type; colour; structure; bedding; plasticity; sensitivity; additional comments. (origin/geological unit)	Moisture Condition	sistency e Dens	(Pene Blows	trome s/100	eter mm)		Discontinuities: Depth; Defect Number; Defect Type; Dip; Defect
Grot	Depth	Type & Results		De	Graf	Rock: Colour; fabric; rock name; additional comments. (origin/geological unit)	ĕö	Consistency/ Relative Density	5	5 10) 15	5 20)	Shape; Roughness; Aperture; Infill; Seepage; Spacing; Block Size; Block Shape; Remarks
						OL: Organic SILT: with trace sand; dark brownish black. Non-plastic; sand, fine.								
						(Topsoil) SP: Fine SAND: light brownish grey. Uniformly graded.	м							-
						(Alluvial Sands)								-
				-	×	Pt: PEAT: dark brownish black. Low plasticity, moderately sensitive,								-
	0.7	Peak = 41kPa			- X X X X X X X X X X									
		Residual = 17kPa												-
				1 -	×									-
					× 		w							-
	1.2	Peak = 38kPa Residual = 14kPa			×									-
														-
				-	×									-
	1.7	Peak = 43kPa Residual = 20kPa			-× ->									
		riooidadi 2011 a						F						-
				2 -						_				-
														-
	2.4	Peak = 43kPa Residual = 23kPa		_	- 316 - 316 - 316									-
					-×									
					-××		W to							-
	2.9	Peak = 32kPa					S							-
		Residual = 14kPa		3 -						+			_	-
														-
						ML: Sandy SILT: greyish brown streaked orange brown. Low plasticity,								-
	3.5	Peak = 75kPa		-	: × × × ×	moderately sensitive; sand, fine to coarse. (Pleistocene Alluvium)								-
		Residual = 29kPa						St						
														-
					-X X X X X X									-
				4 -		Test pit terminated at 4.00 m								
					-									
				-										-
														-
					-									
				5 -										-
Т	erminat	ion Reason: Tar] get D		1	1								-
		ane No: 3403			0	DCP No:								
R	emarks							÷		_				
		This report	is ba	sed c	on the	attached field description for soil and rock, CMW Geosciences - Field	Loggir	ng Gu	iide,	Rev	visio	n 3	- Aj	pril 2018.

TEST PIT LOG - TP14Client: Kevin & Andrea MarshProject: Pencarrow Estate, 1491 Arawa Road, PongakawaSite Location: PongakawaProject No.: TGA2021-0096Date: 17/01/2022Test Pit Location: Refer to Drawing 01Logged by: BM

т	est Pit	Location: Re						Logged I	by: BM	Checked by: LGL		ale:		1:2			Sheet 1 of 1
Position: 400974.6mE; 793492.0mN Projection: BOP2000 Datum: Moturiki								Pit Dimensions: m by m Survey Source: pLog tablet									
						1	Datum: N	loturiki			Surv		1	e: namic		-	ADIEI Structure & Other Observations
water	Sampl	Samples & Insitu Tests			Graphic Log	Soil	il: Soil symbol: soil type:	Material De	· bedding: plastic	icity; sensitivity; additional	trion	Consistency/ Relative Density	Pe	netron	ometer 100mm)		Discontinuities: Depth; Defect
Groundwater	Depth	Type & Results	RL (m)	Depth (m)	Braphi	F	Rock: Colour; fabric;	comments. (origin/ rock name; additior	/geological unit) nal comments. (c	origin/geological unit)	Moisture Condition	Consis	-	10 1		_	Number; Defect Type; Dip; Defect Shape; Roughness; Aperture; Infill; Seepage; Spacing; Block Size;
0	Dopui										_	Rec		10 1			Block Shape; Remarks
						k i	Drganic SILT: dark	. Drownish diack.	Non-plastic; s	sand, fine.							-
]	(Tops SP: F	ine SAND: light b	prownish grey. Po	oorly graded.		D to M						
						(Alluv	vial Sands)										-
					-×	Pt: Pl dark		Low plasticity: m	oderately sen	sitive, organic, fibrous,							-
						tree s	stumps.	,,,	,	,g,,							
						(Peat	eat)										
	0.8	Peak = 49kPa Residual = 14kPa			->->->->->->->->->->->->->->->->->->->	-											
		Peak = 43kPa Residual = 14kPa Peak = 43kPa Residual = 17kPa		1 -					M to W								
						-											
	1.3				-×												
					-×												
					-×									-			
					-×	4											
					- ×												
	1.8					-											
				2		4						F					-
				2 -	-×	4											
						c.											
						4											
	2.4	Peak = 46kPa Residual = 17kPa			-316 × - -× 316	c											-
				-	316, X - - X 316,	4											
					- <u>146</u>	c					W to						1
					-X						S						
	2.9	Peak = 46kPa Residual = 12kPa			-X.	c											1
				3 -	× ***												
						6											-
						<u>.</u>											
							ine to medium SA	AND: brownish g	rey. Poorly gra	aded, interbedded with	_					2	
						(Pleis	tocene Alluvium)									3	
												L to MD				1	-
]											1	
				4 -													-
				-				Test pit terminal	ted at 4.00 m	1							-
					-												
					-												-
					-												-
					-												1
					1												
					1												-
				5 -	1								\square				_
Т	erminatio	on Reason: Tar	1 get D	epth	1										• 1		
		ne No: 3403	5 -		0	OCP No	: 14										
R	Remarks:																
		This report	is ba	ised o	on the	attache	ed field descript	ion for soil and	I rock, CMW	Geosciences - Field	l Loggii	ng Gi	uide, R	evisi	on 3	- A	pril 2018.

TEST PIT LOG - TP15 Client: Kevin & Andrea Marsh Project: Pencarrow Estate, 1491 Arawa Road, Pongakawa Site Location: Pongakawa Project No.: TGA2021-0096 Date: 18/01/2022 Test Pit Location: Refer to Drawing 01

		8/01/2022 Location: Re	ofor	to Dr	owin	g 01 Logged by: BM Checked by:	Sca	.ماد			1:2	5		Sheet 1 of 1
		n: 400622.4r				2mN Projection: BOP2000	Pit D		nsi				/ m	
			,			Datum: Moturiki								ablet
er	Samr	oles & Insitu Tests			b					Dynamic Cone Penetrometer				Structure & Other Observations
Groundwater	oum		RL (m)	Depth (m)	Graphic Log	Material Description Soil: Soil symbol; soil type; colour; structure; bedding; plasticity; sensitivity; additional comments. (origin/geological unit)	Moisture Condition	istenc e Den	((Blows/100mm)				Discontinuities: Depth; Defect Number; Defect Type; Dip; Defect
Grou	Depth	Type & Results	R	Dep	Grap	Rock: Colour; fabric; rock name; additional comments. (origin/geological unit)	Cor	Consistency/ Relative Density	5	5 10) 1:	5 20	0	Shape; Roughness; Aperture; Infill; Seepage; Spacing; Block Size;
						OL: Organic SILT: with trace sand; dark brownish black. Non-plastic; sand,		œ	H				_	Block Shape; Remarks
						fine.	D to							:
						(Topsoil) SP: Fine SAND: light brownish grey. Poorly graded.	/ м	LP						
	0.5	Peak = 43kPa		-		: dark brownish black. Low plasticity, moderately sensitive, organic, fibrous,								-
		Residual = 14kPa				tree stumps								
						(Peat)		F						
														-
					-×		M to W							
	1.0	Peak = 41kPa Residual = 20kPa		1 -										-
					× <u>"</u> *	SW: Fine to coarse SAND: grey. Well graded, pumiceous.								
					-	(Alluvial Sands)								
]			LP						
				-										-
	1.7	Peak = 43kPa			-×	Pt: PEAT: dark brownish black. Low plasticity, organic, moderately sensitive, fibrous, tree stumps.								
		Residual = 20kPa				(Peat)		F						
					<u> ×</u> ^	SW: Fine to coarse SAND: grey. Well graded, pumiceous.	-						2	
				2 -		(Pleistocene Alluvium)							3	-
]								4	
]								2	
					-								3	
				-			W to		_				4	-
							S	L to					2	
								MD					3	
									\mathbb{L}				2	-
				3 -									4	
]								4 3	
													3	
]								3	
				-		To the later with the state of the state							4	-
					-	Test pit terminated at 3.50 m								
					-									
				4 -	-									
					-									
					-									
					-									
					-									
					-									-
]									
					-									-
				-	-									
			1	5 -	-									
		ion Reason: Ho ine No: 3403	le col	lapse		CP No: 14								
					L									
•	Remarks									-				
		This report	is ba	ased c	on the	attached field description for soil and rock, CMW Geosciences - Field	Loggir	ng Gu	iide,	Kev	/ISIC	on 3	- A	pril 2018.

TEST PIT LOG - TP16 Client: Kevin & Andrea Marsh

Project: Pencarrow Estate, 1491 Arawa Road, Pongakawa Site Location: Pongakawa

Project No.: TGA2021-0096

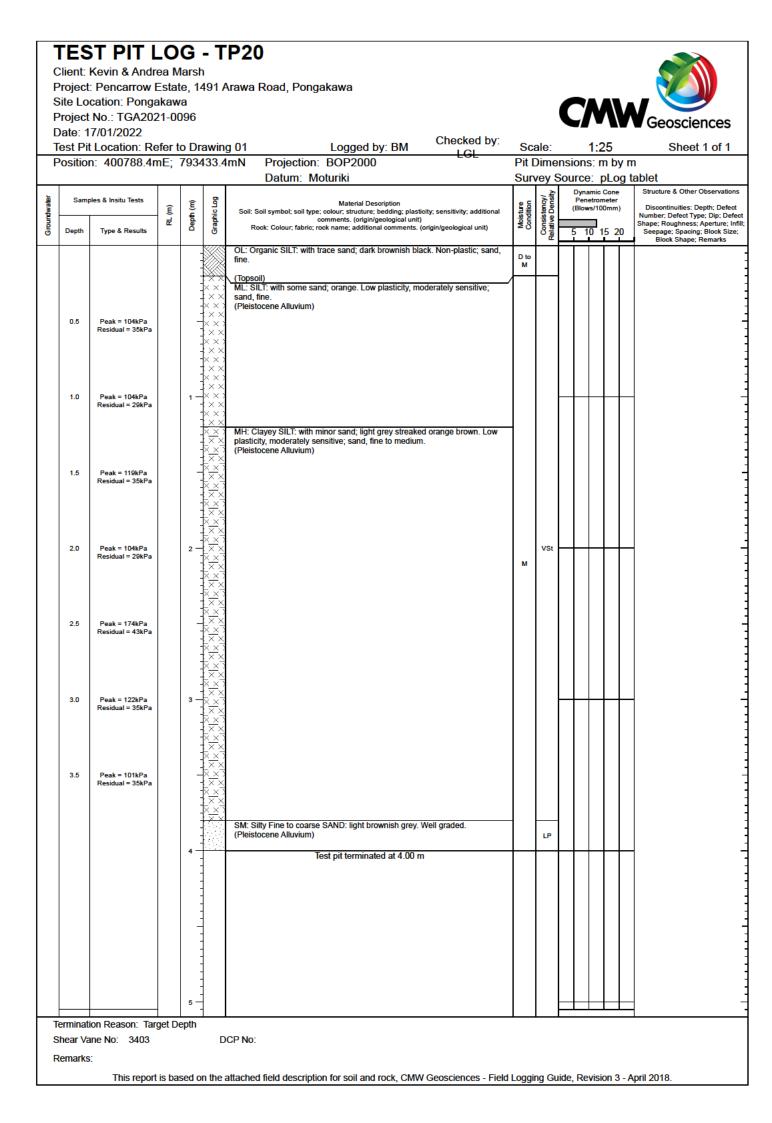
Date: 17/01/2022

		Location: Re	efer t	to Dr	awin	g 01 Logged by: Checked by:	Sca	ale:		1:2	25		Sheet 1 of 1
		n: 400640.8r			Pit [Dime		ns: r	m b	by m			
					1	Datum: Moturiki	Sur						ablet
ater	Samp	_	Ê	စိ	Material Description			Pe	namic	meter		Structure & Other Observations Discontinuities: Depth; Defect	
Groundwater	Depth	Type & Results	RL (m)	Depth (m)	Graphic Log	Soil: Soil symbol; soil type; colour; structure; bedding; plasticity; sensitivity; additional comments. (origin/geological unit) Rock: Colour; fabric; rock name; additional comments. (origin/geological unit)	Moisture Condition	Consistency/ Relative Density	(Blows/100mm) 5 10 15 20				Number; Defect Type; Dip; Defect Shape; Roughness; Aperture; Infill Seepage; Spacing; Block Size;
						OL: Organic SILT: with trace sand; dark brownish black. Non-plastic; sand,		-	Ħ	╈	Ť		Block Shape; Remarks
						fine.							
						(Topsoil)	D to M						
	0.4	Peak = 58kPa				SP: Fine SAND : light brownish grey. Poorly graded. (Alluvial Sands)		LP					
		Residual = 14kPa		-	214° X 2 2214°	Pt: PEAT : dark brownish black. Low plasticity, , moderately sensitive, organic,			1				-
					ןיאיי אויי∠⊇	fibrous, tree stumps.							
					-× ماد≓ - × ماد≓	(Peat)							
	1.0	Peak = 38kPa											
	1.0	Residual = 17kPa						F					
							w						
					×								
	1.5	Peak = 43kPa Residual = 14kPa		-									-
					× ^^ ×								
						SW: Fine to coarse SAND: with trace gravel; light grey. Well graded, pumiceous.							
				:		(Alluvial Sands)							
◄	:			2 -		from 2.00m to 2.05m, Thin organic layer			\vdash	+		-	-
					XX	ML: Sandy SILT: greyish brown streaked orange brown. Low plasticity,	-	LP					
	2.2	Peak = 67kPa Residual = 17kPa				moderately sensitive; sand, fine to coarse. (Pleistocene Alluvium)	W to S	St					
						· · · · · · · · · · · · · · · · · · ·							
					-	Test pit terminated at 2.40 m			11				
]								
				3 -					\vdash	+			-
]								
				:	1								
				-	1								-
				.	1								
				4 -]								
				1:	1								
					1								
				-	1								-
]								
]								
					1								
				5 -	1				\vdash	_	L		
	Terminati	on Reason: Ho	le coll	lapse]
		ne No: 3403			C	ICP No:							
	Remarks	:											

TEST PIT LOG - TP17 Client: Kevin & Andrea Marsh Project: Pencarrow Estate, 1491 Arawa Road, Pongakawa Site Location: Pongakawa Project No.: TGA2021-0096 Date: 17/01/2022

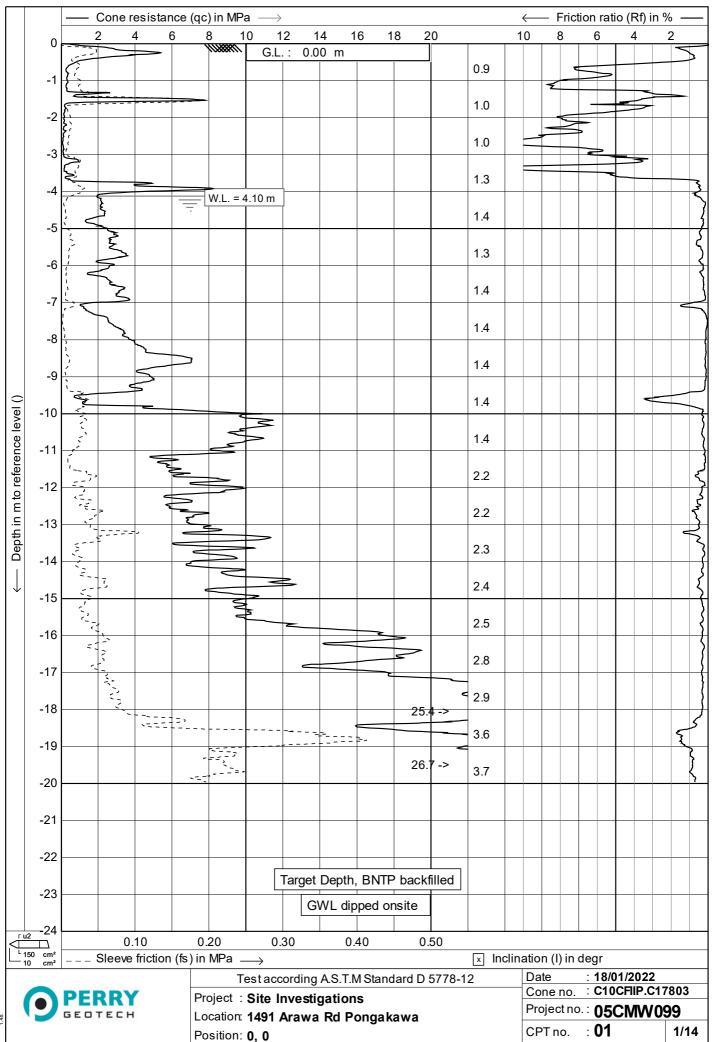
		T/01/2022 t Location: Re	efer t	to Dr	awin	ng 01		Logged I	by: BM	Checked by: LGL	Sc	ale:			1:25		Sheet 1 of 1
		n: 400865.3r					Projection:	BOP2000		LGL	Pit I	Dime		ons	: m	by n	า
	1		1	1	1	1	Datum: M	oturiki			Sur				: pL mic Co	-	ablet Structure & Other Observations
/ater	Samp	ples & Insitu Tests	Ê	Ê	Log			Material De			e e	Consistency/ Relative Density		Pene	tromet s/100m	er	Discontinuities: Depth; Defect
Groundwater			RL (m)	Depth (m)	Graphic Log	Sc	0	comments. (origin/	ty; sensitivity; additional	Moisture Condition	nsiste tive D		DIOW		,	Number; Defect Type; Dip; Defect Shape; Roughness; Aperture; Infill;	
ğ	Depth	Type & Results			ğ		Rock: Colour; fabric; ro	ock name; addition	nai comments. (or	igin/geological unit)	20	Rela	5	5 1() 15	20	Seepage; Spacing; Block Size; Block Shape; Remarks
						OL: fine		trace sand; dark	c brownish blac	k. Non-plastic; sand,							
					K	(То	osoil)				D to						
						SP	Fine SAND: light br	ownish grey. Ur	niformly graded		M		Н			1	
						: (Ple	eistocene Alluvium)									2	
					××		: Silty Fine to mediur eistocene Alluvium)	m SAND: light g	greyish yellow. F	Poorly graded.		L to MD				3	-
					×××		,									4	
					××								-			2	
					××	ML	Sandy SILT: greyist	h brown streake	d orange brow	n. Low plasticity,			۲				
				1 -	-× × - × ×		derately sensitive; sa eistocene Alluvium)	and, fine to coar	'se.								-
					X X X X X X												
						>											
	1.5	Peak = 142kPa Residual = 43kPa			(>											-
					(2											
					× × × ×	>											
						>											
	2.0	Peak = 96kPa Residual = 29kPa		2 -	(>											-
						*	: Clayey SILT: with n	ninor sand: light	t arev streaked	orange brown Low	_						
						nlas	sticity, moderately se sistocene Alluvium)			orange brown. Low							
											м	St to VSt					
	2.5	Peak = 188kPa Residual = 43kPa			×.	2											-
						Š											
						2											
						>											
	3.0	Peak = 101kPa Residual = 29kPa		3 -		>											-
						2											
						>											
	3.5	Peak = 174kPa Residual = 29kPa		-													-
						2											
				4 -	-		Т	est pit termina	ted at 4.00 m								
					1	1											
					1	1											
					1	1											
					1	1											
					1	1											
				5 -	1	1											
<u> </u>		ion Peacet. T			1												1
	Termination Reason: Target depth Shear Vane No: 3403 DCP No: 14																
	Remarks				_												
			t is ba	ised o	on the	attacl	ned field description	on for soil and	l rock. CMW	Geosciences - Field	l Loaai	na Gi	uide	Rev	/ision	3 - A	pril 2018.
L									,		39.	5.54	-,				•

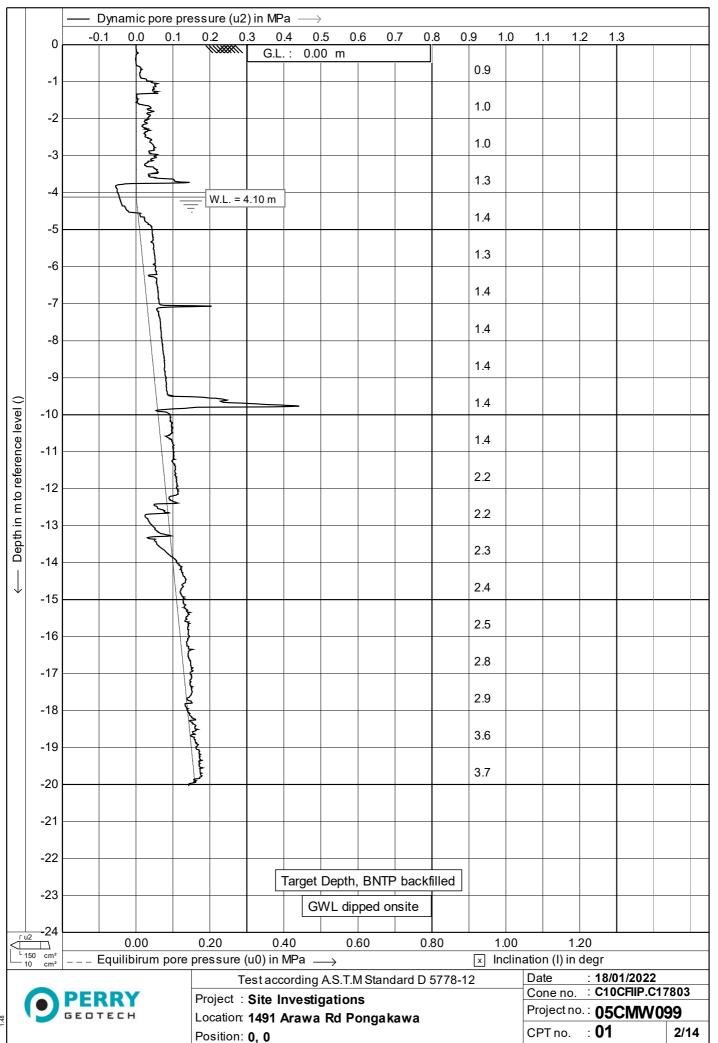
TEST PIT LOG - TP18 Client: Kevin & Andrea Marsh Project: Pencarrow Estate, 1491 Arawa Road, Pongakawa Site Location: Pongakawa Project No.: TGA2021-0096 Date: 17/01/2022 Test Pit Location: Refer to Drawing 01 Logged by: BM

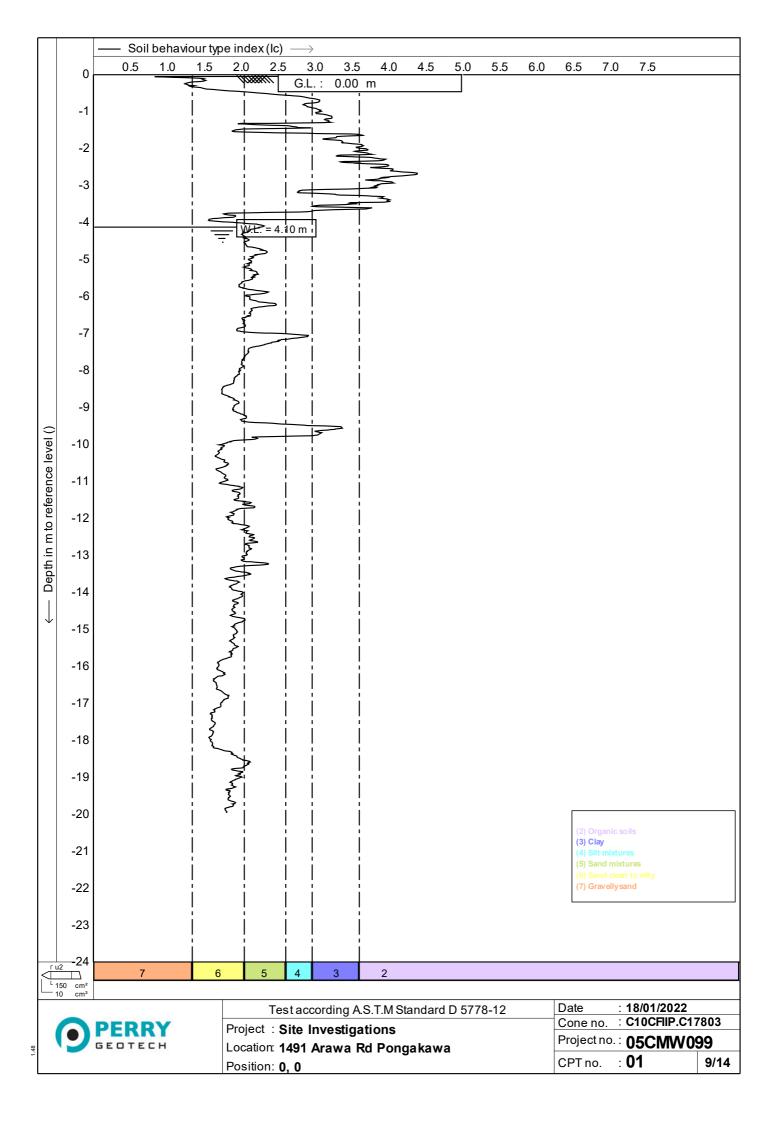


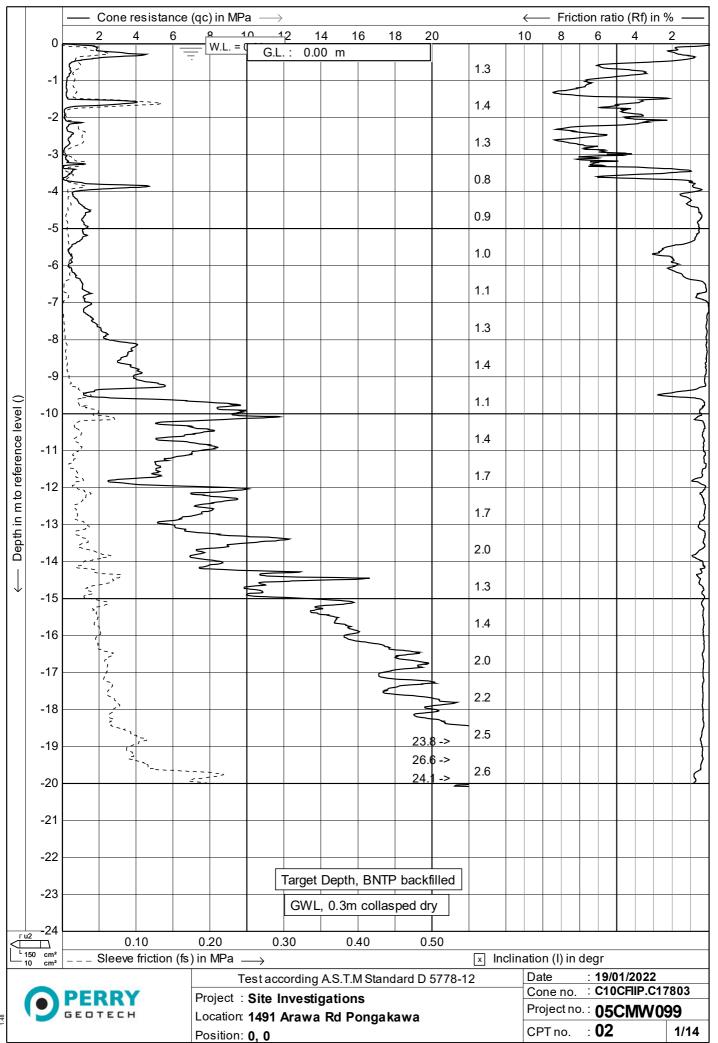
		Location: Re	efer	to Dr	awin	ig 01	Logged by: BM	Checked by: LGL	Sc	ale:		1:25	Sheet 1 of 1
		: 400924.0r					: BOP2000	LGL	Pit [Dime	nsion	s: m by	m
	1			1		Datum: M	loturiki		Sur		1	e: pLog	1
Groundwater	Sampl	es & Insitu Tests	RL (m)	Depth (m)	Graphic Log		comments. (origin/geological	plasticity; sensitivity; additional unit)	Moisture Condition	Consistency/ Relative Density	Pen	amic Cone etrometer /s/100mm)	Structure & Other Observations Discontinuities: Depth; Defect Number; Defect Type; Dip; Defect Shape; Roughness; Aperture; Infili;
Gro	Depth	Type & Results		De	Gra		rock name; additional commer		≥ŏ	Con Relati	5 1	0 15 20	Shape, Roughness, Aperture, Imili, Seepage; Spacing; Block Size; Block Shape; Remarks
						fine.	trace sand; dark brownish	n black. Non-plastic; sand,	D to M				
					<u>х т</u>		rownish grey. Poorly grad		M to				
				-	× ™_ × ™_ × ™_ × ™_	Pt: PEAT: dark brownish organic, fibrous, tree st	h black. Low plasticity, mo umps.	oderately sensitive,	W				-
	0.7	Peak = 43kPa Residual = 17kPa				ML: Sandy SILT: light bi sand, fine to medium. (Matua Subgroup)	rownish grey. Low plastici	ity, moderately sensitive;					
	1.2	Peak = 75kPa Residual = 41kPa		1 -					м	F to St			
	1.8	Peak = 75kPa Residual = 20kPa					minor sand; light grey. Lov	u placticity; cand find to	_				-
◄				2 -		medium. (Matua Subgroup) at 2.20m, Interbedde		w plasticity, sand, line to		-			
	2.5	Peak = 119kPa Residual = 46kPa							W to	VSt			-
	3.0	Peak = 104kPa Residual = 41kPa		3 -					s				
	3.5	Peak = 116kPa Residual = 26kPa					Test pit terminated at 3.6	50 m					-
					-	'	Set presentation at 3.0						
				4 -									
				-									-
					-								
				5 -	-								
—	erminati	on Reason: Hol			1								-
		ne No: 3403		apae	D	DCP No:							
F	Remarks:												
		This report	is ba	ised o	n the	attached field descripti	on for soil and rock, C	MW Geosciences - Field	Loggi	ng Gu	iide, Re	vision 3 -	April 2018.

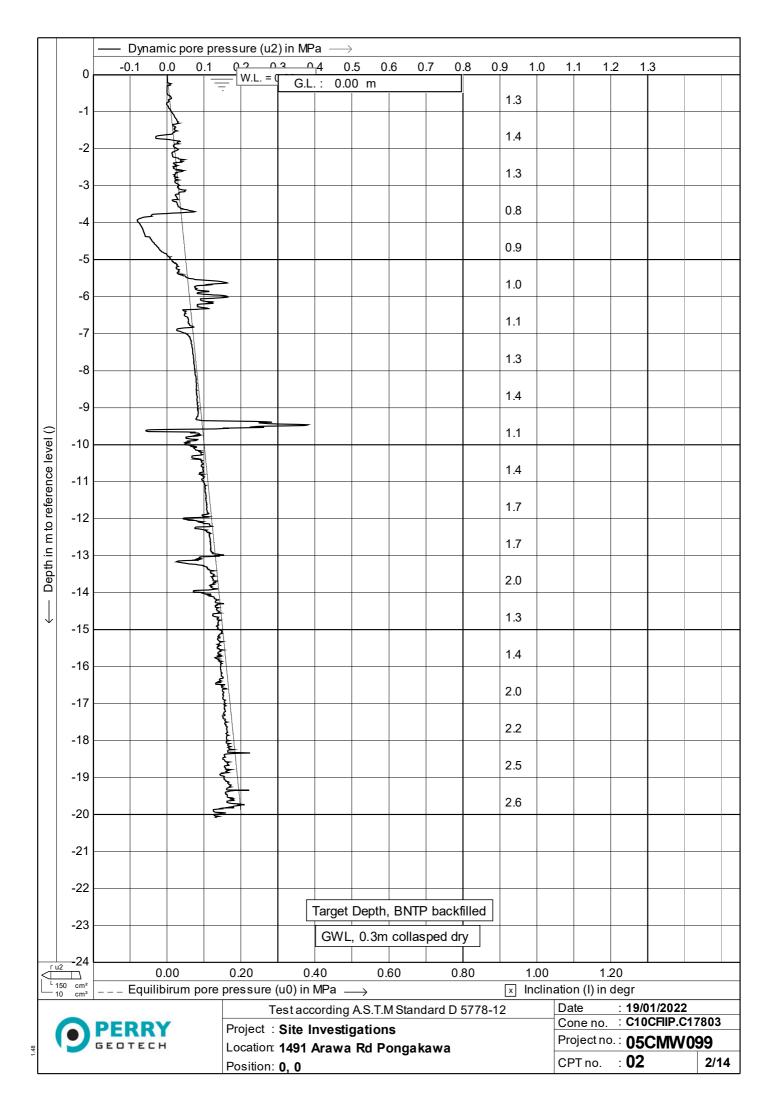
TEST PIT LOG - TP19 Client: Kevin & Andrea Marsh Project: Pencarrow Estate, 1491 Arawa Road, Pongakawa Site Location: Pongakawa Project No.: TGA2021-0096 Date: 17/01/2022

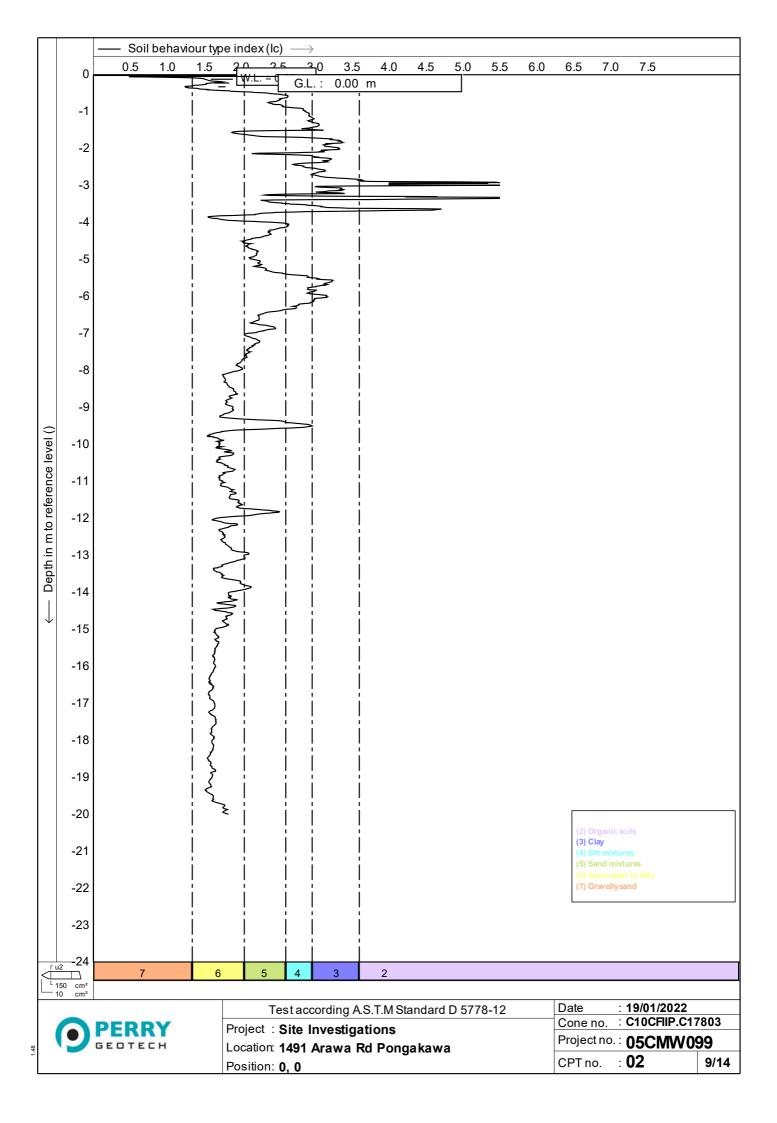

		Location: Re	efer t	to Dr	awin	g 01		Logge	d by:	Checked by	y:	Sca	ale:		1:	25		Sheet 1 of 1
F	Positio	n: 400988.8r	nE;	7934	144.7			: BOP2000)	LOL	F			nsio				
						Da	atum: M	oturiki				Sur∖	_	D	nami	c Cone		ablet Structure & Other Observations
Groundwater	Samp	bles & Insitu Tests	ests E		Graphic Log	Soil: Soil sy	mbol; soil type	Material De e; colour; structure;		city; sensitivity; addition	nal	Moisture Condition	Consistency/ Relative Density	P	enetro	ometer 00mm		Discontinuities: Depth; Defect
Bround	Depth	Type & Results	RL (m)	Depth (m)	Graph		(comments. (origin/	/geological unit)	origin/geological unit)	:	Mois Cond	Consis elative	5	10	15 2	20	Number; Defect Type; Dip; Defect Shape; Roughness; Aperture; Infill; Seepage; Spacing; Block Size;
Ľ						OL: Organi	c SILT: with t	trace sand: dark	k brownish bla	ck. Non-plastic; san	nd.		0 ¥	Ĭ		10 2	ĭ	Block Shape; Remarks
						fine.		liaco cana, aan		isiti riori pidotio, odi	.u,							-
						(Topsoil)												-
	0.4	Peak = 43kPa			$(\times \times $		L: SILT: orange. Low plasticity, moderately sensitiv leistocene Alluvium)	rately sensitive	e to sensitive.								-	
		Residual = 26kPa		-	t x x x x >	3												-
					$(\times \times \times \times \times)$	2												-
												D to M						-
	0.9	Peak = 61kPa				3							F to St					
		Residual = 32kPa		1 -		2									+	_		-
					$(\times \times)$													-
					X X X X X	at 1.20n	n, becoming	light brown										-
					$(\times \times)$													-
	1.5	Peak = 127kPa Residual = 26kPa		-		MH: Clayey	SILT: light b	prown streaked	orange. Low p	plasticity, moderately	у							-
						sensitive to (Pleistocen	e Alluvium)											-
																		-
	2.0	Peak = 142kPa Residual = 29kPa		2 -	(-
																		-
					k.	3												-
	0.5	D																-
	2.5	Peak = 119kPa Residual = 29kPa											VSt					-
												м						-
																		-
	3.0	Peak = 142kPa		3 -		at 2.90n	n, contains m	ninor sand										-
		Residual = 38kPa				-												-
																		-
																		-
	3.5	Peak = 116kPa		-	$\left \begin{array}{c} \times \times \\ \times \end{array} \right\rangle$	2												-
		Residual = 43kPa																-
						SW: Fine to white Well	coarse SAN graded, pun	ND: with minor g	gravel and trac	ce silt; light yellowisl	h							
						(Pleistocen												-
				4 -			Т	Test pit termina	ited at 4.00 m	1					-			
																		-
					-													-
																		-
				-														-
					1													-
					-													-
					1													-
				5 -	1												1	-
		ion Reason: Tar ine No: 3403	get D	epth		CP No:												
	Remarks				U													
'			t is ha	ised o	n the	attached fiel	d descriptio	on for soil and	d rock CMW	Geosciences - F	Field I d	nunc	na Gi	ide F	levi	sion	3 - A	pril 2018.
L										2000000000		33.1	.9 00	, 1			. /\	F = 0.10.

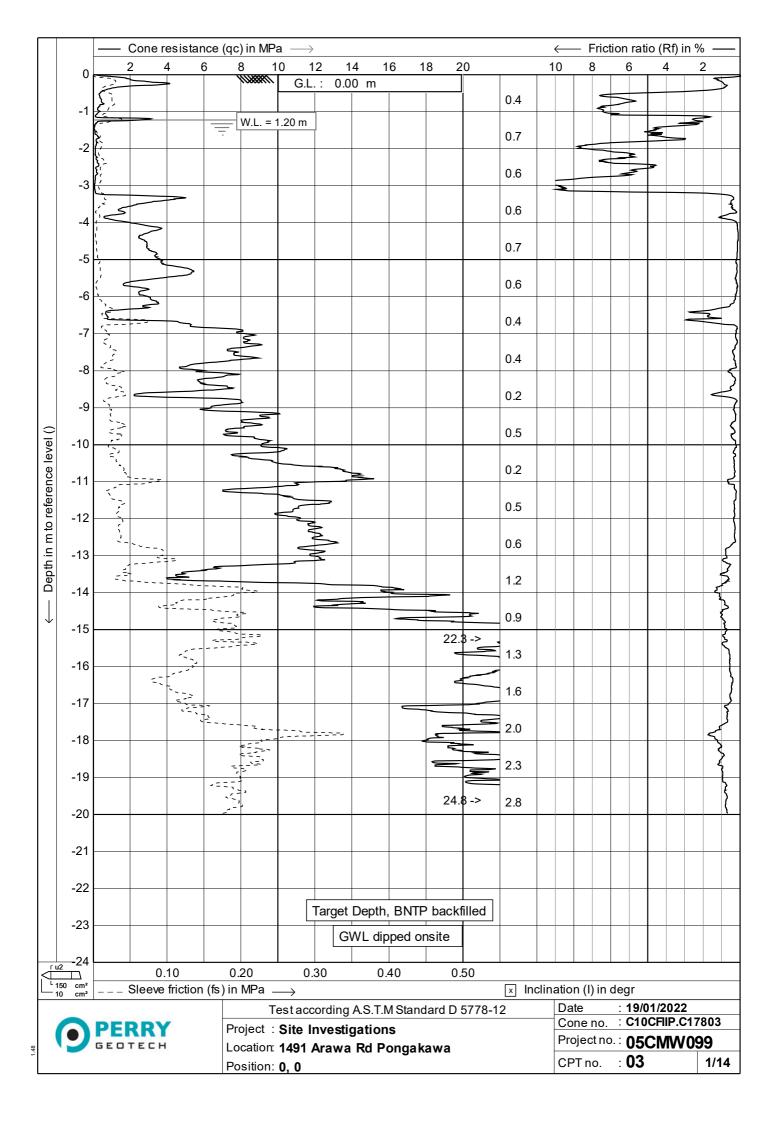


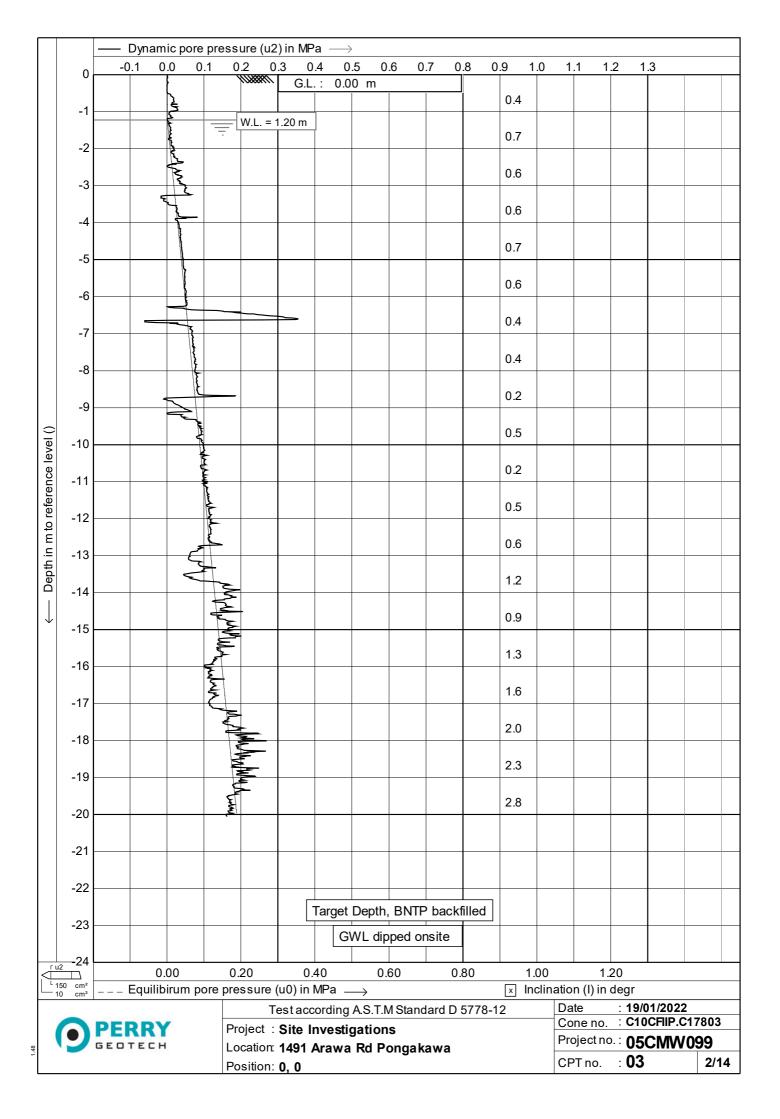

TEST PIT LOG - TP21	
Client: Kevin & Andrea Marsh	
Project: Pencarrow Estate, 1491 Arawa Road, Ponga	akawa
Site Location: Pongakawa	
Project No.: TGA2021-0096	
Date: 18/01/2022	
Test Pit Location: Refer to Drawing 01	Logge

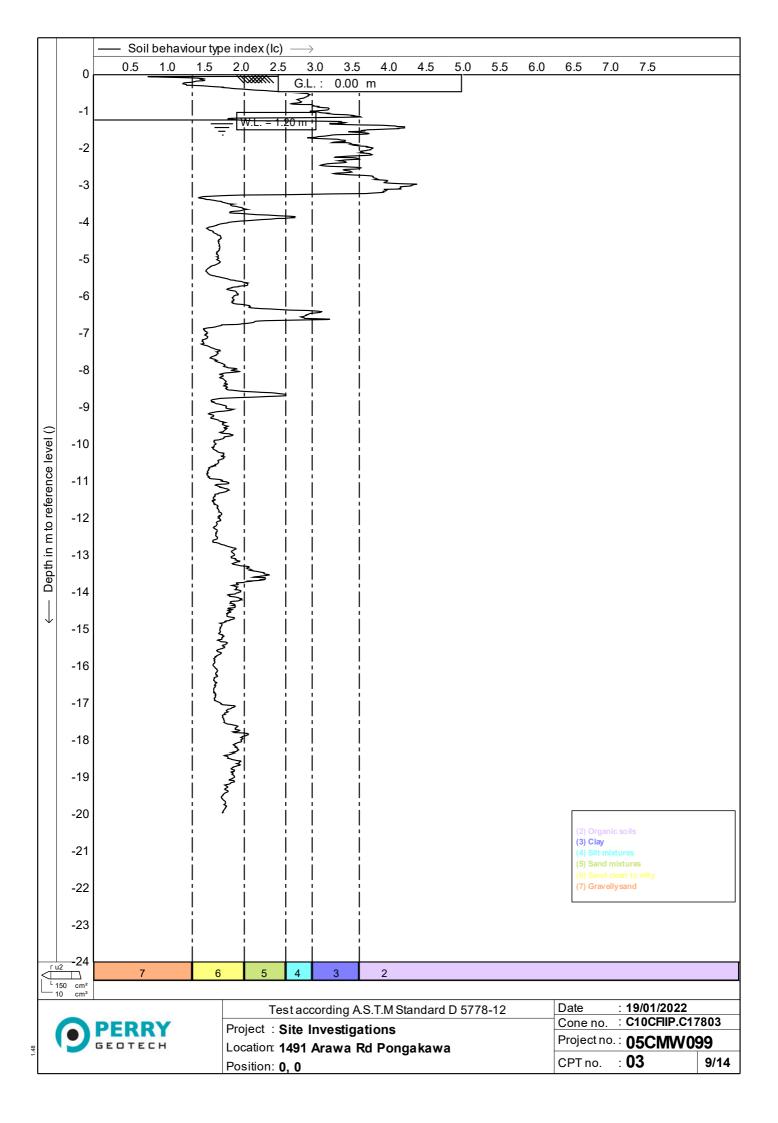


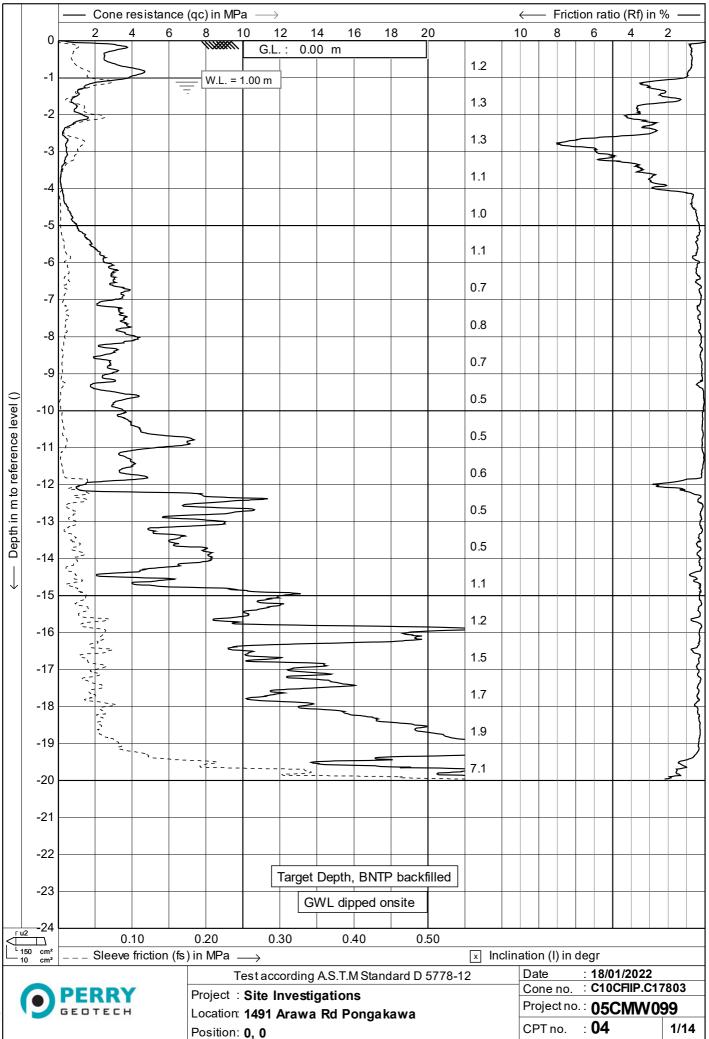

		Location: Re	efer t	to Dr	awin	ng 01	Logged by: BM	Checked by: LGL	Sc	ale:		1:2	5	Sheet 1 of 1
		n: 400672.7r				6mN Projection	n: BOP2000	LGL	Pit [Dime	ensio	ns: m	ı by	m
_	1		1	1		Datum: N	Ioturiki		Sur		1			tablet
ater	Samp	les & Insitu Tests	2	Ê	Log		Material Description		e e	Consistency/ Relative Density	Pe	namic C netrom ows/100	eter	Structure & Other Observations Discontinuities: Depth; Defect
Groundwater			RL (m)	Depth (m)	Graphic Log		be; colour; structure; bedding; pla comments. (origin/geological u	nit)	Moisture Condition	nsiste tive D		JWS/100)	Number; Defect Type; Dip; Defect Shape; Roughness; Aperture; Infill;
ğ	Depth	Type & Results			ő	Rock: Colour; fabric;	rock name; additional comment	s. (origin/geological unit)	20	Rela	5	10 1	5 20	Seepage; Spacing; Block Size; Block Shape; Remarks
						OL: Organic SILT: with fine.	trace sand; dark brownish	black. Non-plastic; sand,						
					K	8			D to M					
					$(x \times x)$	(Topsoil) ML: SILT: light orange. (Pleistocene Alluvium)	Low plasticity.							
					×÷	MH: Clayey SILT: with	minor sand; light grey strea	ked orange brown. Low						
	0.5	Peak = 90kPa Residual = 17kPa		-		plasticity, moderately s	sensitive; sand, fine to medi	um.						-
					KX)									
	1.0	Peak = 87kPa Residual = 23kPa		1 -		3								-
										St				
									M to W					
	1.5	Peak = 75kPa Residual = 35kPa		-										-
		Residual – SSRFa				3								-
						>								
						>								
	2.0	Peak = 93kPa		2 -										
		Residual = 35kPa												
×														
				-		SW: Fine to coarse SA (Pleistocene Alluvium)	ND: grey. Well graded, pun	niceous.					3	-
													4	
									W to S	L to MD			4	
													2	2
				3 -			Tost pit terminated at 2.00) m					4	۰ ــــــــــــــــــــــــــــــــــــ
							Test pit terminated at 3.00							
														-
				4 -										
			<u> </u>	5 -										
	Termination Reason: Hole collapse													
	Shear Vane No: 3403 DCP No: 14													
	Remarks:		ie -	ocd.	n +h -	attached field descript	ion for acil and a sta	MA Coopeieres	100-	n~ ^	ide T	ourie !	n 0	April 2018
		i nis report	IS Da	ised 0	in ine a	anached field descript	tion for soil and rock, CM	www.Geosciences - Field	Loggi	ng Gl	nue, R	evisio	113-	April 2010.

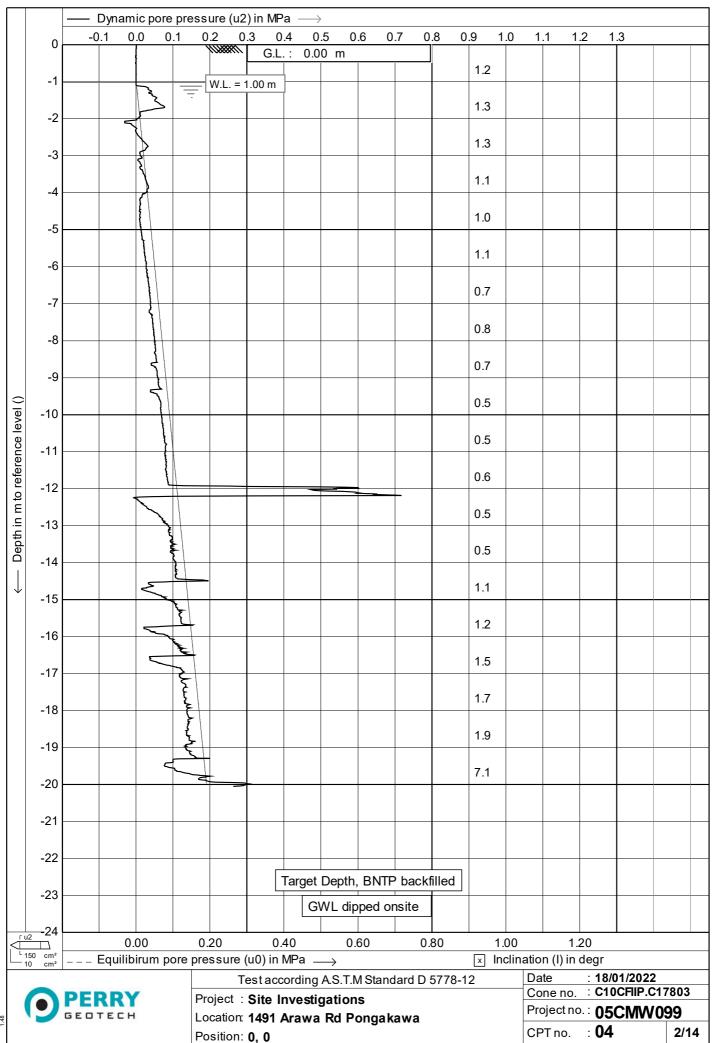


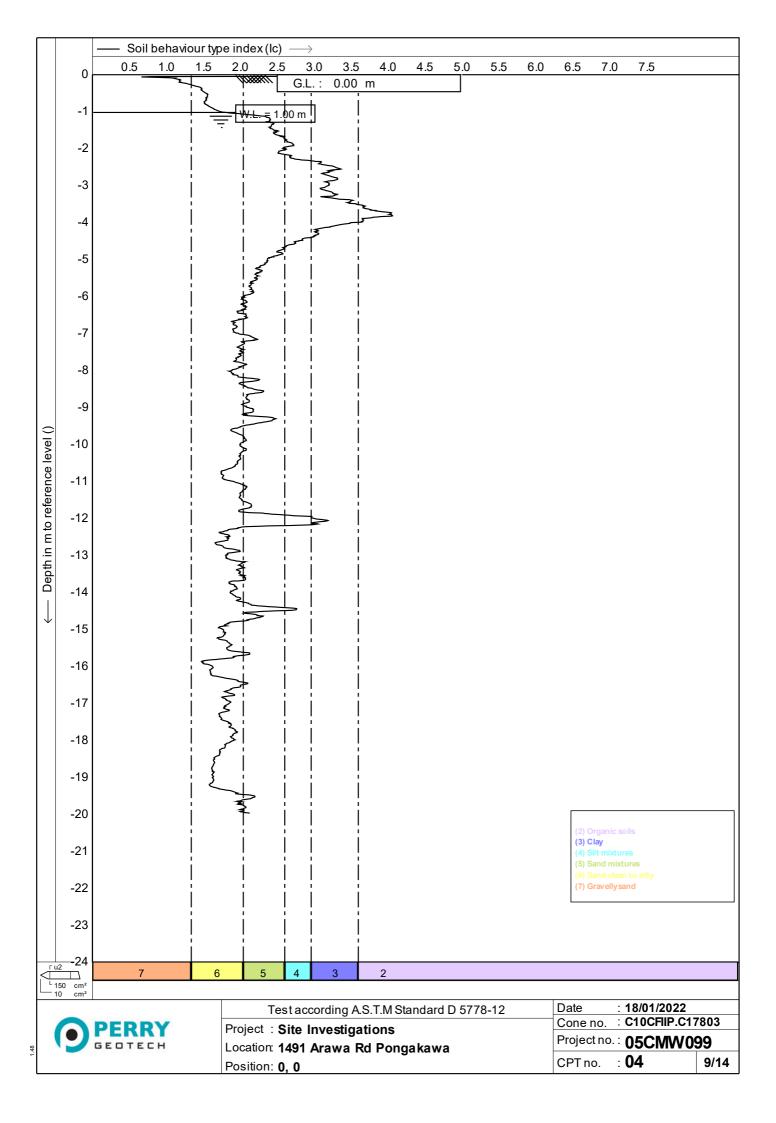


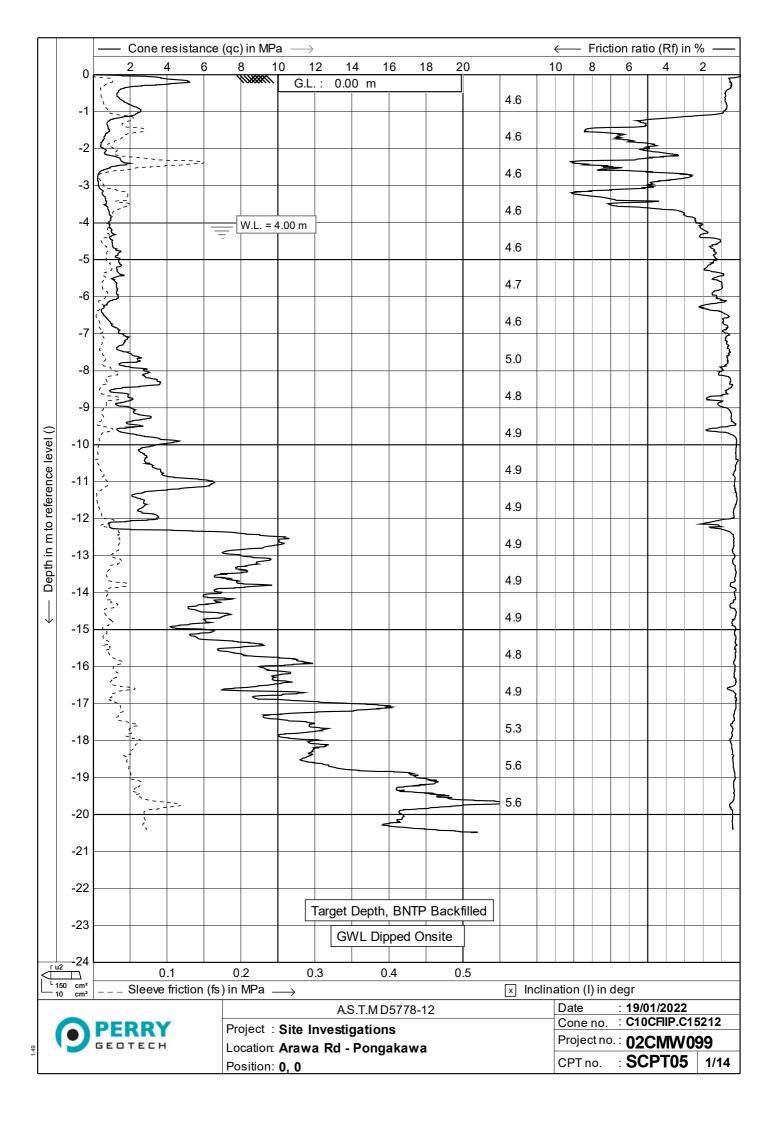


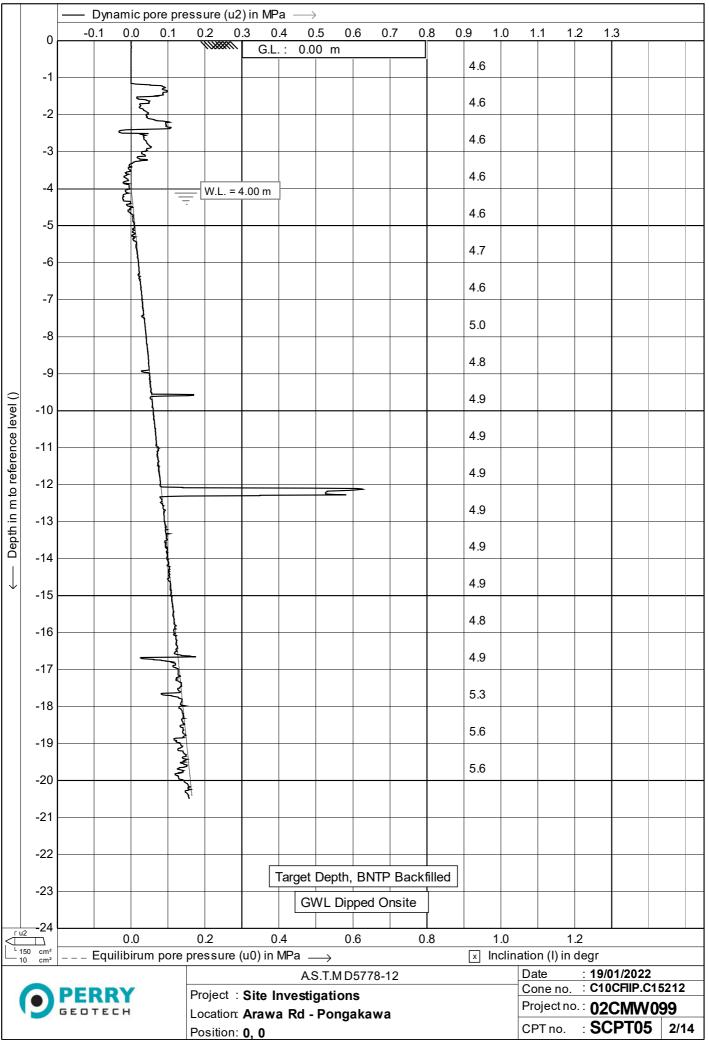


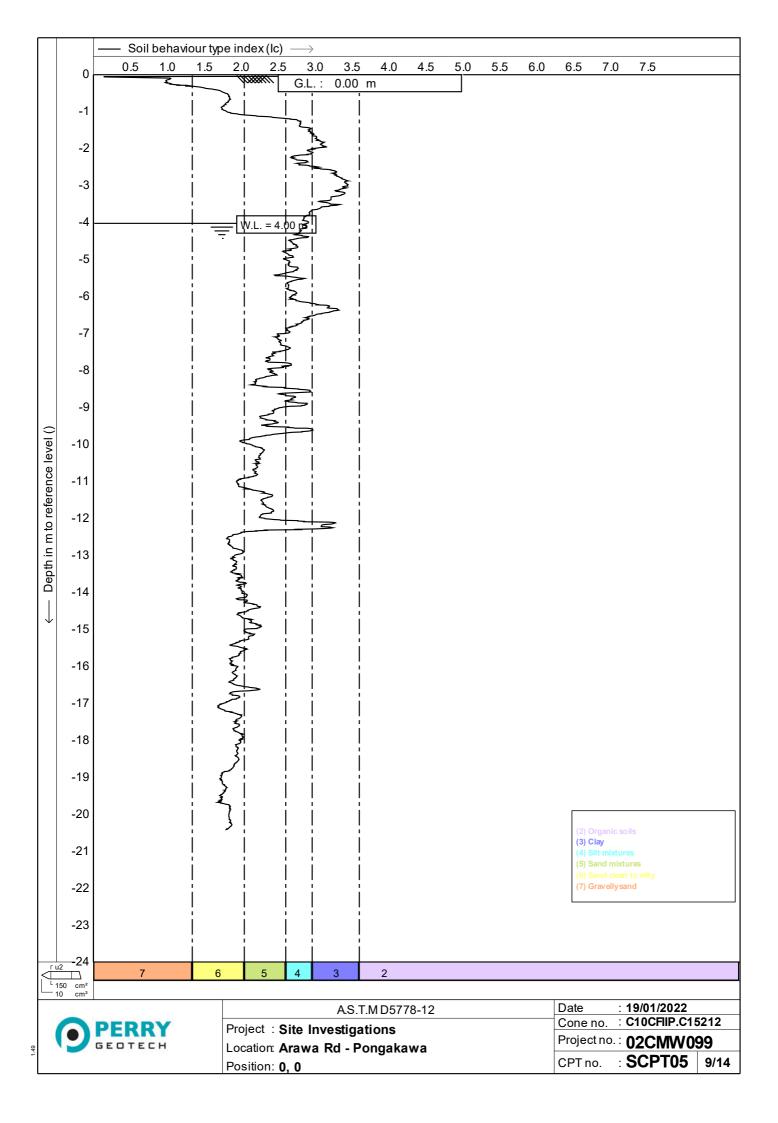


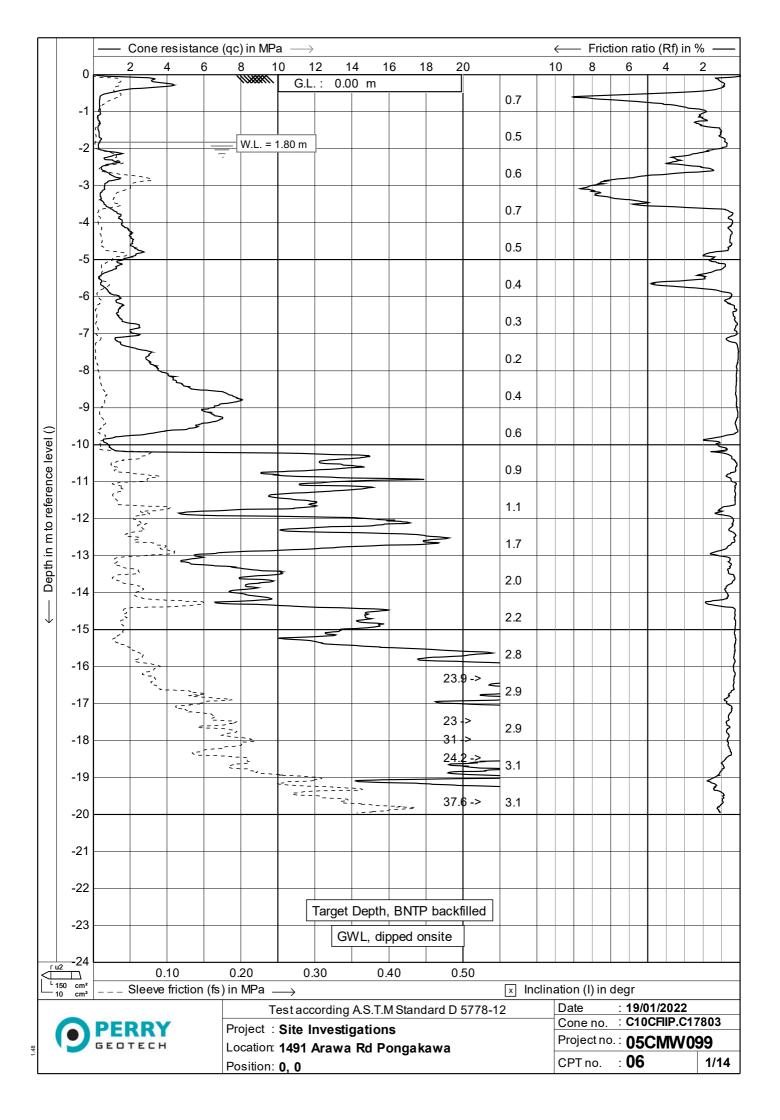


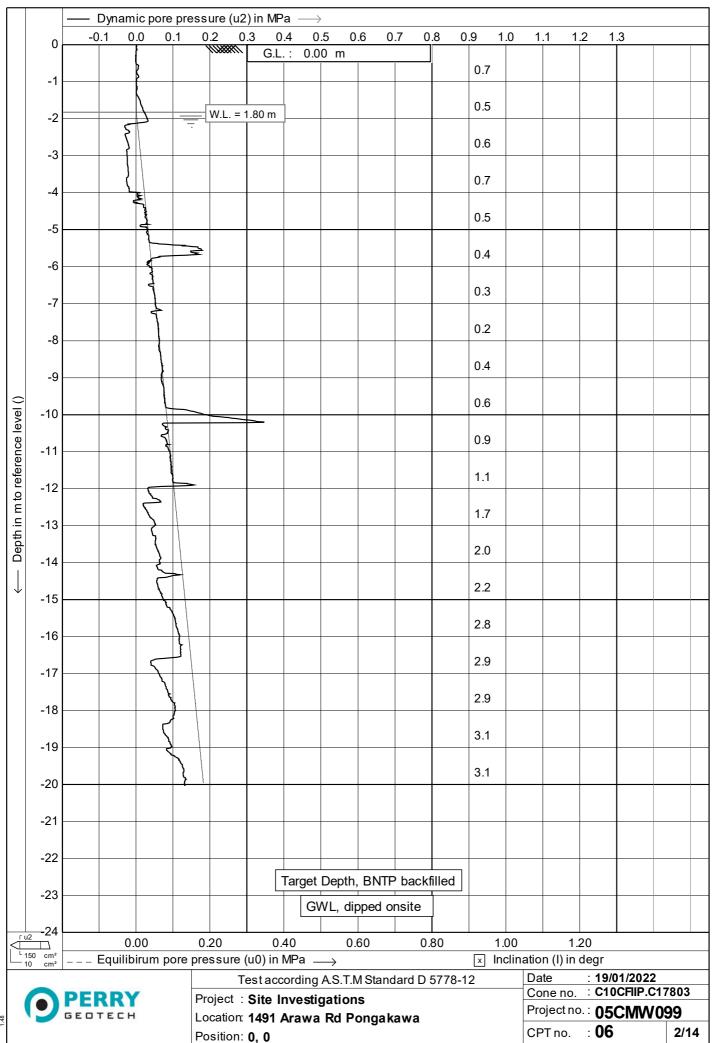


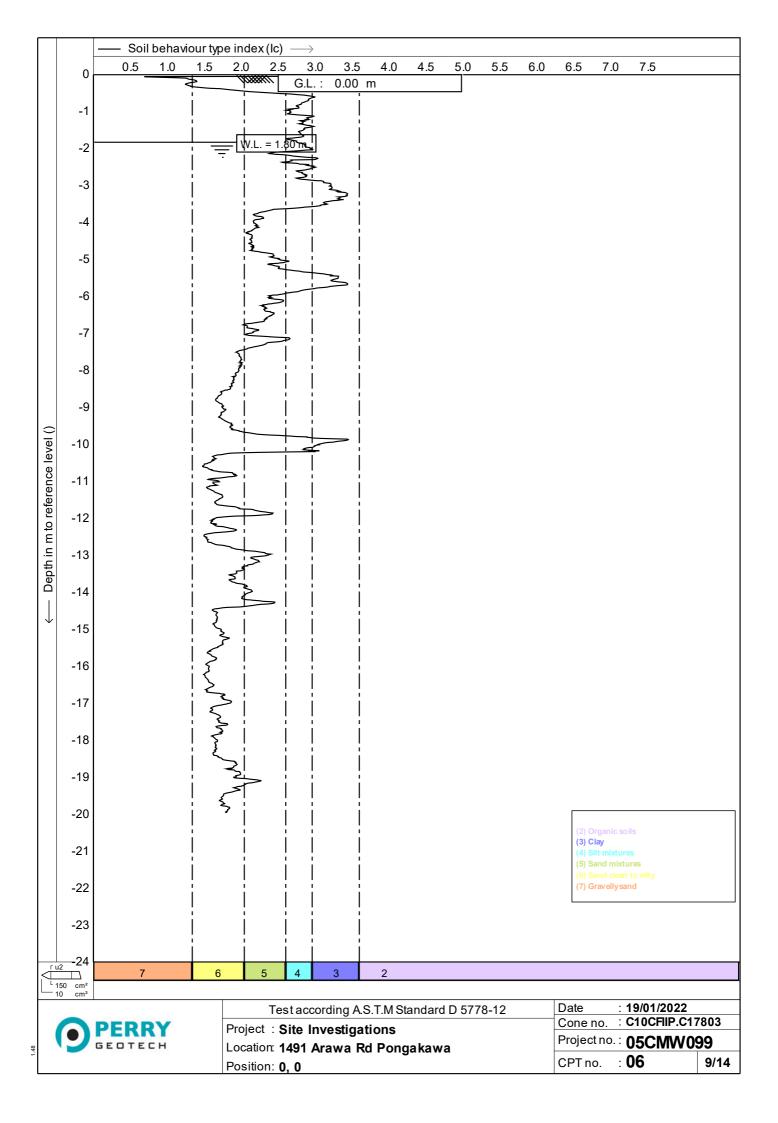


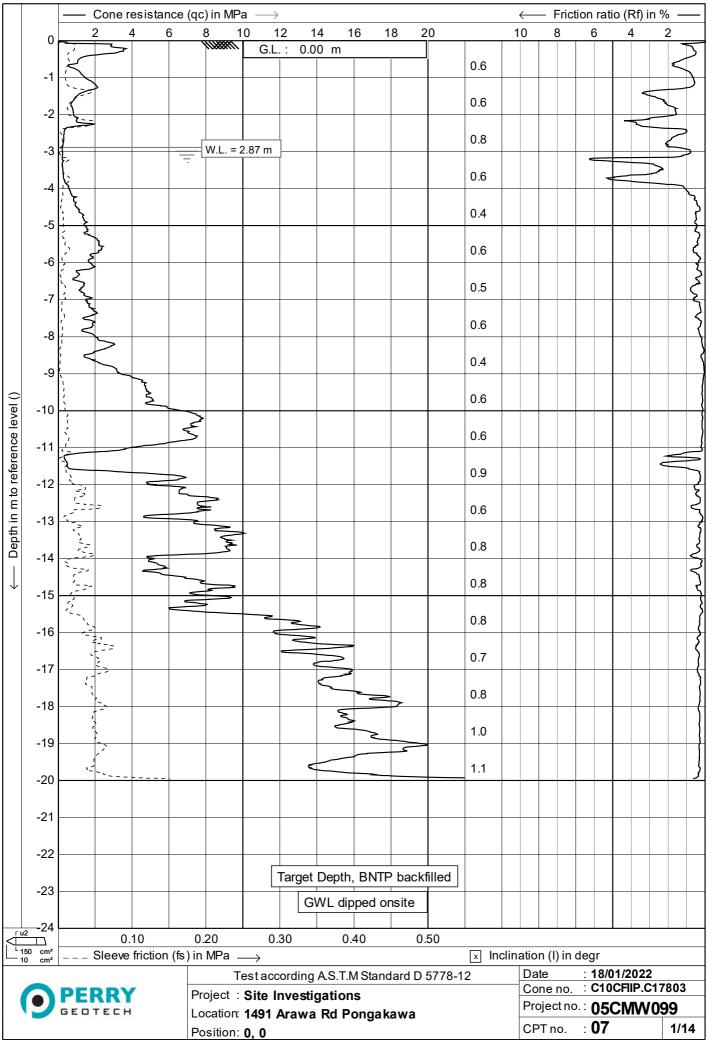


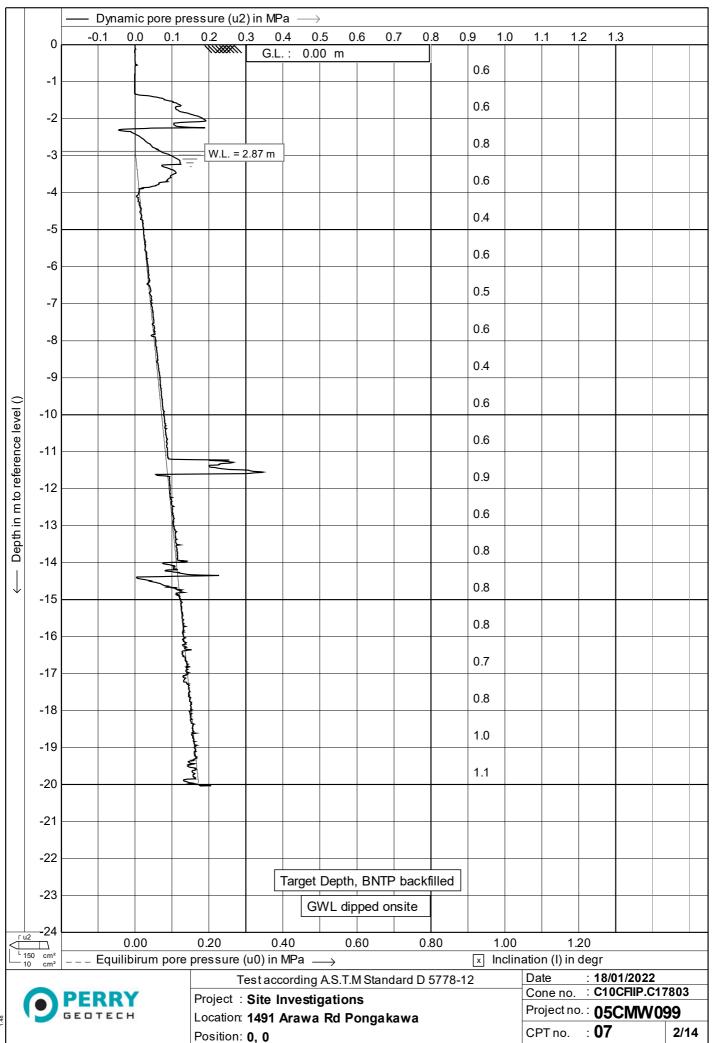


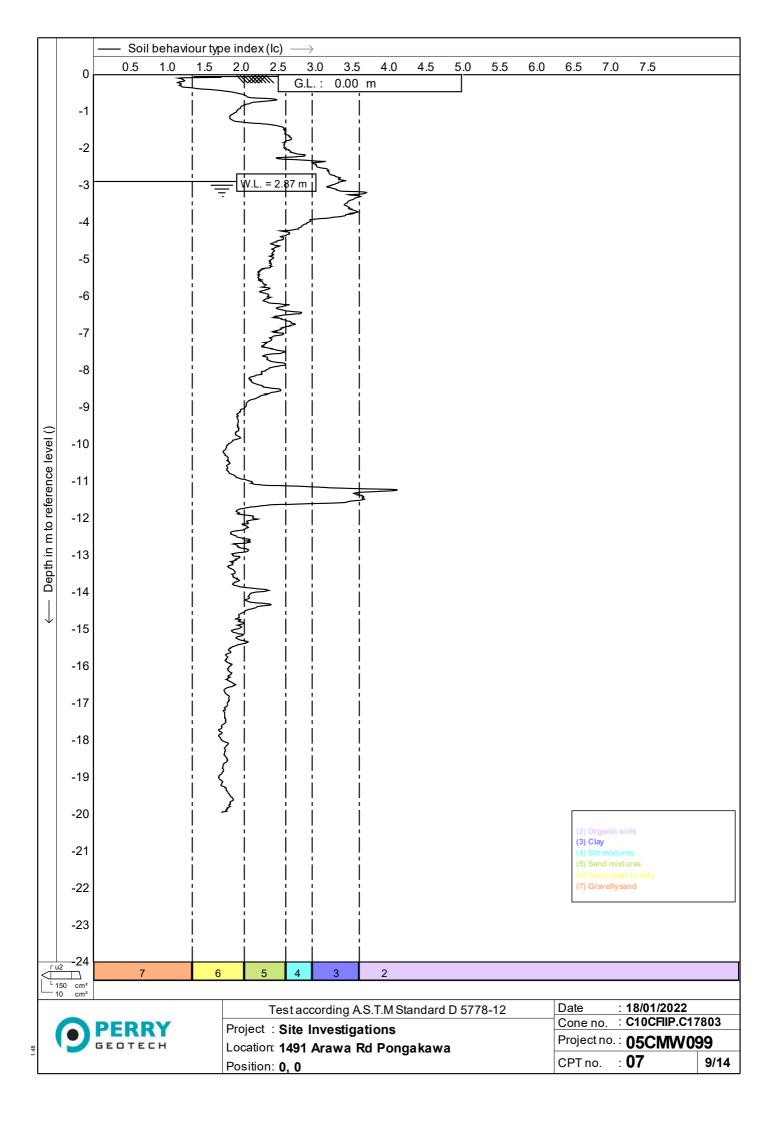


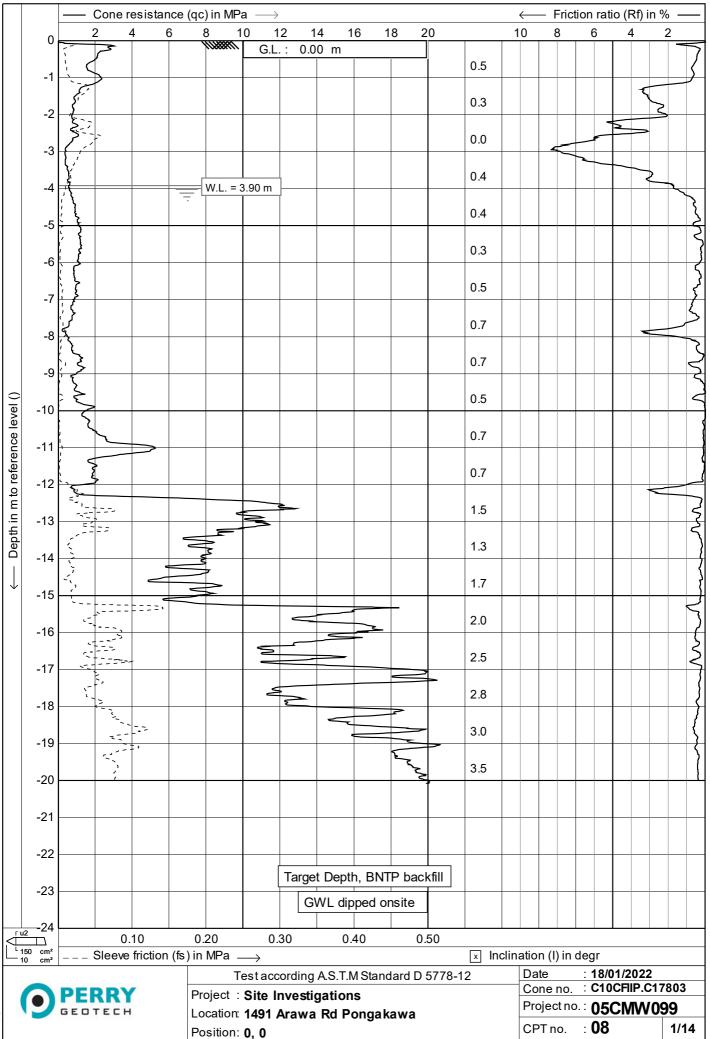


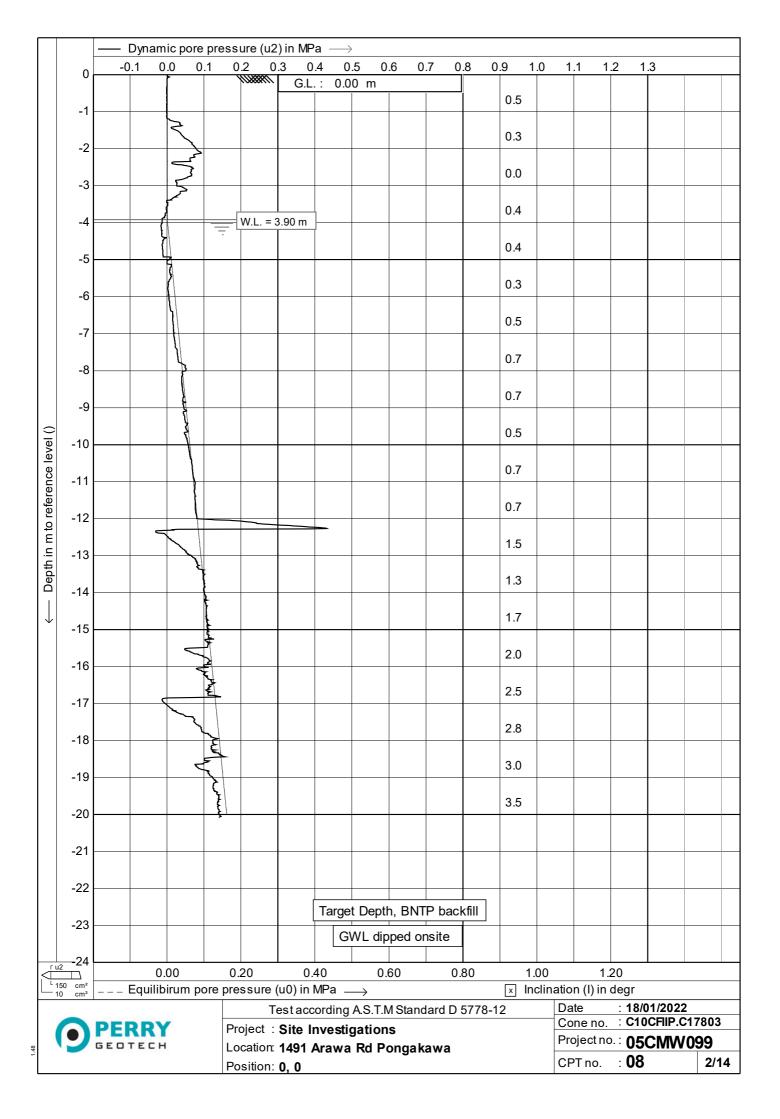


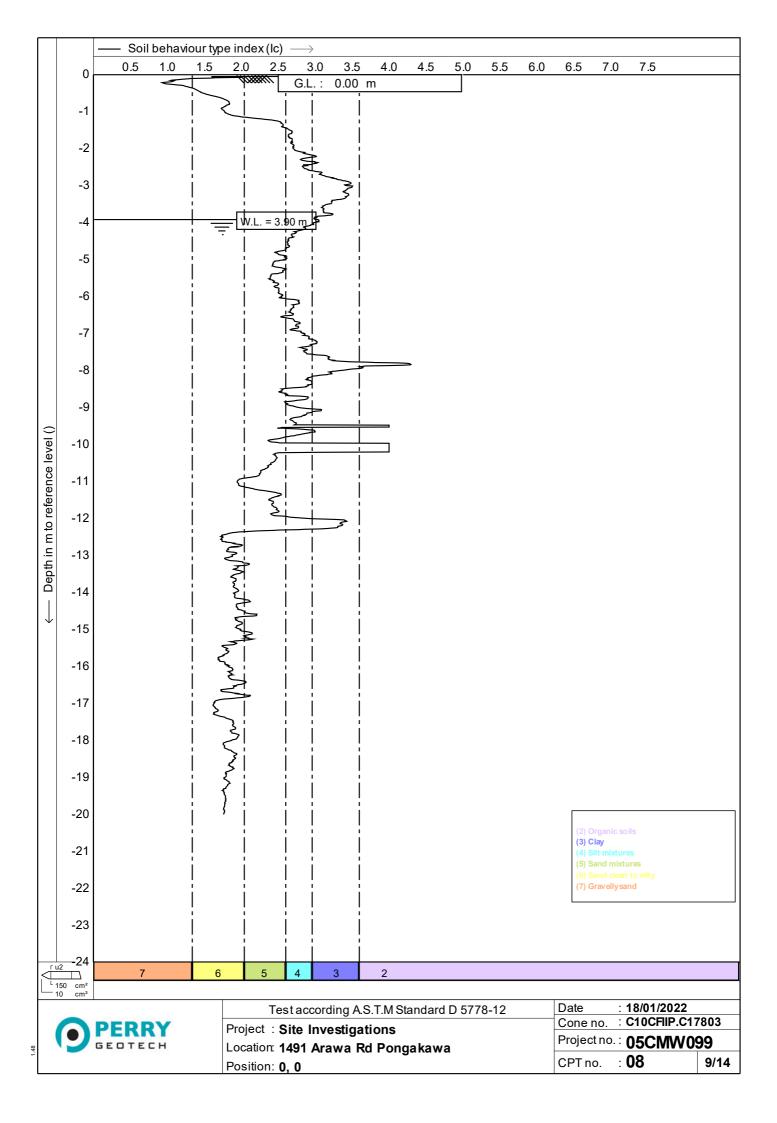


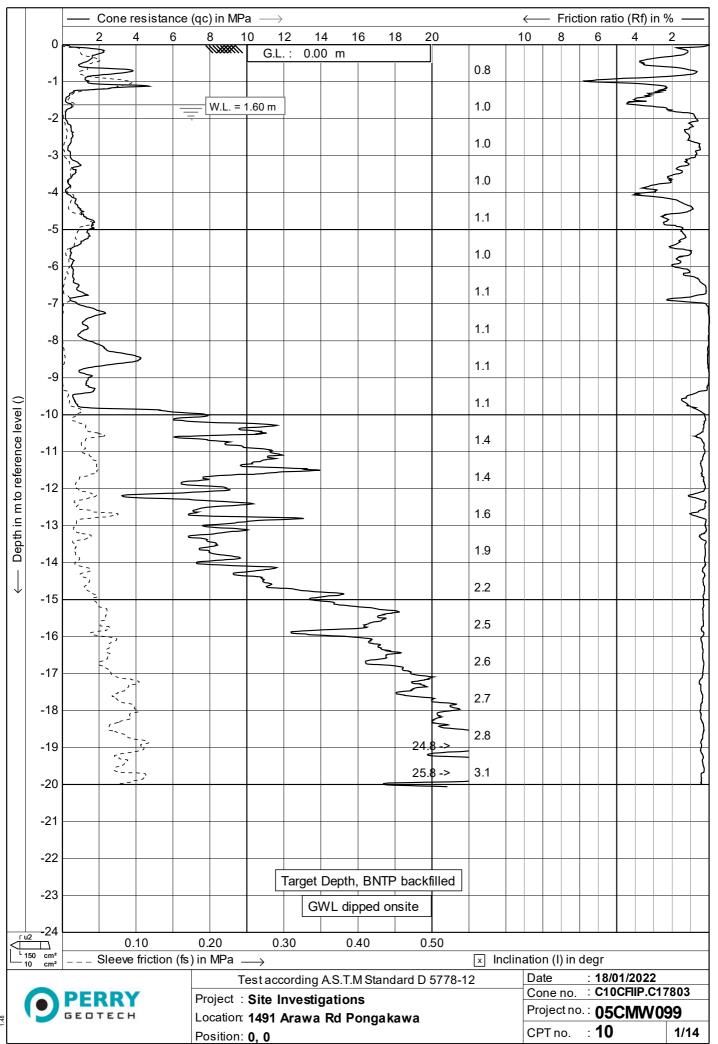


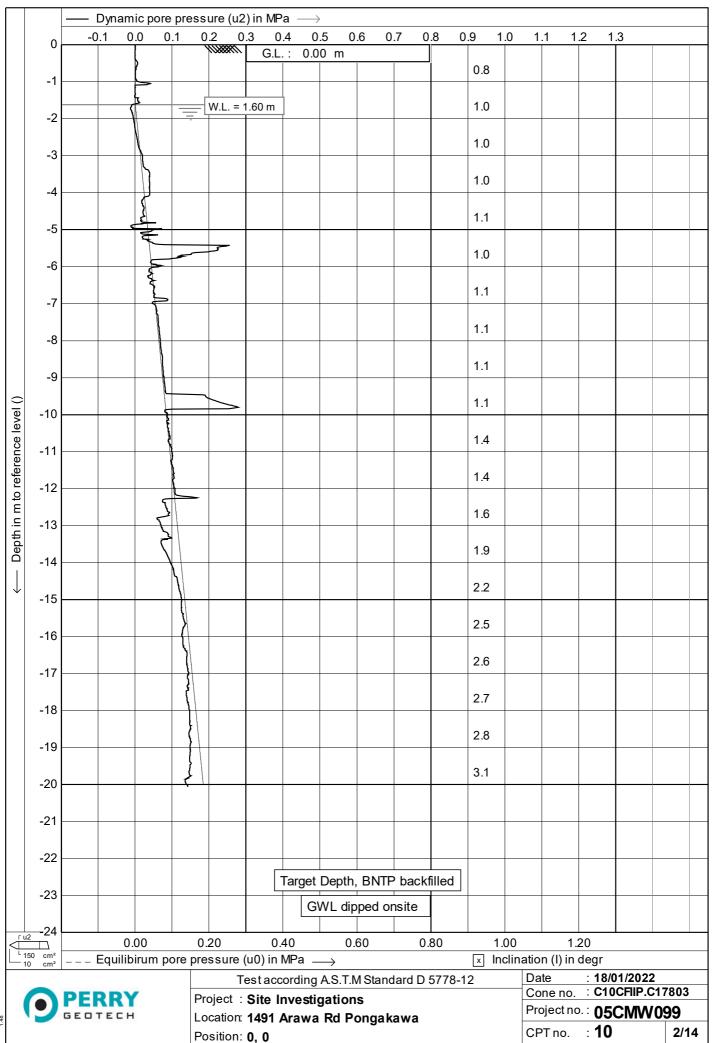


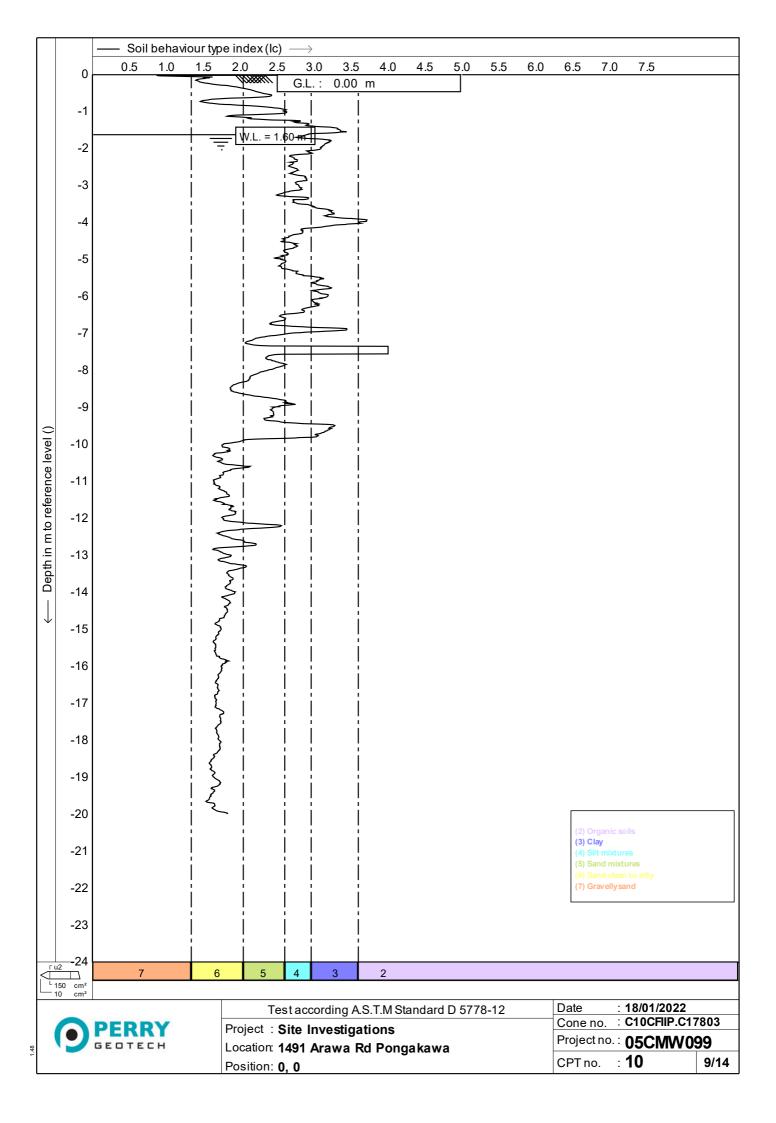


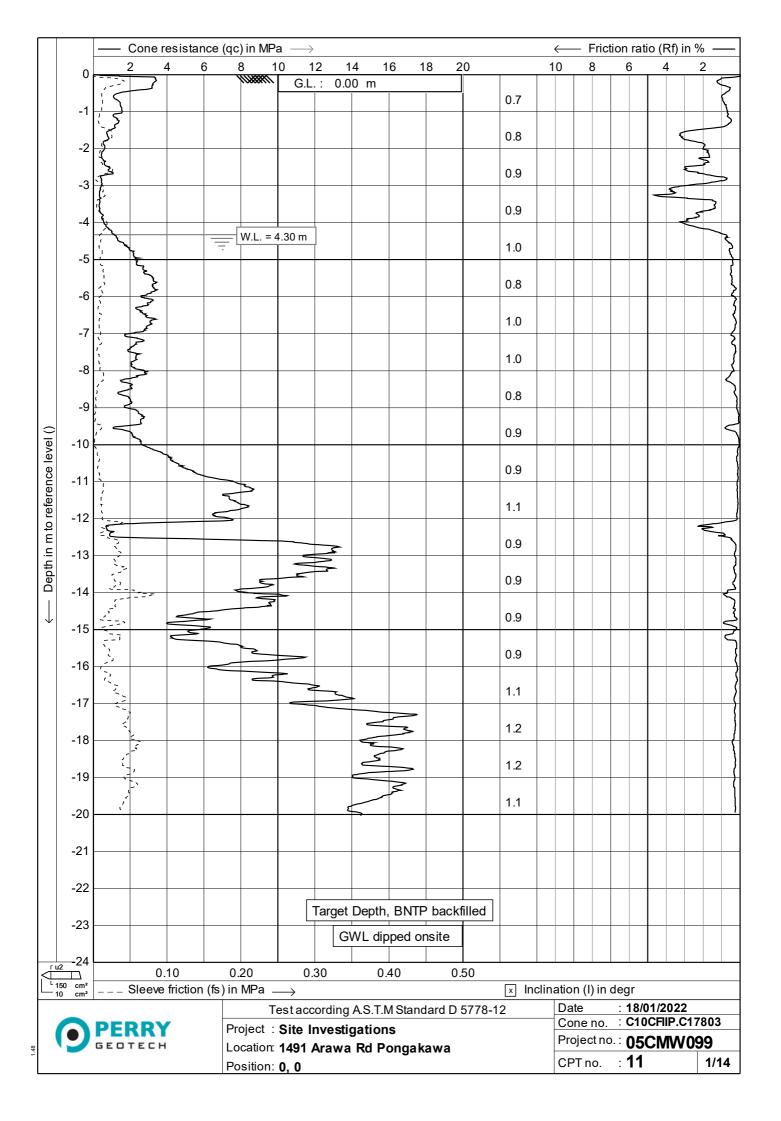


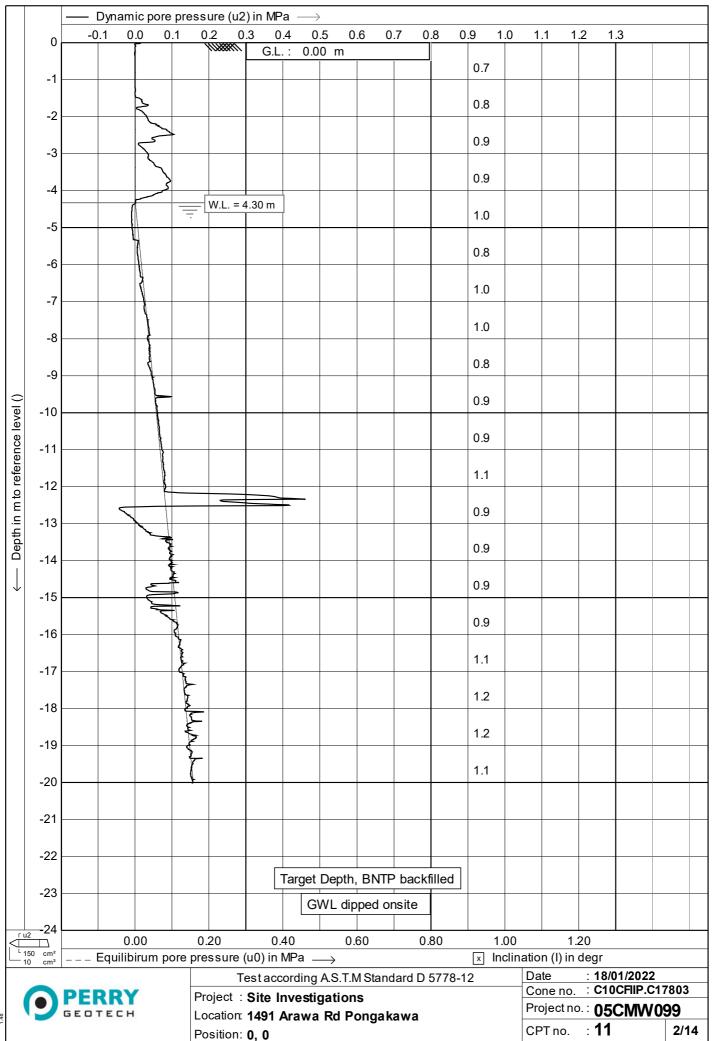


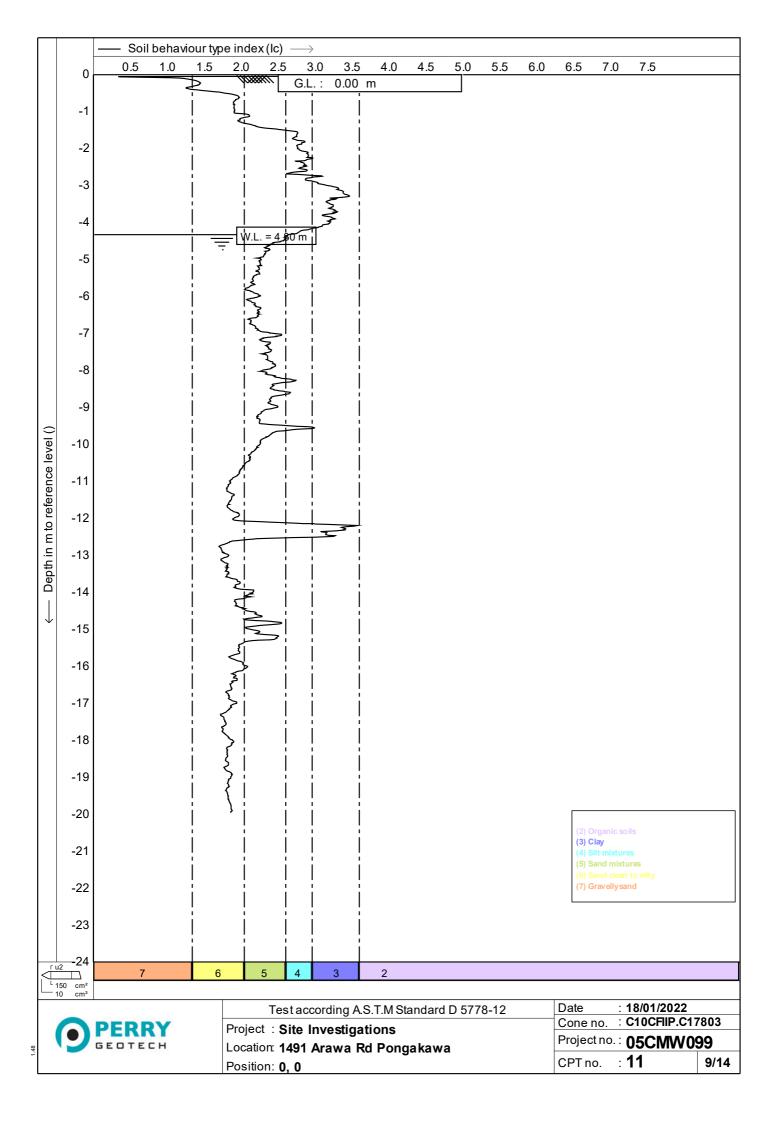


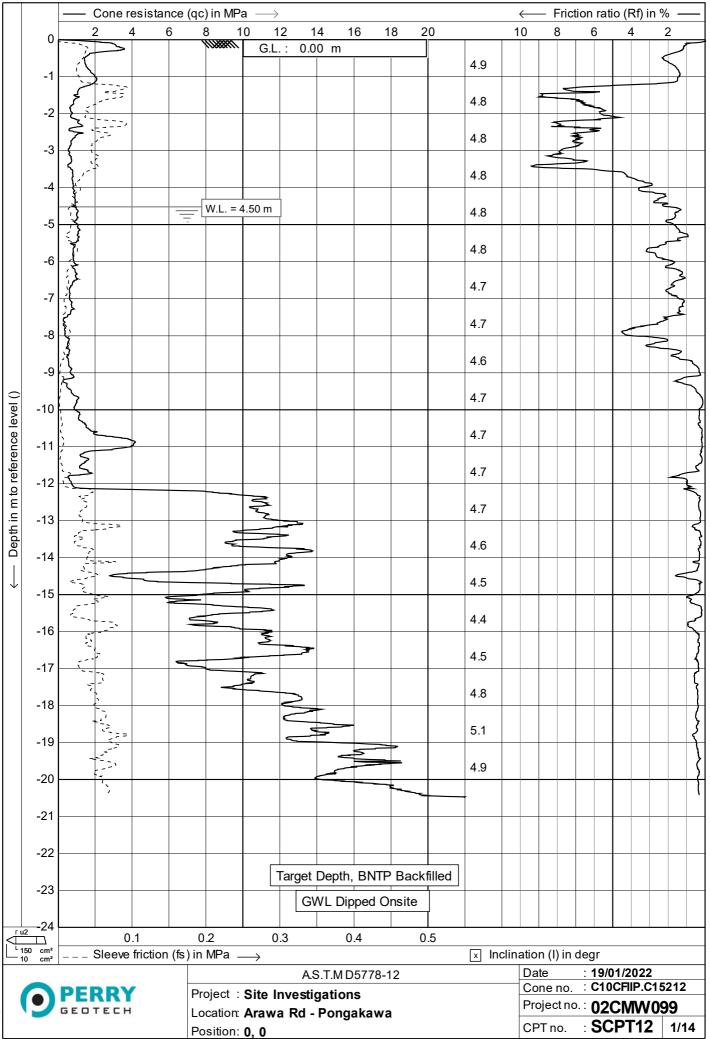


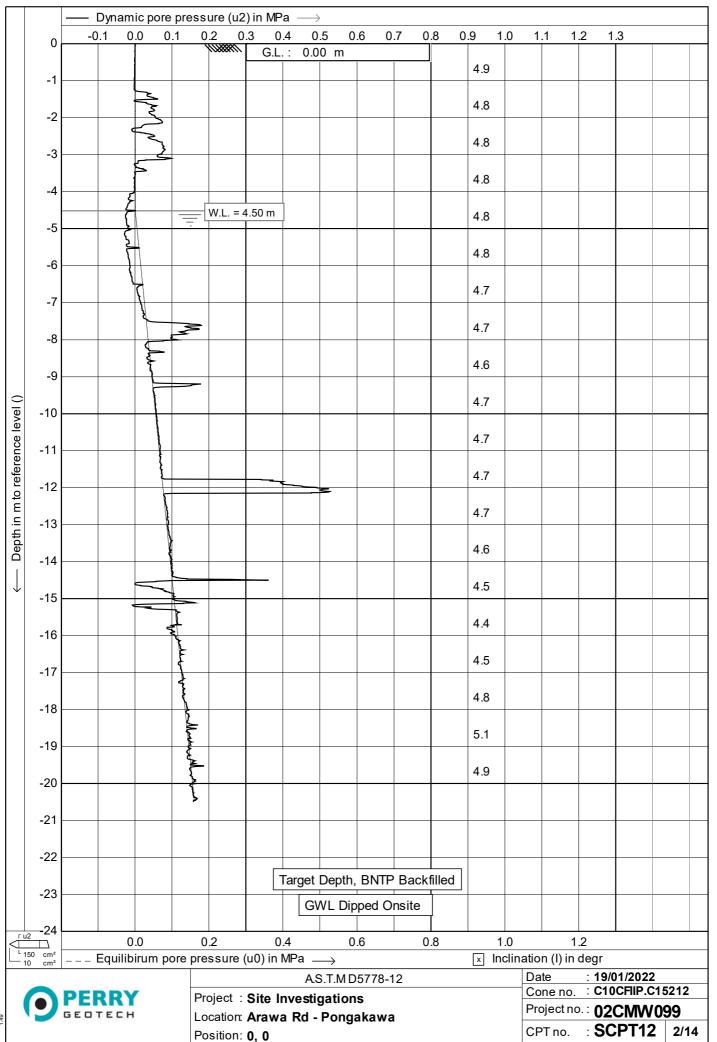


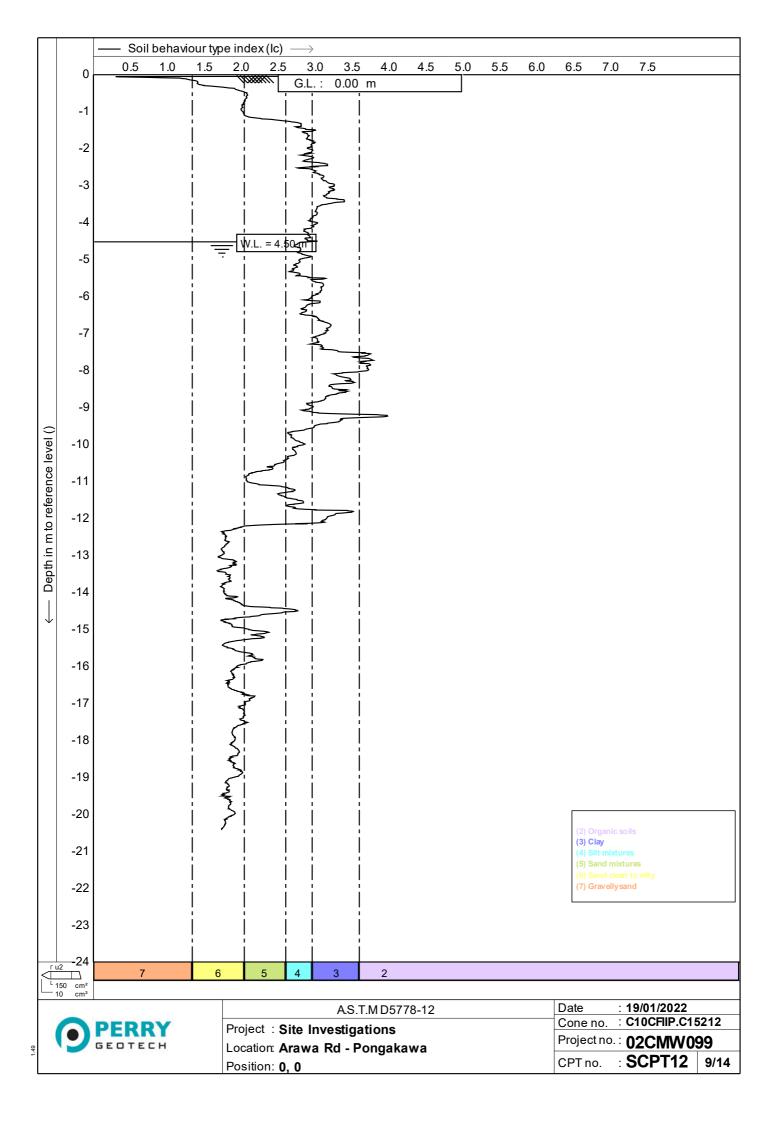


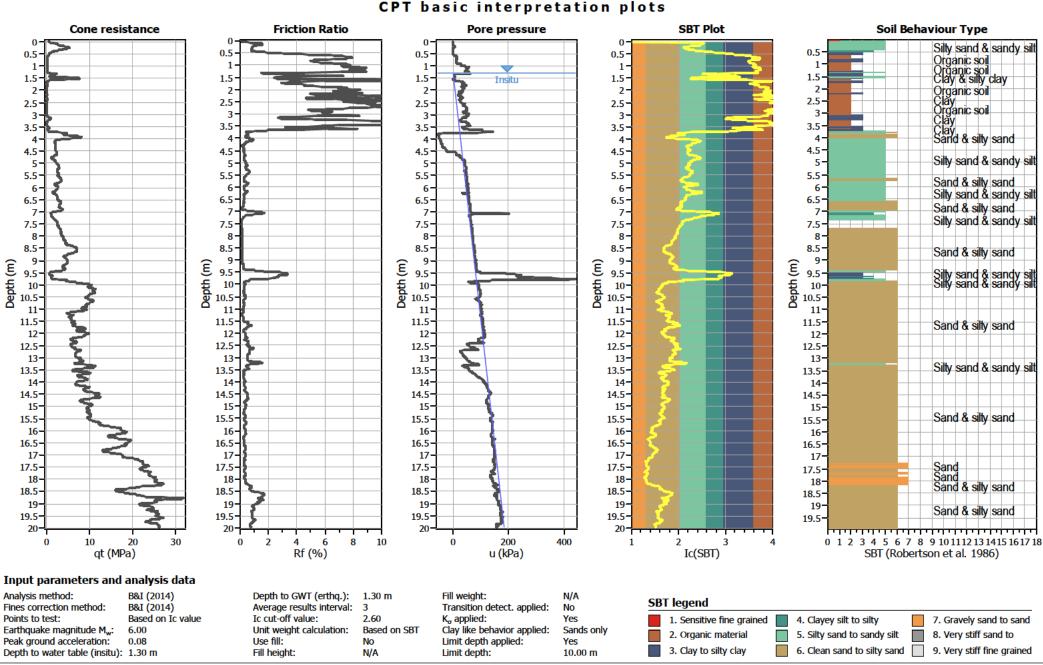


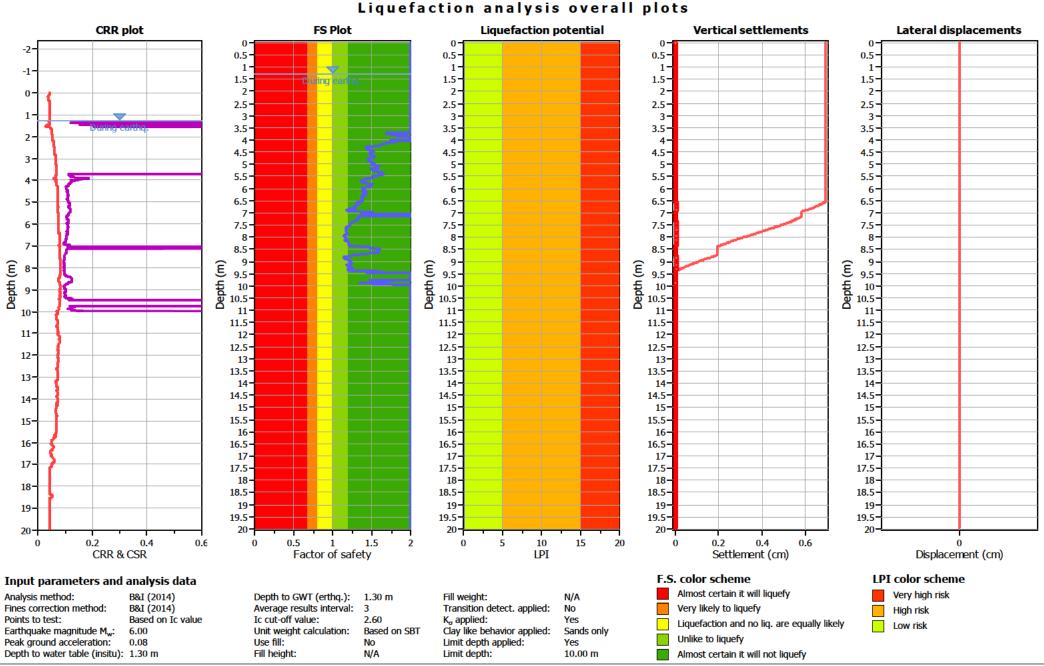


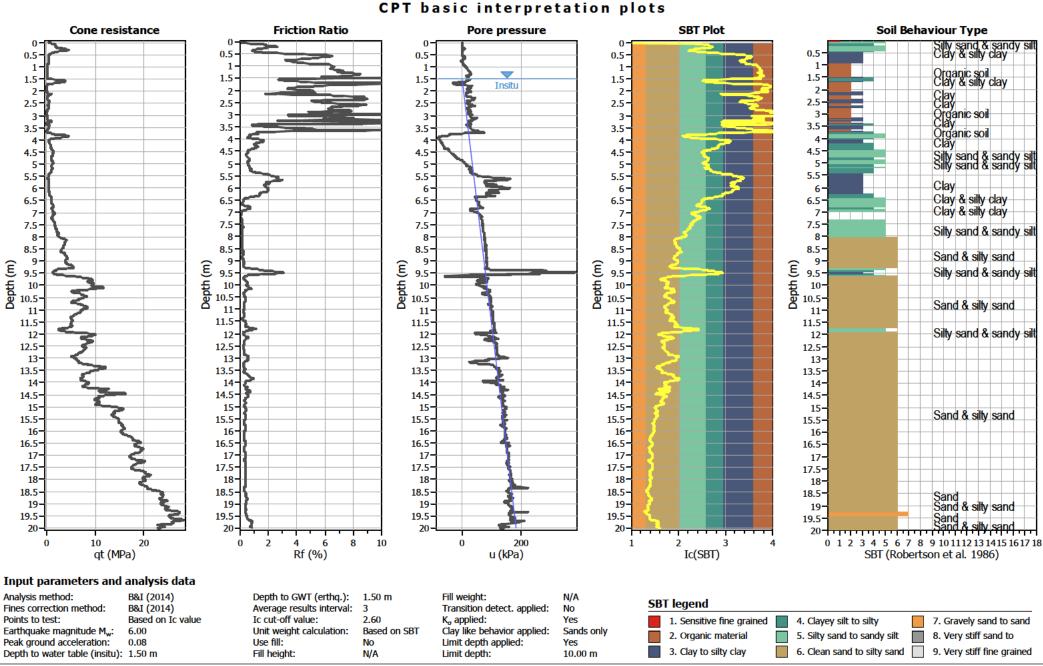


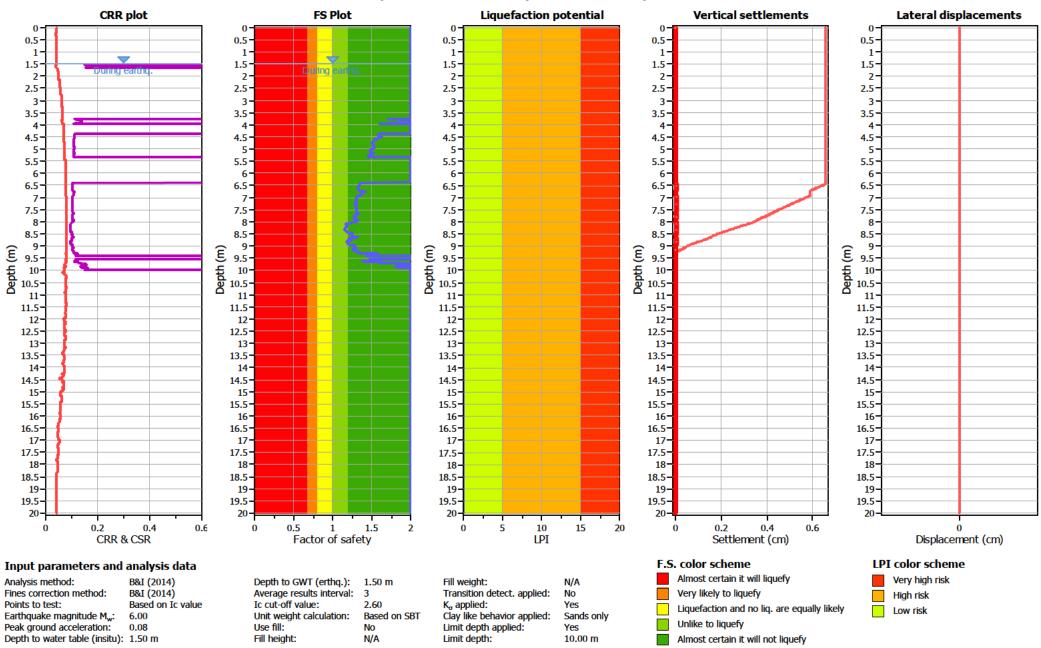




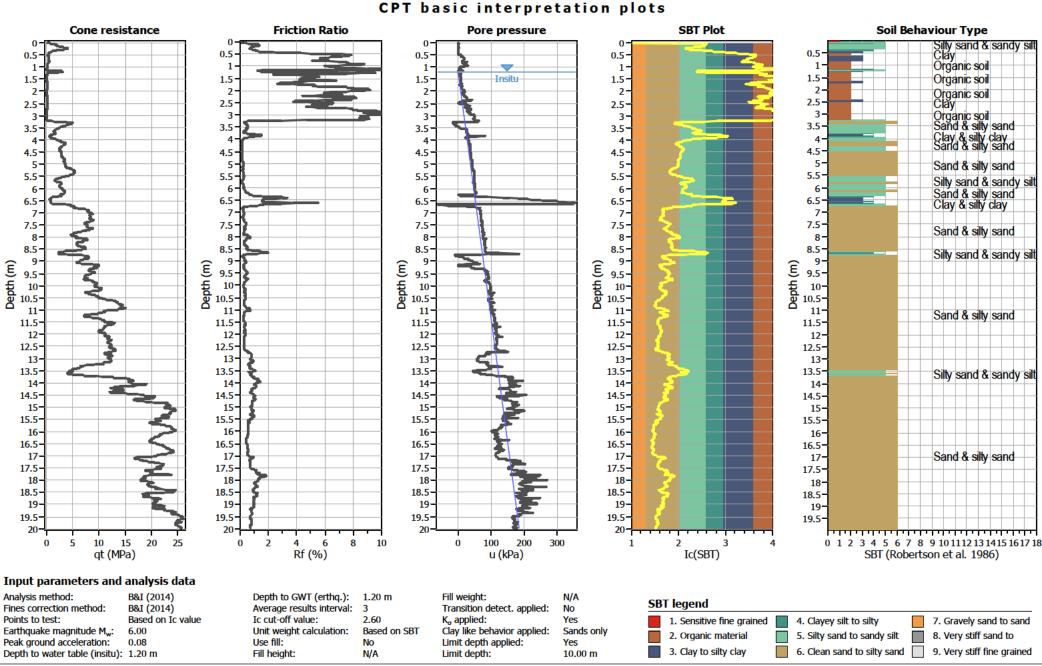




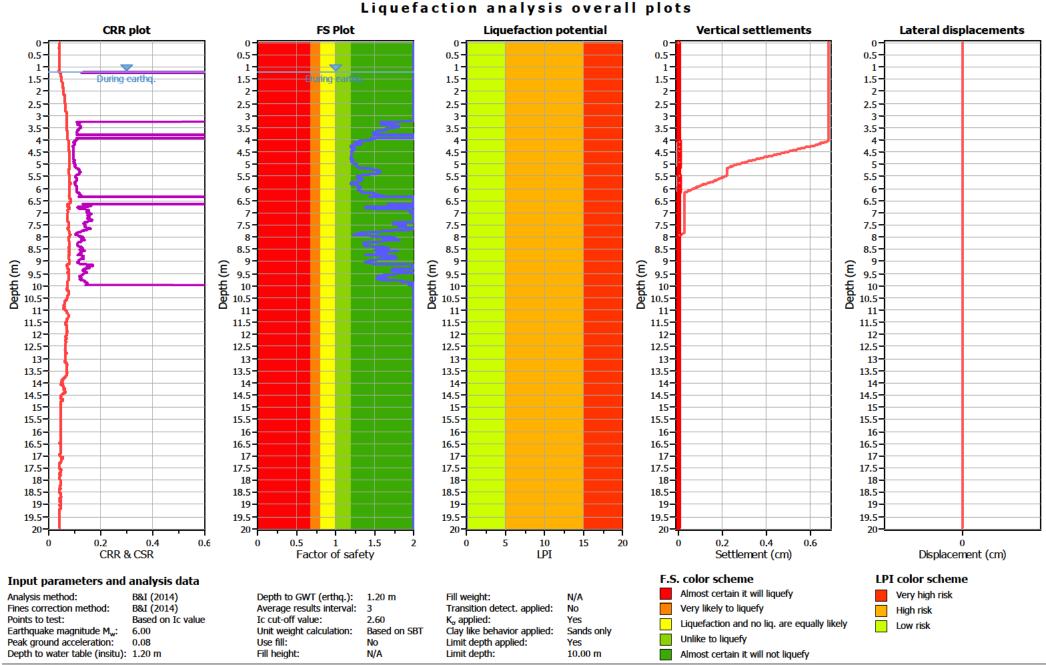

Appendix D: Liquefaction Analyses


CLiq v.3.0.2.1 - CPT Liquefaction Assessment Software - Report created on: 4/02/2022, 1:57:24 PM Project file: C:\Users\LydiaL\CMW Geosciences Pty Ltd\CMW Connect - TGA2021-0096 Pencarrow Estate, Pongakawa\Office Technical\Clig\TGA2021-0096 CLig.clg 1

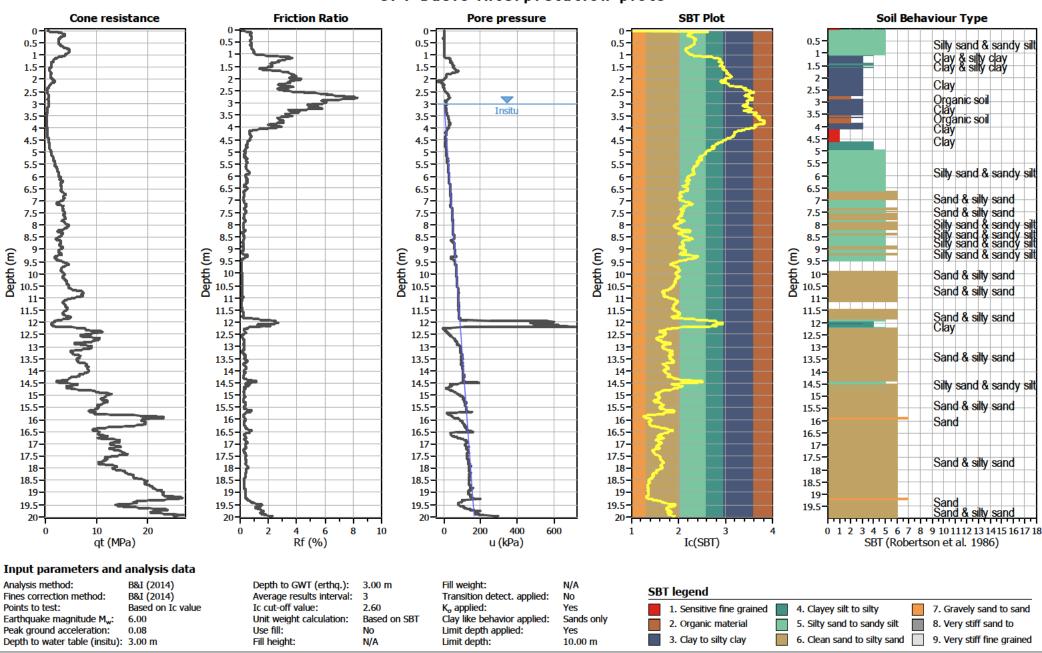
CLiq v.3.0.2.1 - CPT Liquefaction Assessment Software - Report created on: 4/02/2022, 1:57:24 PM Project file: C:\Users\LydiaL\CMW Geosciences Pty Ltd\CMW Connect - TGA2021-0096 Pencarrow Estate, Pongakawa\Office Technical\Cliq\TGA2021-0096 CLiq.clq



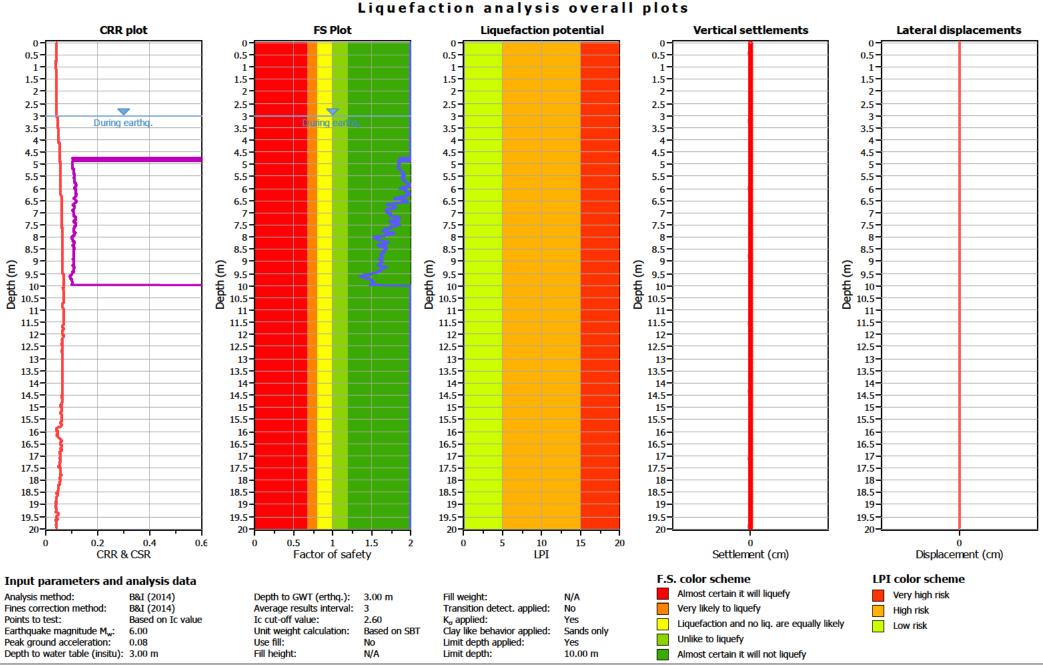
CLiq v.3.0.2.1 - CPT Liquefaction Assessment Software - Report created on: 4/02/2022, 1:57:25 PM Project file: C:\Users\LydiaL\CMW Geosciences Pty Ltd\CMW Connect - TGA2021-0096 Pencarrow Estate, Pongakawa\Office Technical\Cliq\TGA2021-0096 CLiq.clq



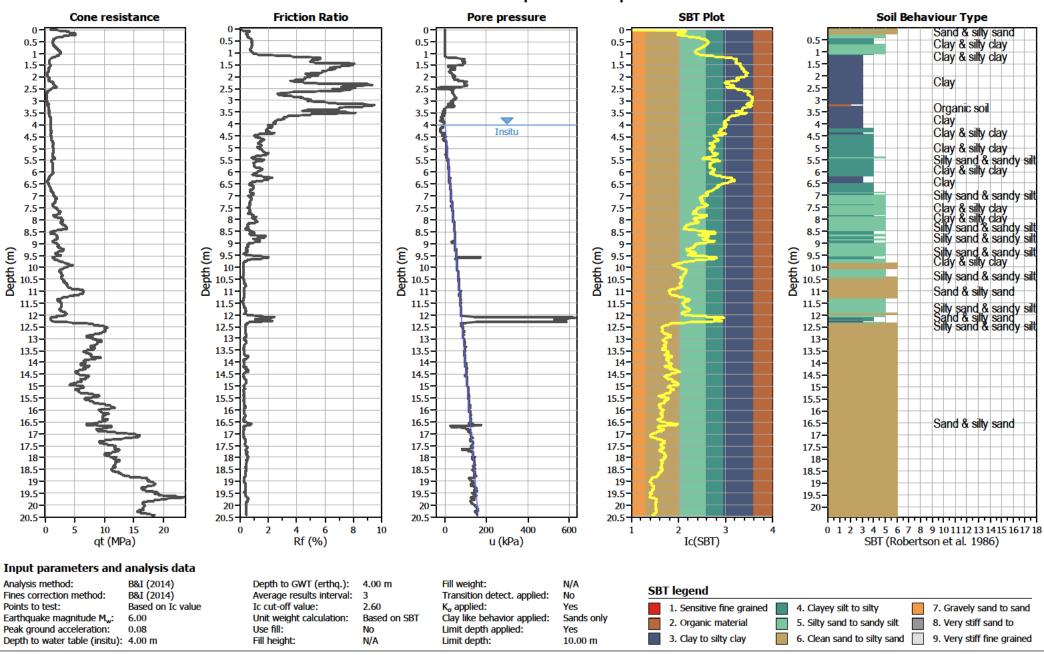
Liquefaction analysis overall plots


CLiq v.3.0.2.1 - CPT Liquefaction Assessment Software - Report created on: 4/02/2022, 1:57:25 PM Project file: C:\Users\LydiaL\CMW Geosciences Pty Ltd\CMW Connect - TGA2021-0096 Pencarrow Estate, Pongakawa\Office Technical\Cliq\TGA2021-0096 CLiq.clq

CLiq v.3.0.2.1 - CPT Liquefaction Assessment Software - Report created on: 4/02/2022, 1:57:26 PM Project file: C:\Users\LydiaL\CMW Geosciences Pty Ltd\CMW Connect - TGA2021-0096 Pencarrow Estate, Pongakawa\Office Technical\Cliq\TGA2021-0096 CLig.clq

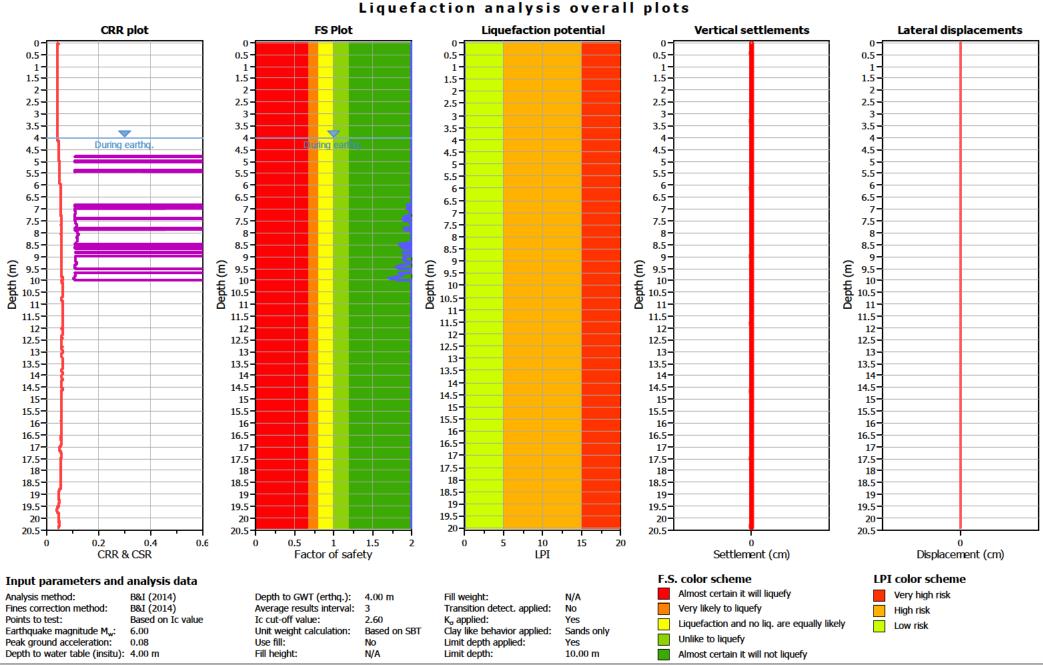


CLiq v.3.0.2.1 - CPT Liquefaction Assessment Software - Report created on: 4/02/2022, 1:57:26 PM Project file: C:\Users\LydiaL\CMW Geosciences Pty Ltd\CMW Connect - TGA2021-0096 Pencarrow Estate, Pongakawa\Office Technical\Cliq\TGA2021-0096 CLiq.clq

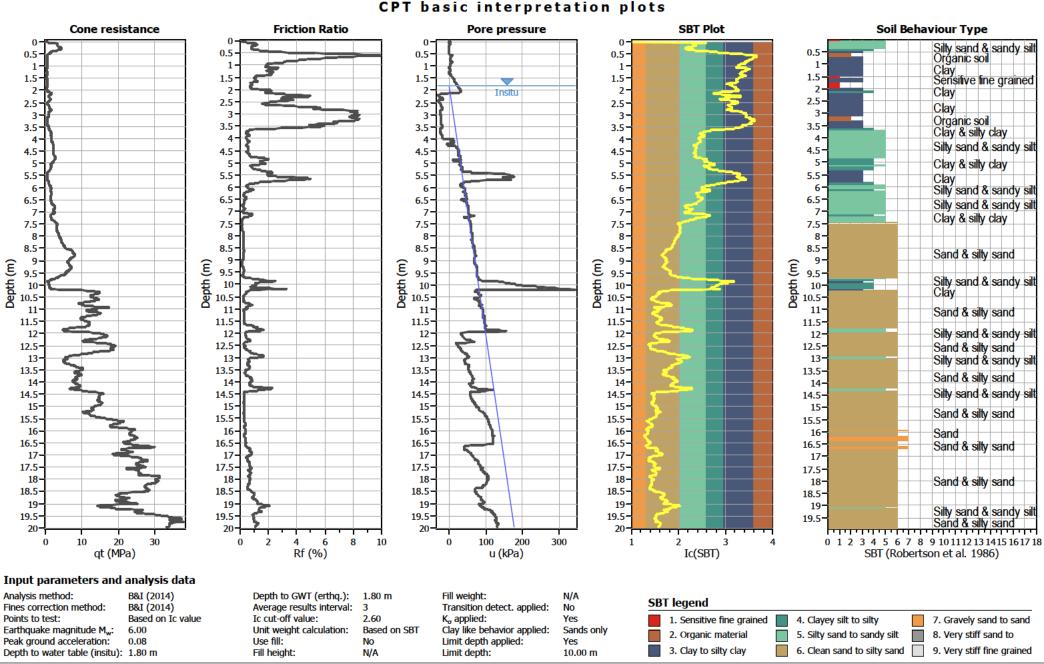


CPT basic interpretation plots

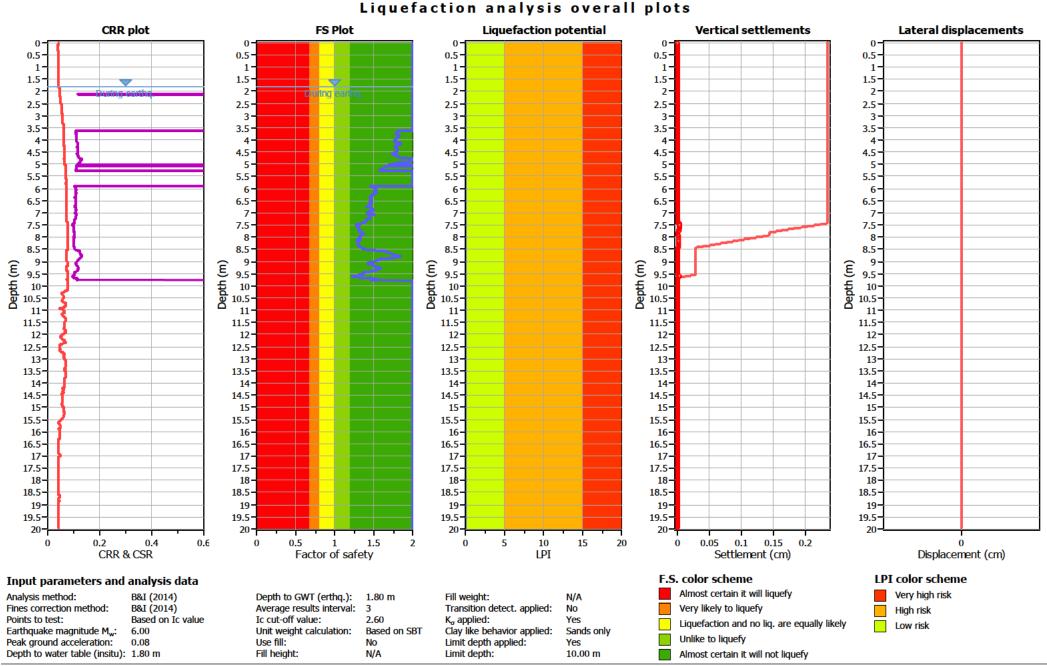
CLiq v.3.0.2.1 - CPT Liquefaction Assessment Software - Report created on: 4/02/2022, 1:57:28 PM Project file: C:\Users\LydiaL\CMW Geosciences Pty Ltd\CMW Connect - TGA2021-0096 Pencarrow Estate, Pongakawa\Office Technical\Clig\TGA2021-0096 CLig.clg

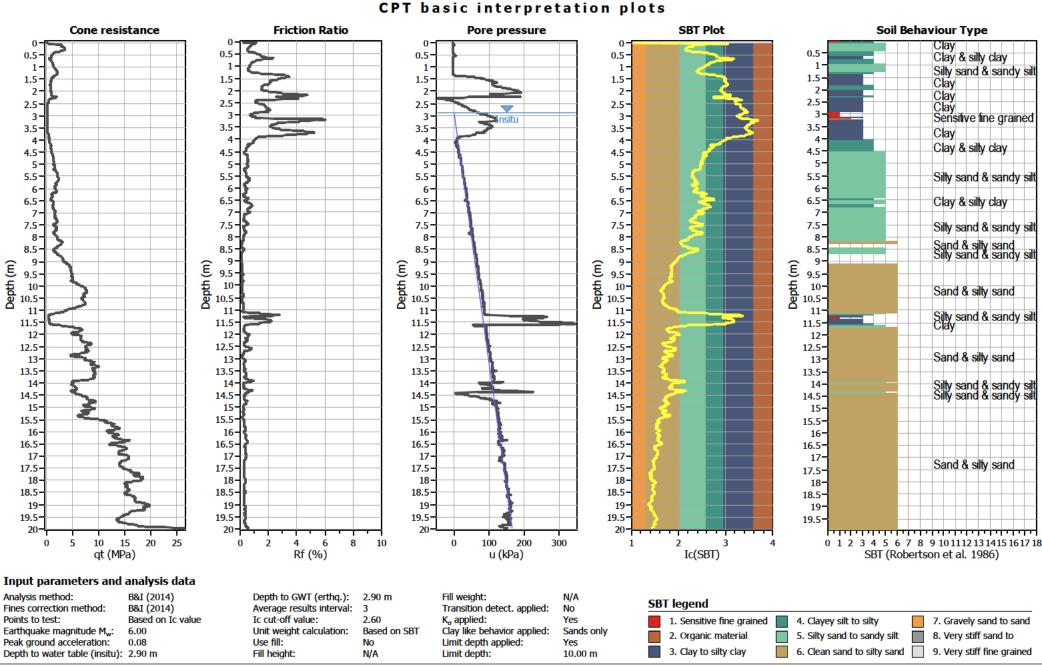


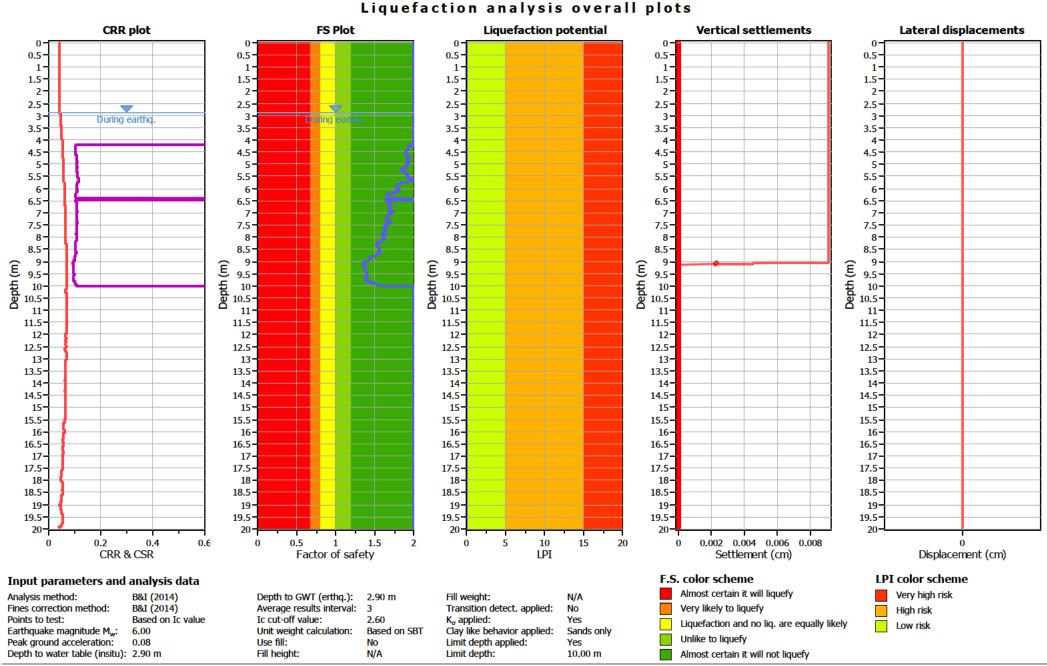
CLiq v.3.0.2.1 - CPT Liquefaction Assessment Software - Report created on: 4/02/2022, 1:57:28 PM Project file: C:\Users\LydiaL\CMW Geosciences Pty Ltd\CMW Connect - TGA2021-0096 Pencarrow Estate, Pongakawa\Office Technical\Cliq\TGA2021-0096 CLiq.clq 8

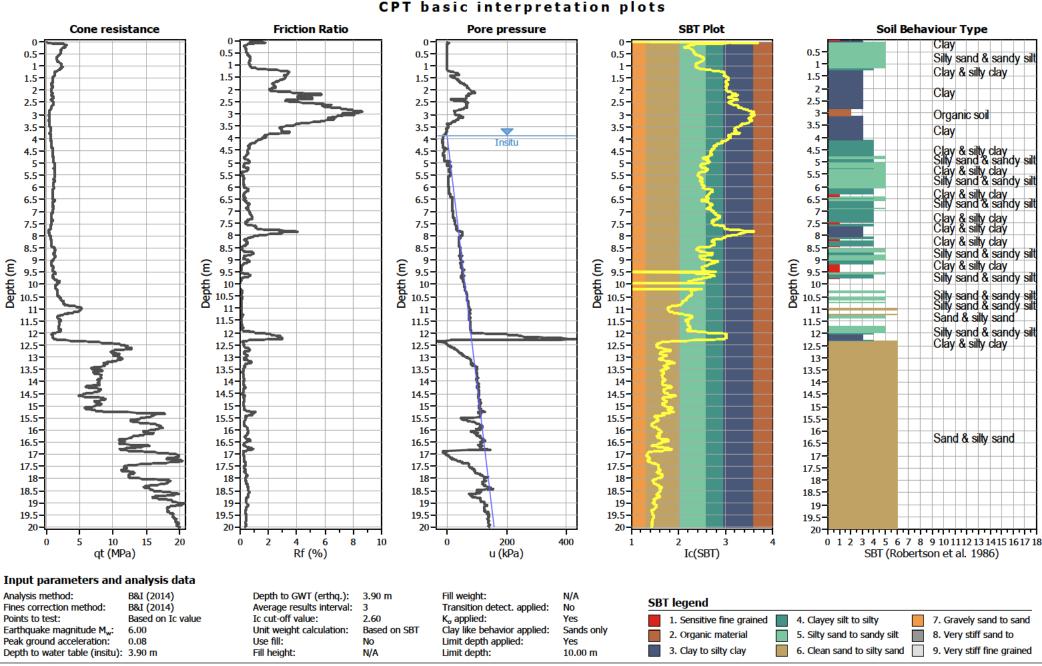


CPT basic interpretation plots

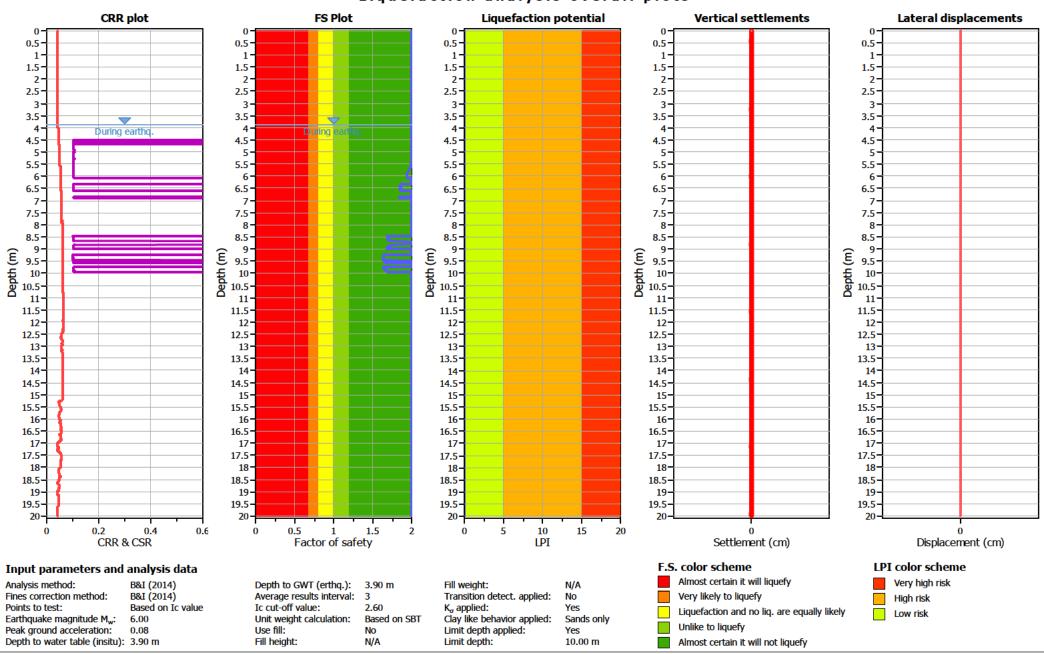

CLiq v.3.0.2.1 - CPT Liquefaction Assessment Software - Report created on: 4/02/2022, 1:57:29 PM Project file: C:\Users\LydiaL\CMW Geosciences Pty Ltd\CMW Connect - TGA2021-0096 Pencarrow Estate, Pongakawa\Office Technical\Clig\TGA2021-0096 CLig.clg


CLiq v.3.0.2.1 - CPT Liquefaction Assessment Software - Report created on: 4/02/2022, 1:57:29 PM Project file: C:\Users\LydiaL\CMW Geosciences Pty Ltd\CMW Connect - TGA2021-0096 Pencarrow Estate, Pongakawa\Office Technical\Cliq\TGA2021-0096 CLiq.clq

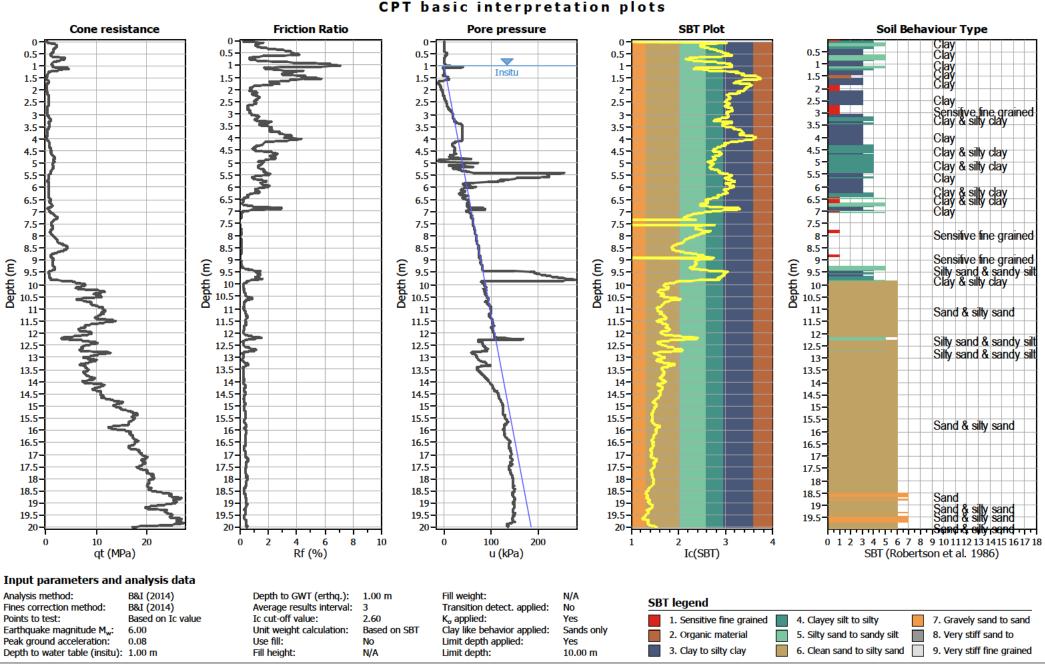

CLiq v.3.0.2.1 - CPT Liquefaction Assessment Software - Report created on: 4/02/2022, 1:57:30 PM Project file: C:\Users\LydiaL\CMW Geosciences Pty Ltd\CMW Connect - TGA2021-0096 Pencarrow Estate, Pongakawa\Office Technical\Clig\TGA2021-0096 CLig.clg


CLiq v.3.0.2.1 - CPT Liquefaction Assessment Software - Report created on: 4/02/2022, 1:57:30 PM Project file: C:\Users\LydiaL\CMW Geosciences Pty Ltd\CMW Connect - TGA2021-0096 Pencarrow Estate, Pongakawa\Office Technical\Cliq\TGA2021-0096 CLiq.clq

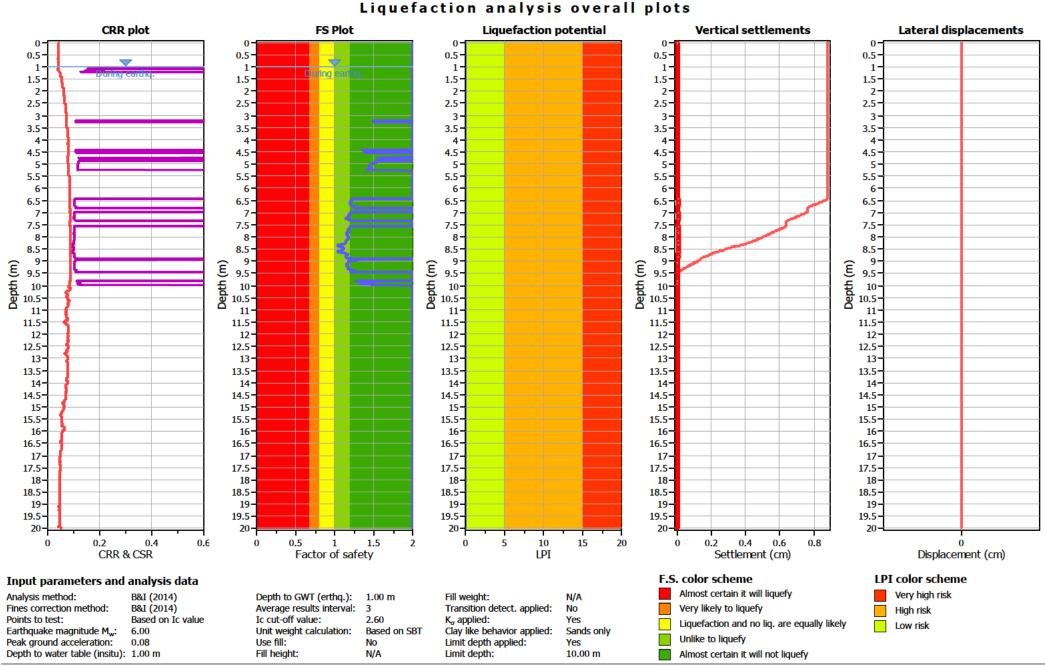
CLiq v.3.0.2.1 - CPT Liquefaction Assessment Software - Report created on: 4/02/2022, 1:57:31 PM Project file: C:\Users\LydiaL\CMW Geosciences Pty Ltd\CMW Connect - TGA2021-0096 Pencarrow Estate, Pongakawa\Office Technical\Clig\TGA2021-0096 CLig.clg



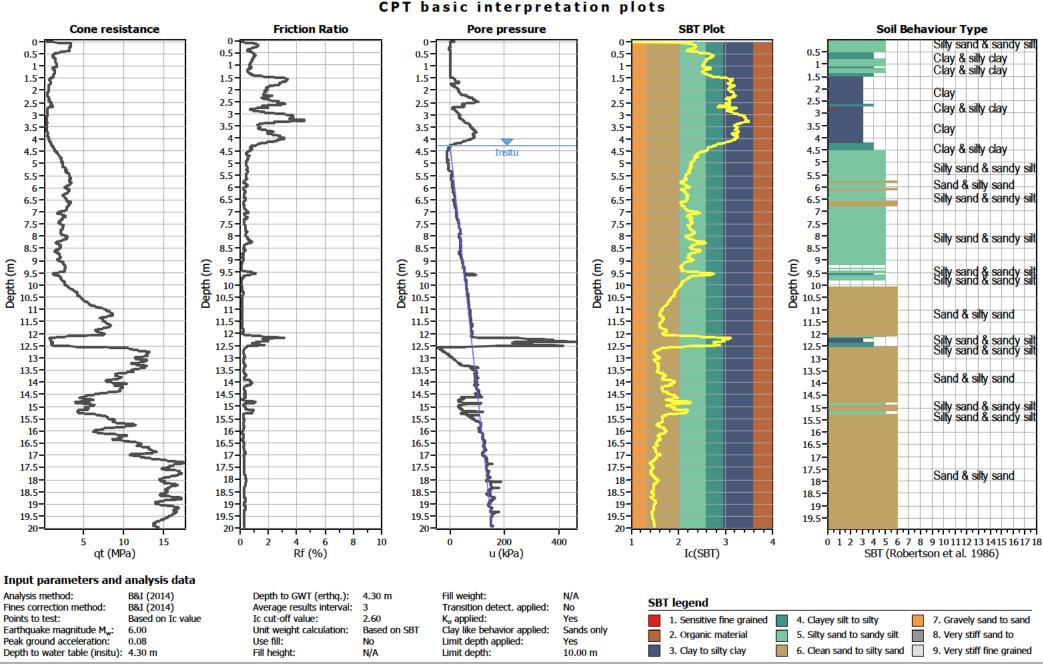
CLiq v.3.0.2.1 - CPT Liquefaction Assessment Software - Report created on: 4/02/2022, 1:57:31 PM Project file: C:\Users\LydiaL\CMW Geosciences Pty Ltd\CMW Connect - TGA2021-0096 Pencarrow Estate, Pongakawa\Office Technical\Cliq\TGA2021-0096 CLiq.clq

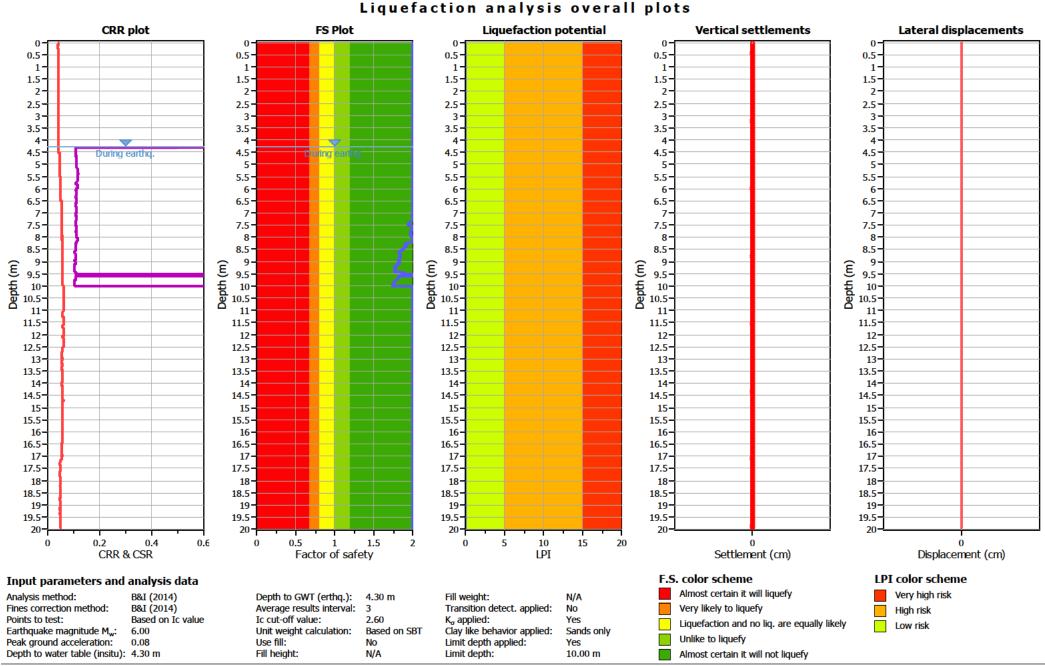

CLiq v.3.0.2.1 - CPT Liquefaction Assessment Software - Report created on: 4/02/2022, 1:57:32 PM

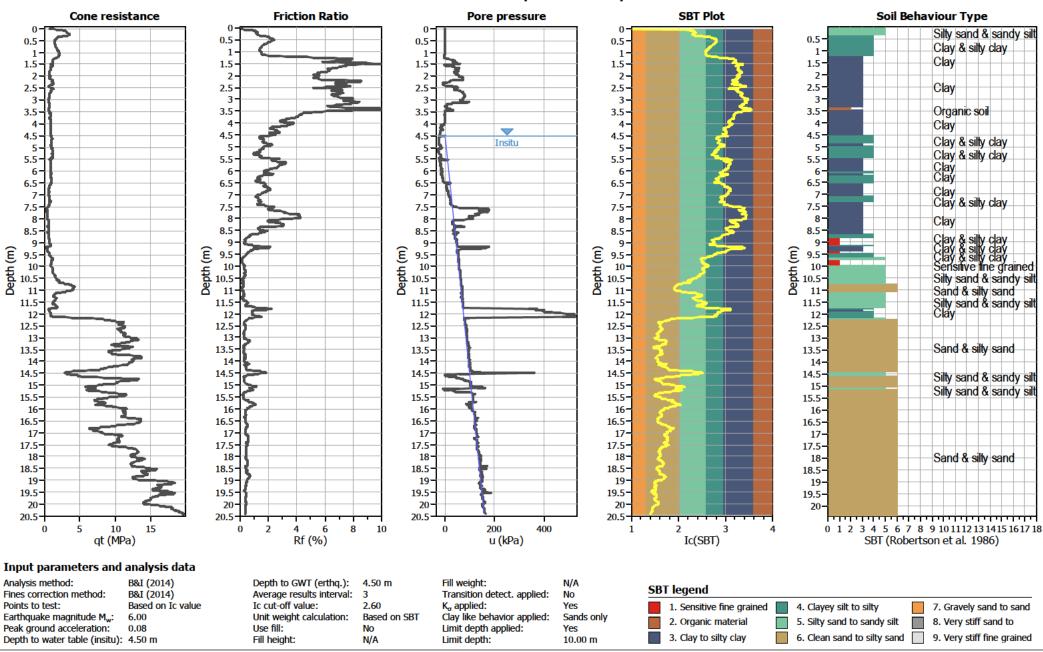
Project file: C:\Users\LydiaL\CMW Geosciences Pty Ltd\CMW Connect - TGA2021-0096 Pencarrow Estate, Pongakawa\Office Technical\Cliq\TGA2021-0096 CLiq.clq



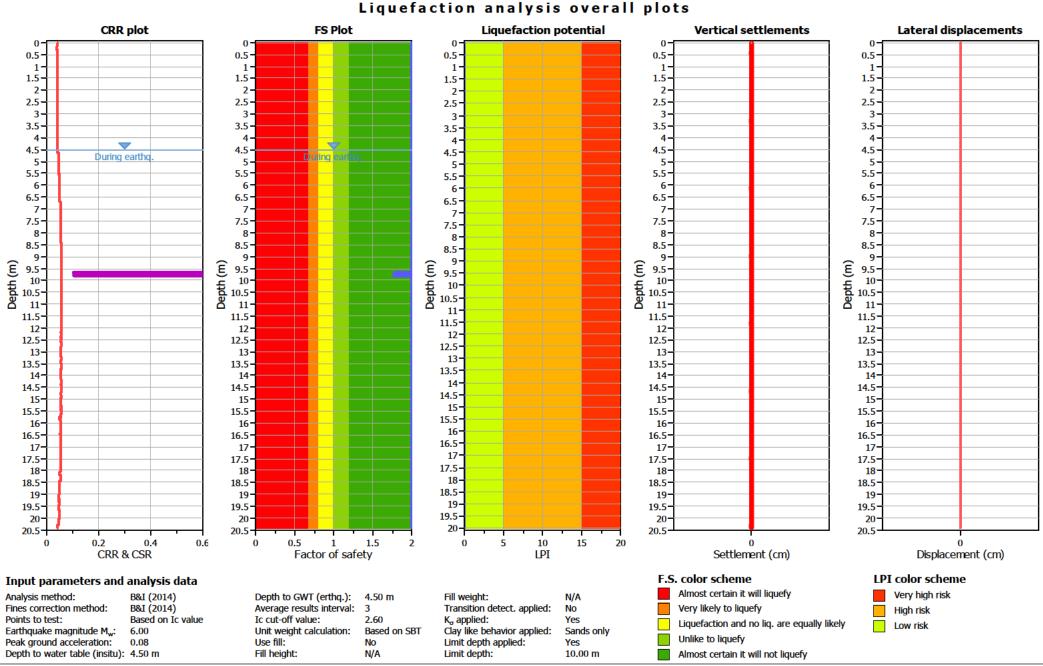
Liquefaction analysis overall plots


CLiq v.3.0.2.1 - CPT Liquefaction Assessment Software - Report created on: 4/02/2022, 1:57:32 PM Project file: C:\Users\LydiaL\CMW Geosciences Pty Ltd\CMW Connect - TGA2021-0096 Pencarrow Estate, Pongakawa\Office Technical\Cliq\TGA2021-0096 CLiq.clq

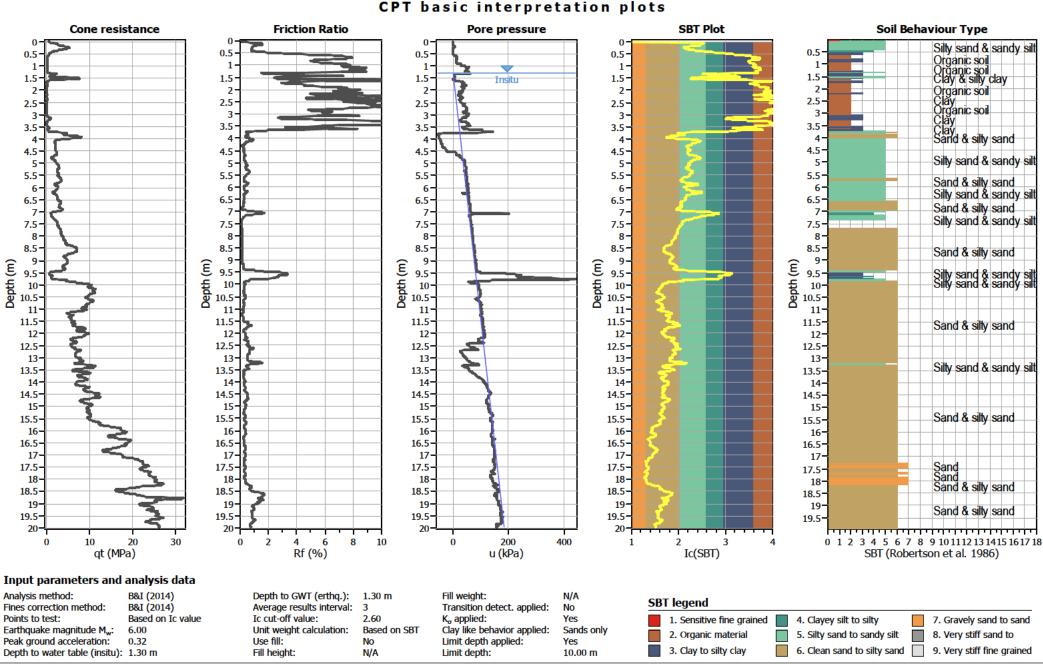

CLiq v.3.0.2.1 - CPT Liquefaction Assessment Software - Report created on: 4/02/2022, 1:57:34 PM Project file: C:\Users\LydiaL\CMW Geosciences Pty Ltd\CMW Connect - TGA2021-0096 Pencarrow Estate, Pongakawa\Office Technical\Cliq\TGA2021-0096 CLiq.clq


CLiq v.3.0.2.1 - CPT Liquefaction Assessment Software - Report created on: 4/02/2022, 1:57:34 PM Project file: C:\Users\LydiaL\CMW Geosciences Pty Ltd\CMW Connect - TGA2021-0096 Pencarrow Estate, Pongakawa\Office Technical\Cliq\TGA2021-0096 CLiq.clq

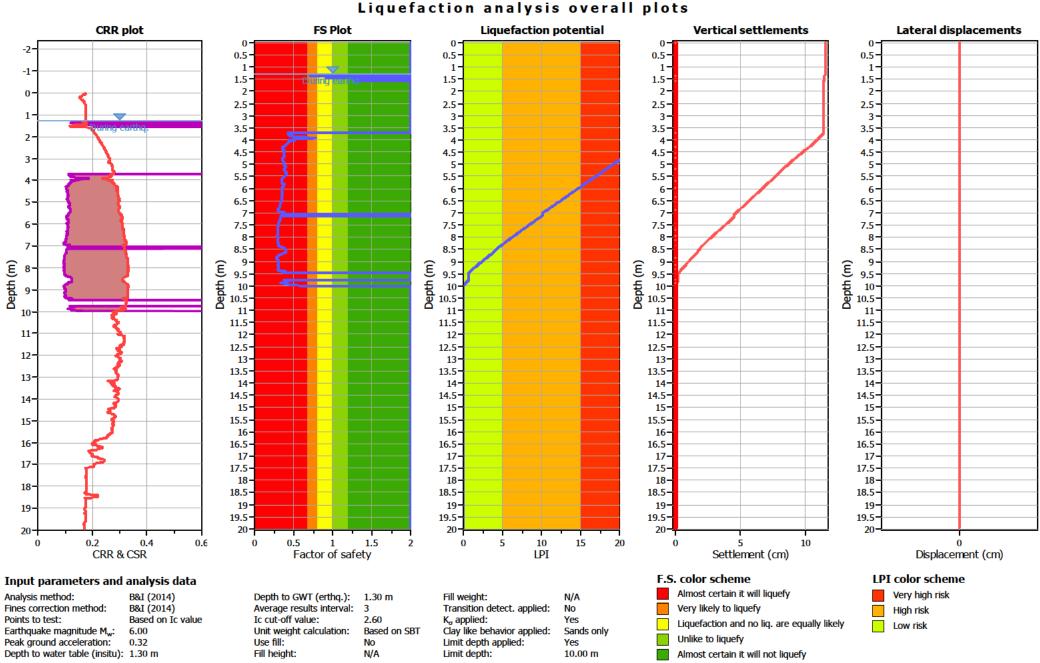
CLiq v.3.0.2.1 - CPT Liquefaction Assessment Software - Report created on: 4/02/2022, 1:57:35 PM Project file: C:\Users\LydiaL\CMW Geosciences Pty Ltd\CMW Connect - TGA2021-0096 Pencarrow Estate, Pongakawa\Office Technical\Cliq\TGA2021-0096 CLiq.clq

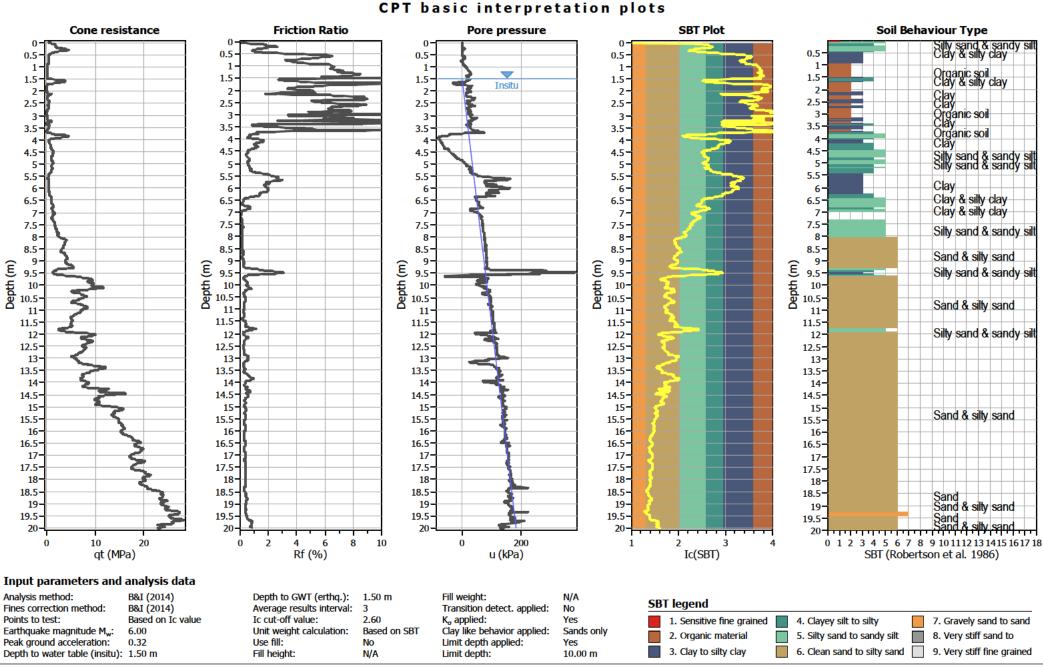


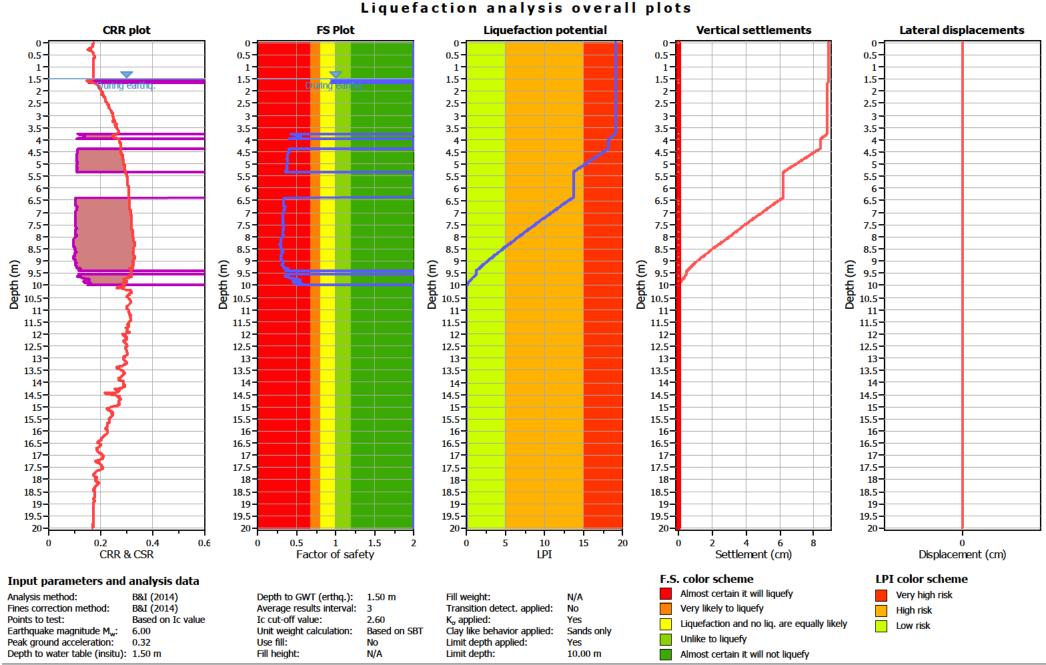
CLiq v.3.0.2.1 - CPT Liquefaction Assessment Software - Report created on: 4/02/2022, 1:57:35 PM Project file: C:\Users\LydiaL\CMW Geosciences Pty Ltd\CMW Connect - TGA2021-0096 Pencarrow Estate, Pongakawa\Office Technical\Cliq\TGA2021-0096 CLiq.clq

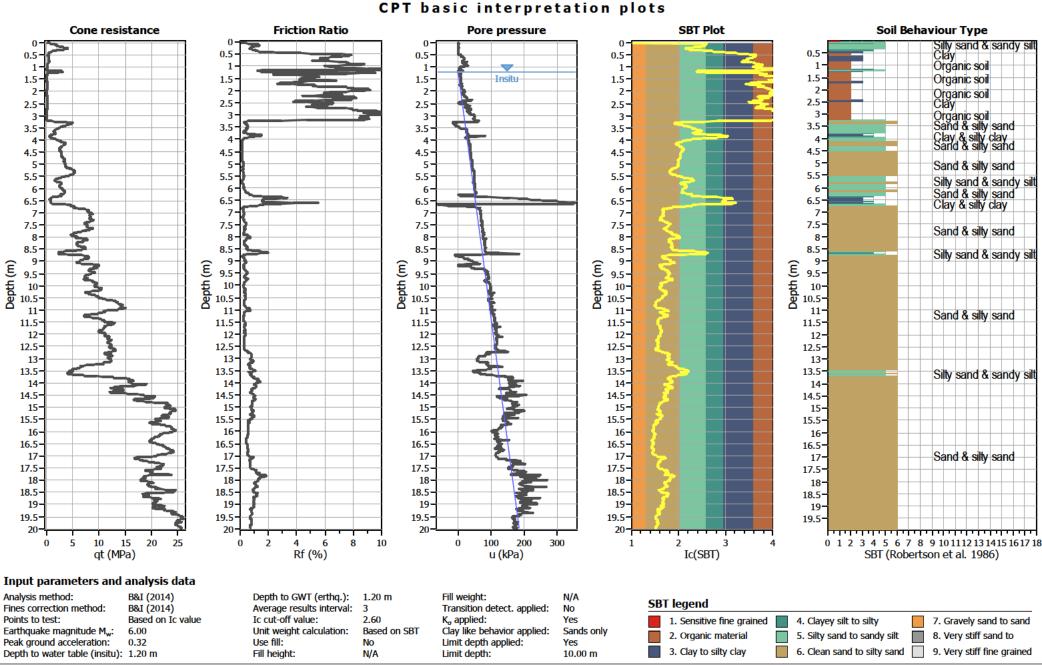


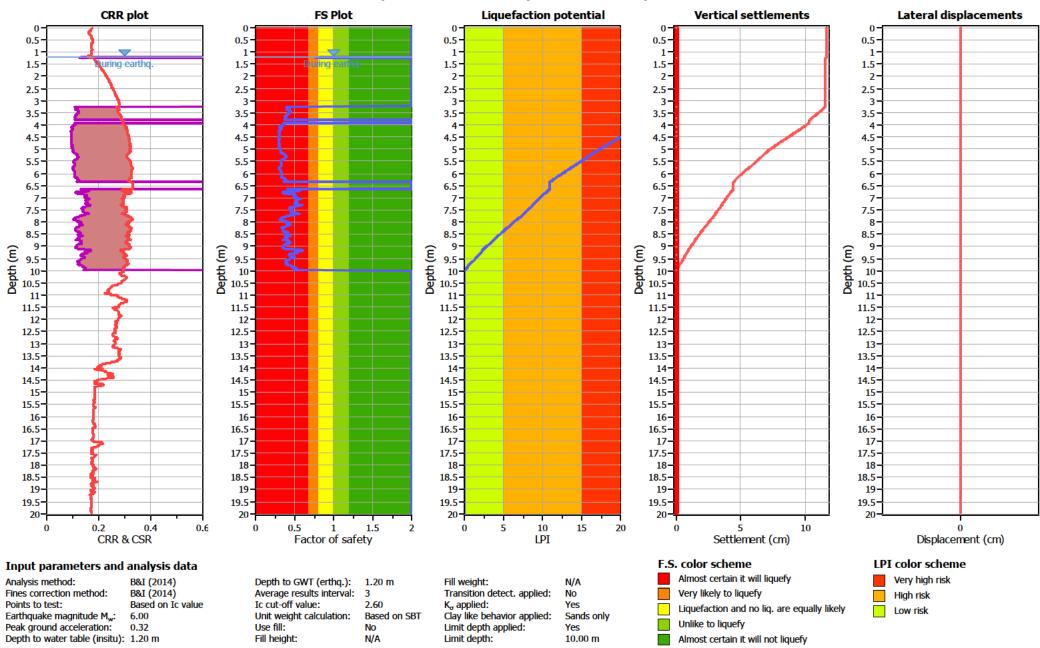
CPT basic interpretation plots


CLiq v.3.0.2.1 - CPT Liquefaction Assessment Software - Report created on: 4/02/2022, 1:57:36 PM Project file: C:\Users\LydiaL\CMW Geosciences Pty Ltd\CMW Connect - TGA2021-0096 Pencarrow Estate, Pongakawa\Office Technical\Clig\TGA2021-0096 CLig.clg

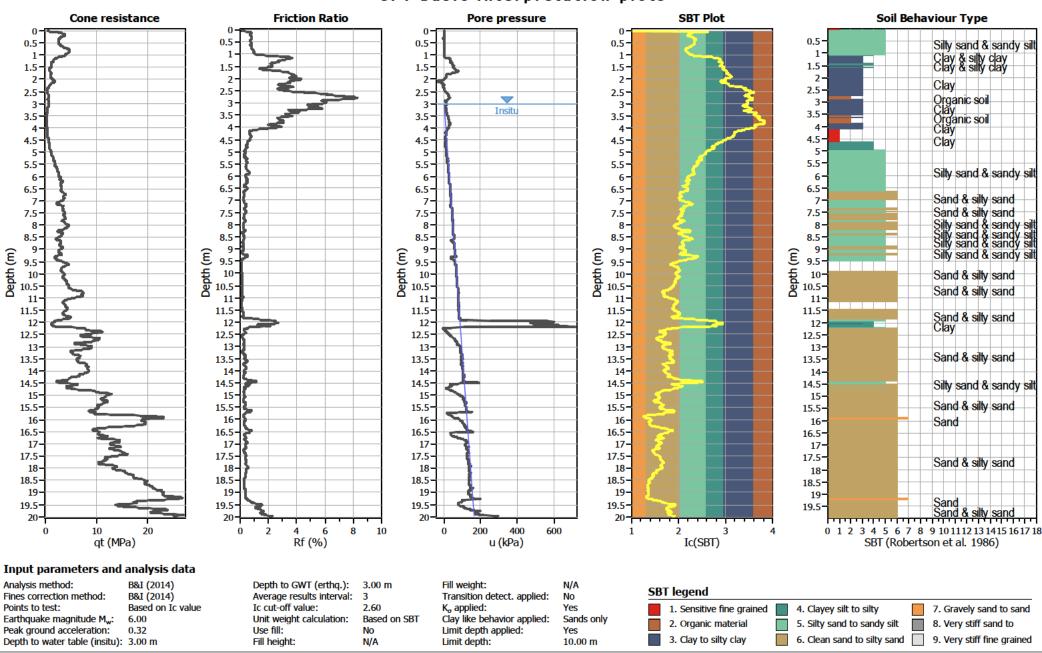

CLiq v.3.0.2.1 - CPT Liquefaction Assessment Software - Report created on: 4/02/2022, 1:57:36 PM Project file: C:\Users\LydiaL\CMW Geosciences Pty Ltd\CMW Connect - TGA2021-0096 Pencarrow Estate, Pongakawa\Office Technical\Cliq\TGA2021-0096 CLiq.clq


CLiq v.3.0.2.1 - CPT Liquefaction Assessment Software - Report created on: 4/02/2022, 1:52:23 PM Project file: C:\Users\LydiaL\CMW Geosciences Pty Ltd\CMW Connect - TGA2021-0096 Pencarrow Estate, Pongakawa\Office Technical\Clig\TGA2021-0096 CLig.clg

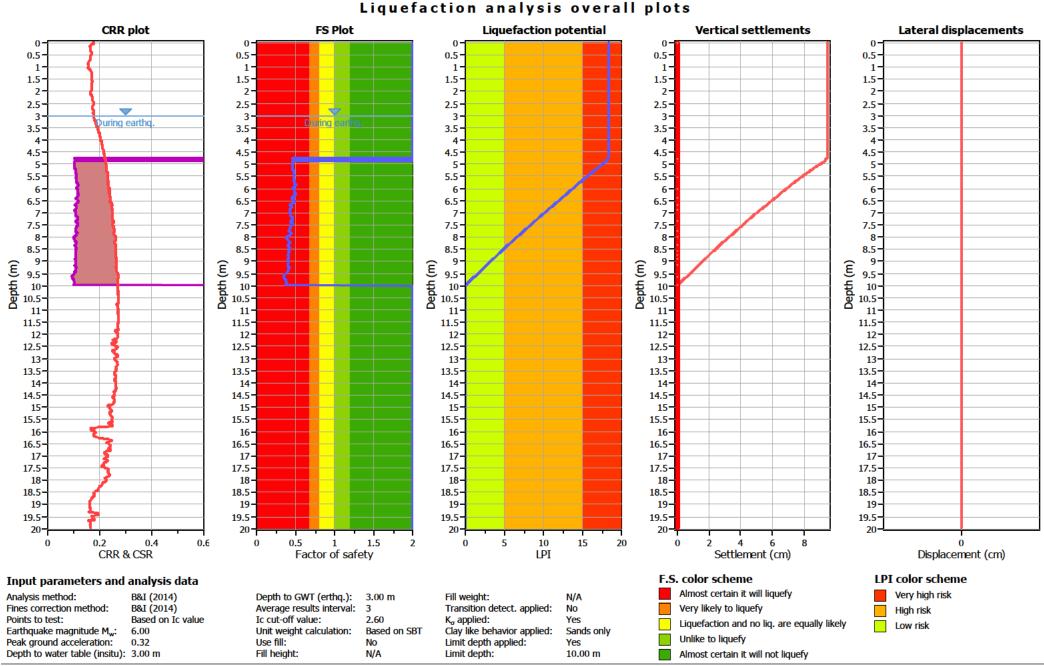

CLiq v.3.0.2.1 - CPT Liquefaction Assessment Software - Report created on: 4/02/2022, 1:52:23 PM Project file: C:\Users\LydiaL\CMW Geosciences Pty Ltd\CMW Connect - TGA2021-0096 Pencarrow Estate, Pongakawa\Office Technical\Clig\TGA2021-0096 CLig.clg


CLiq v.3.0.2.1 - CPT Liquefaction Assessment Software - Report created on: 4/02/2022, 1:52:24 PM Project file: C:\Users\LydiaL\CMW Geosciences Pty Ltd\CMW Connect - TGA2021-0096 Pencarrow Estate, Pongakawa\Office Technical\Clig\TGA2021-0096 CLig.clg

CLiq v.3.0.2.1 - CPT Liquefaction Assessment Software - Report created on: 4/02/2022, 1:52:24 PM
Project file: C:\Users\LydiaL\CMW Geosciences Pty Ltd\CMW Connect - TGA2021-0096 Pencarrow Estate, Pongakawa\Office Technical\Cliq\TGA2021-0096 CLiq.clq



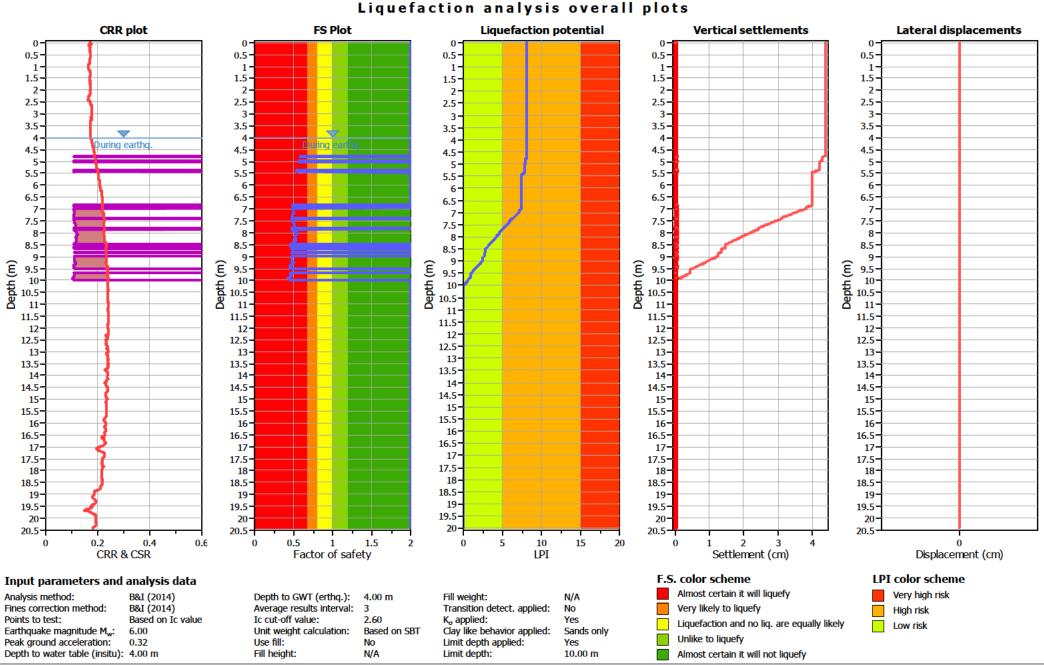
CLiq v.3.0.2.1 - CPT Liquefaction Assessment Software - Report created on: 4/02/2022, 1:52:25 PM Project file: C:\Users\LydiaL\CMW Geosciences Pty Ltd\CMW Connect - TGA2021-0096 Pencarrow Estate, Pongakawa\Office Technical\Cliq\TGA2021-0096 CLiq.clq


Liquefaction analysis overall plots

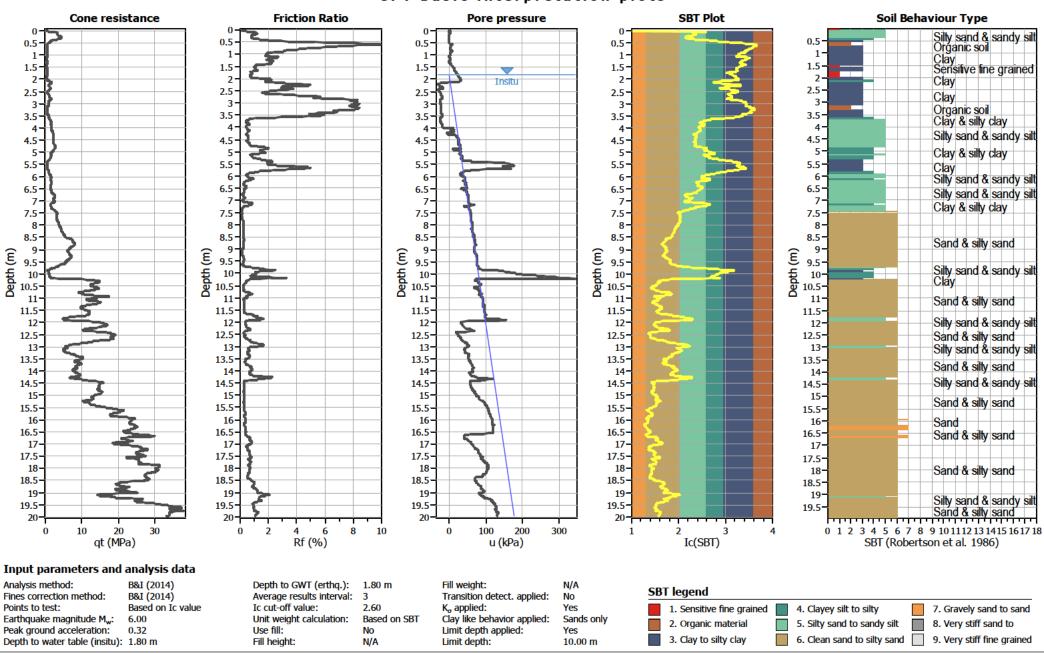
CLiq v.3.0.2.1 - CPT Liquefaction Assessment Software - Report created on: 4/02/2022, 1:52:25 PM Project file: C:\Users\LydiaL\CMW Geosciences Pty Ltd\CMW Connect - TGA2021-0096 Pencarrow Estate, Pongakawa\Office Technical\Cliq\TGA2021-0096 CLiq.clq

CPT basic interpretation plots

CLiq v.3.0.2.1 - CPT Liquefaction Assessment Software - Report created on: 4/02/2022, 1:52:26 PM Project file: C:\Users\LydiaL\CMW Geosciences Pty Ltd\CMW Connect - TGA2021-0096 Pencarrow Estate, Pongakawa\Office Technical\Clig\TGA2021-0096 CLig.clg

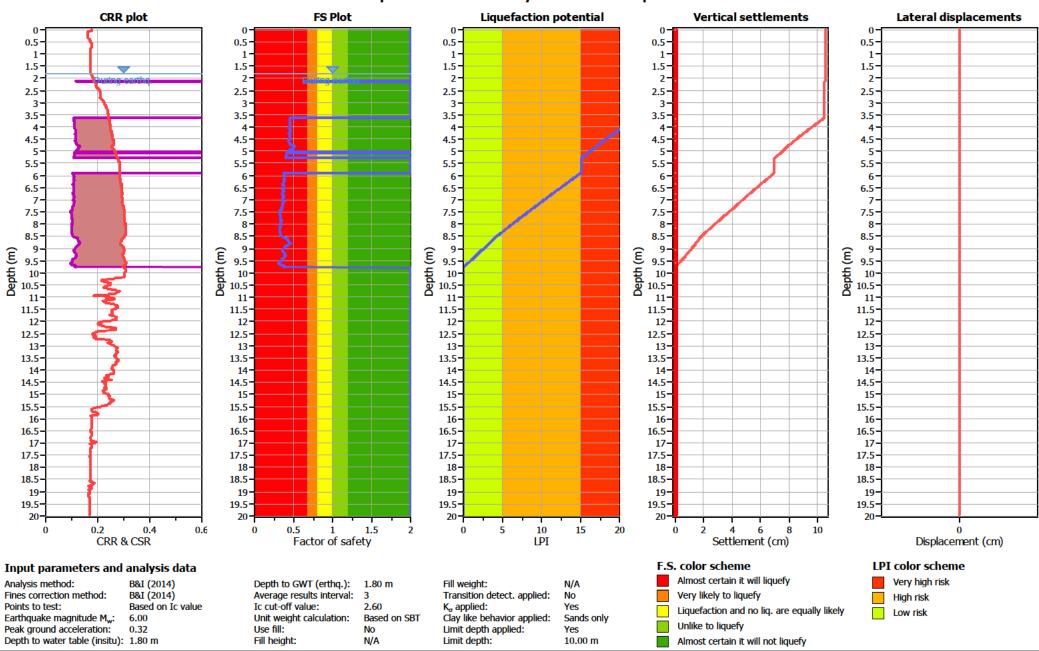


CLiq v.3.0.2.1 - CPT Liquefaction Assessment Software - Report created on: 4/02/2022, 1:52:26 PM Project file: C:\Users\LydiaL\CMW Geosciences Pty Ltd\CMW Connect - TGA2021-0096 Pencarrow Estate, Pongakawa\Office Technical\Cliq\TGA2021-0096 CLiq.clq

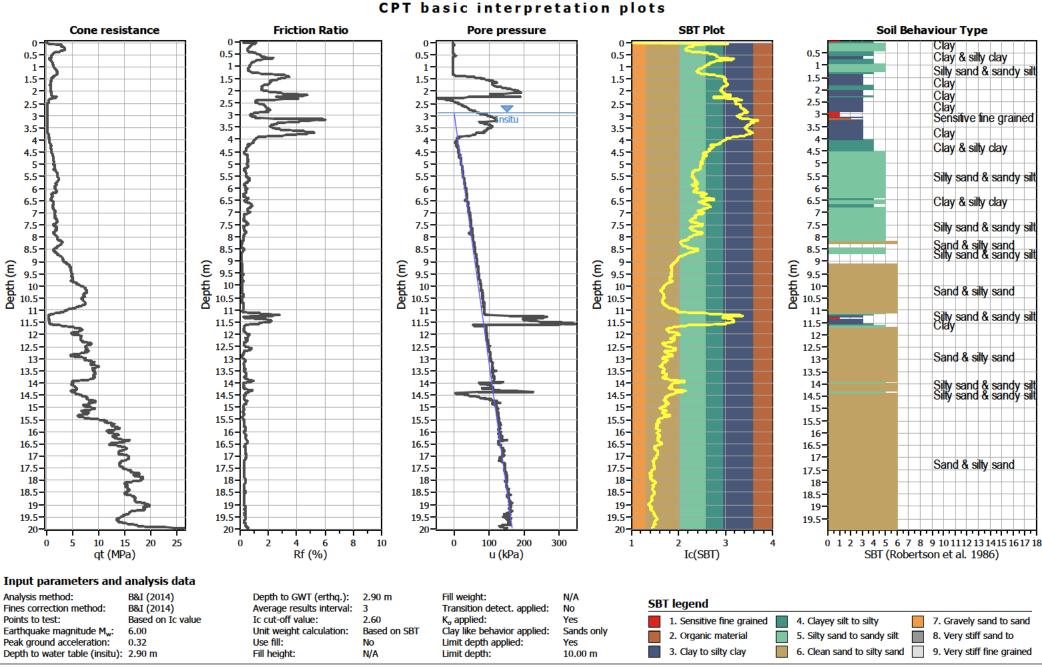


CPT basic interpretation plots

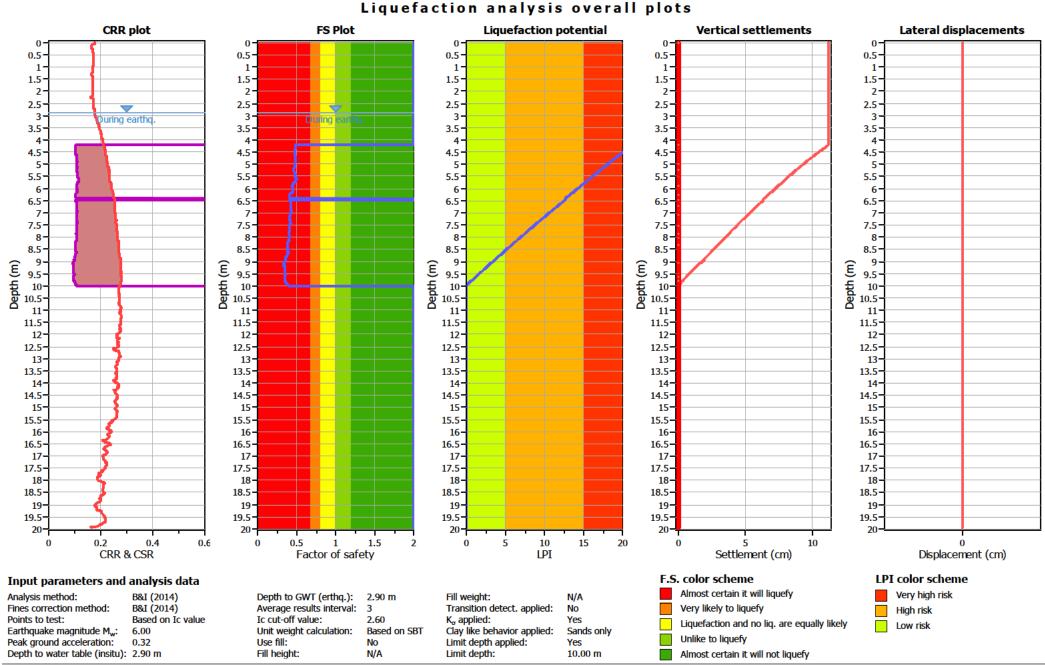
CLiq v.3.0.2.1 - CPT Liquefaction Assessment Software - Report created on: 4/02/2022, 1:52:27 PM Project file: C:\Users\LydiaL\CMW Geosciences Pty Ltd\CMW Connect - TGA2021-0096 Pencarrow Estate, Pongakawa\Office Technical\Cliq\TGA2021-0096 CLiq.clq



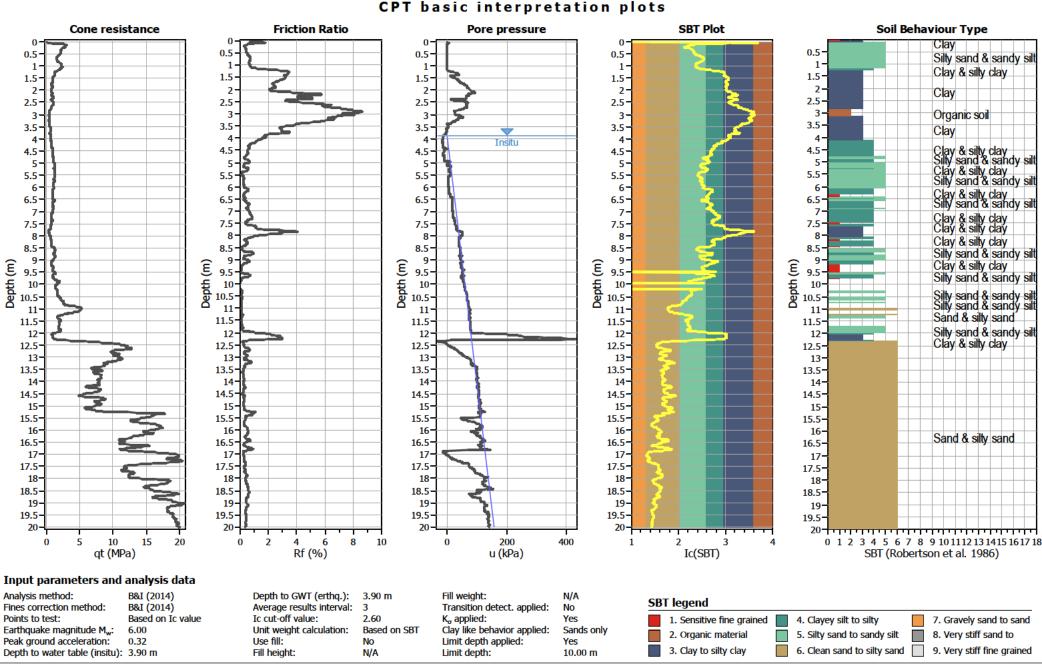
CLiq v.3.0.2.1 - CPT Liquefaction Assessment Software - Report created on: 4/02/2022, 1:52:27 PM Project file: C:\Users\LydiaL\CMW Geosciences Pty Ltd\CMW Connect - TGA2021-0096 Pencarrow Estate, Pongakawa\Office Technical\Cliq\TGA2021-0096 CLiq.clq

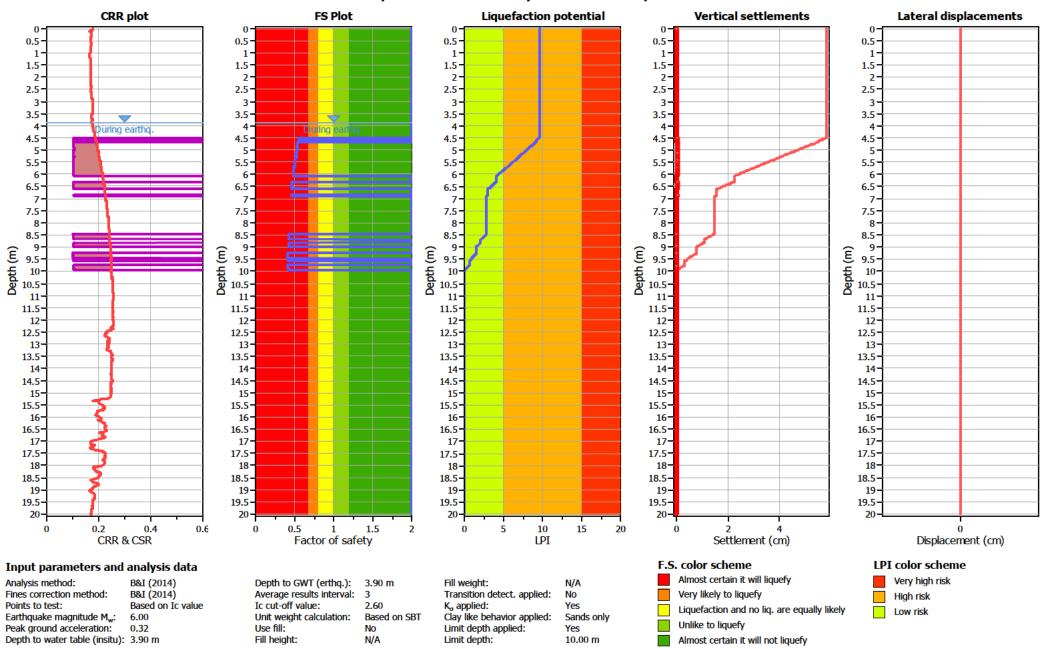

CPT basic interpretation plots

CLiq v.3.0.2.1 - CPT Liquefaction Assessment Software - Report created on: 4/02/2022, 1:52:28 PM Project file: C:\Users\LydiaL\CMW Geosciences Pty Ltd\CMW Connect - TGA2021-0096 Pencarrow Estate, Pongakawa\Office Technical\Cliq\TGA2021-0096 CLiq.clq

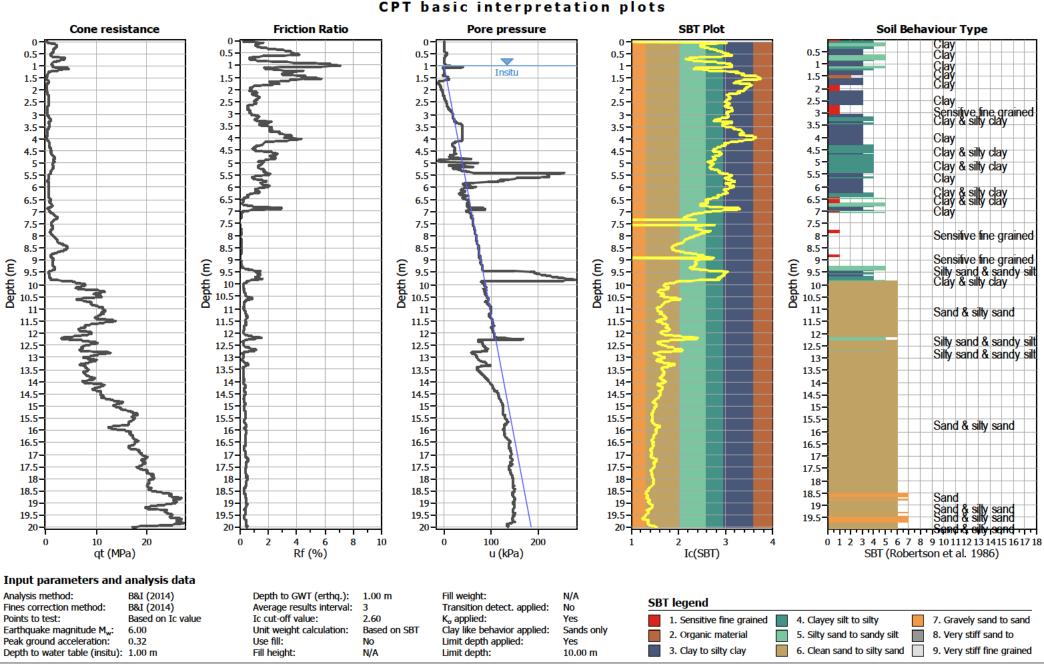


Liquefaction analysis overall plots

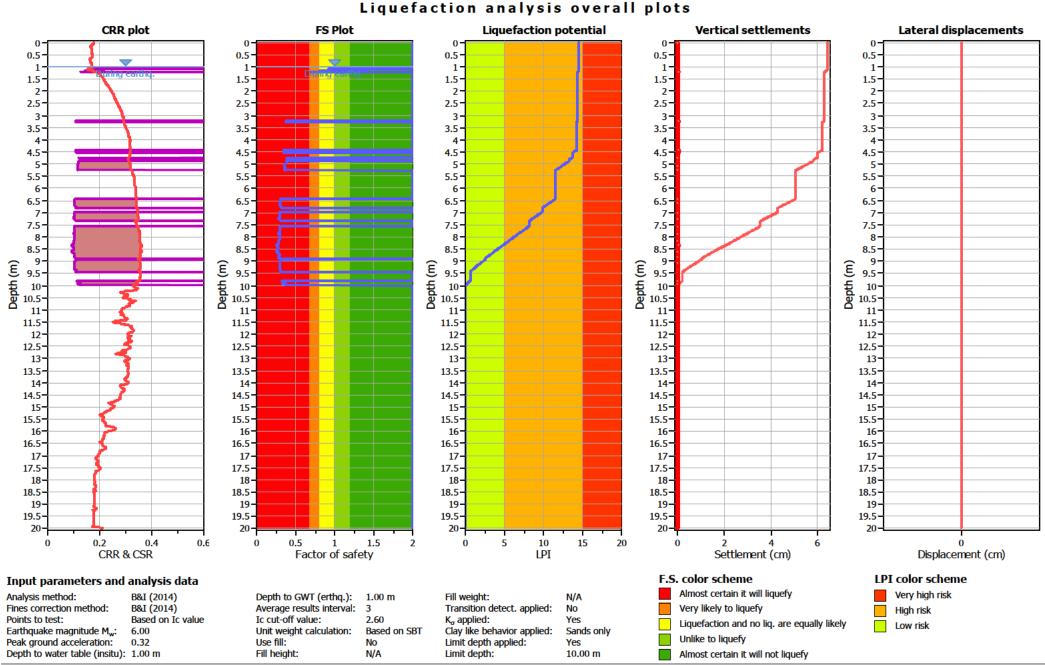

CLiq v.3.0.2.1 - CPT Liquefaction Assessment Software - Report created on: 4/02/2022, 1:52:28 PM Project file: C:\Users\LydiaL\CMW Geosciences Pty Ltd\CMW Connect - TGA2021-0096 Pencarrow Estate, Pongakawa\Office Technical\Cliq\TGA2021-0096 CLiq.clq


CLiq v.3.0.2.1 - CPT Liquefaction Assessment Software - Report created on: 4/02/2022, 1:52:29 PM
Project file: C:\Users\LydiaL\CMW Geosciences Pty Ltd\CMW Connect - TGA2021-0096 Pencarrow Estate, Pongakawa\Office Technical\Clig\TGA2021-0096 CLig.clg

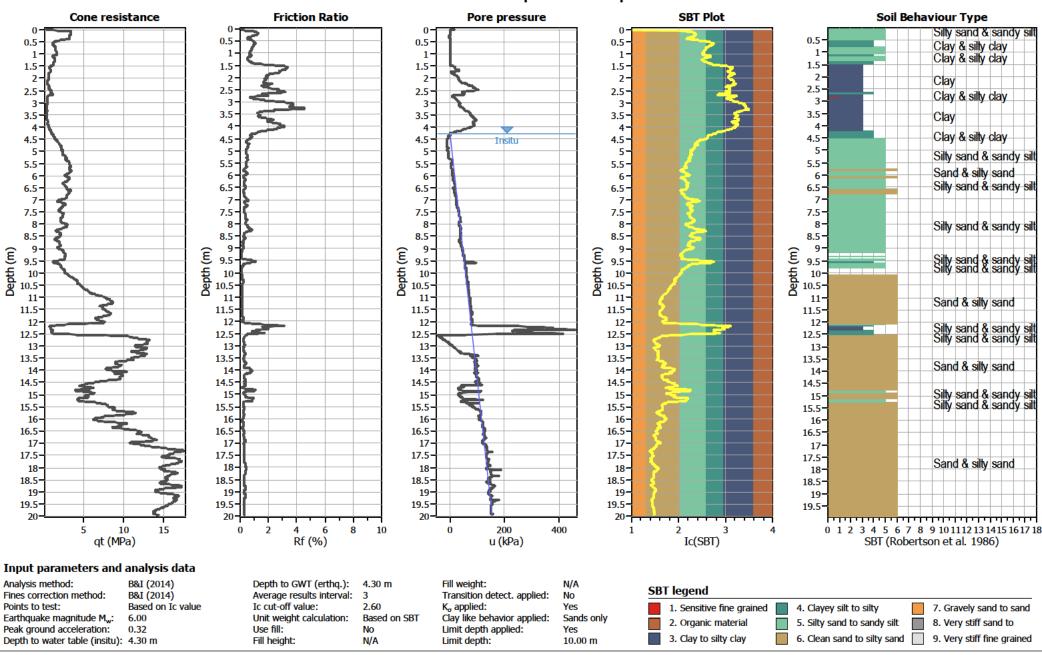
CLiq v.3.0.2.1 - CPT Liquefaction Assessment Software - Report created on: 4/02/2022, 1:52:29 PM Project file: C:\Users\LydiaL\CMW Geosciences Pty Ltd\CMW Connect - TGA2021-0096 Pencarrow Estate, Pongakawa\Office Technical\Cliq\TGA2021-0096 CLiq.clq



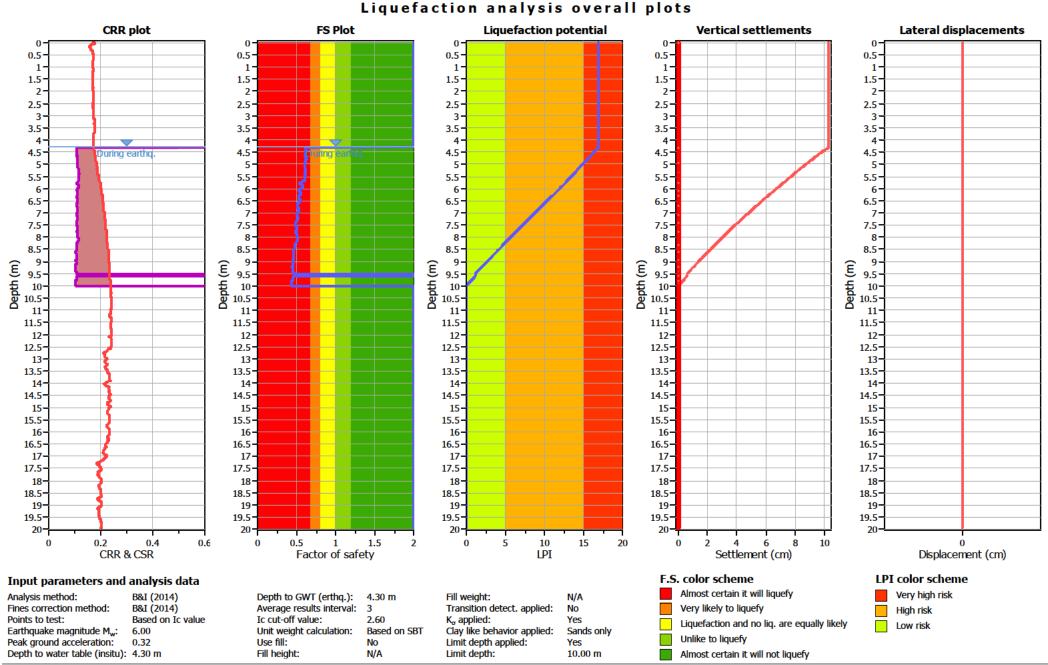
CLiq v.3.0.2.1 - CPT Liquefaction Assessment Software - Report created on: 4/02/2022, 1:52:30 PM Project file: C:\Users\LydiaL\CMW Geosciences Pty Ltd\CMW Connect - TGA2021-0096 Pencarrow Estate, Pongakawa\Office Technical\Clig\TGA2021-0096 CLig.clg



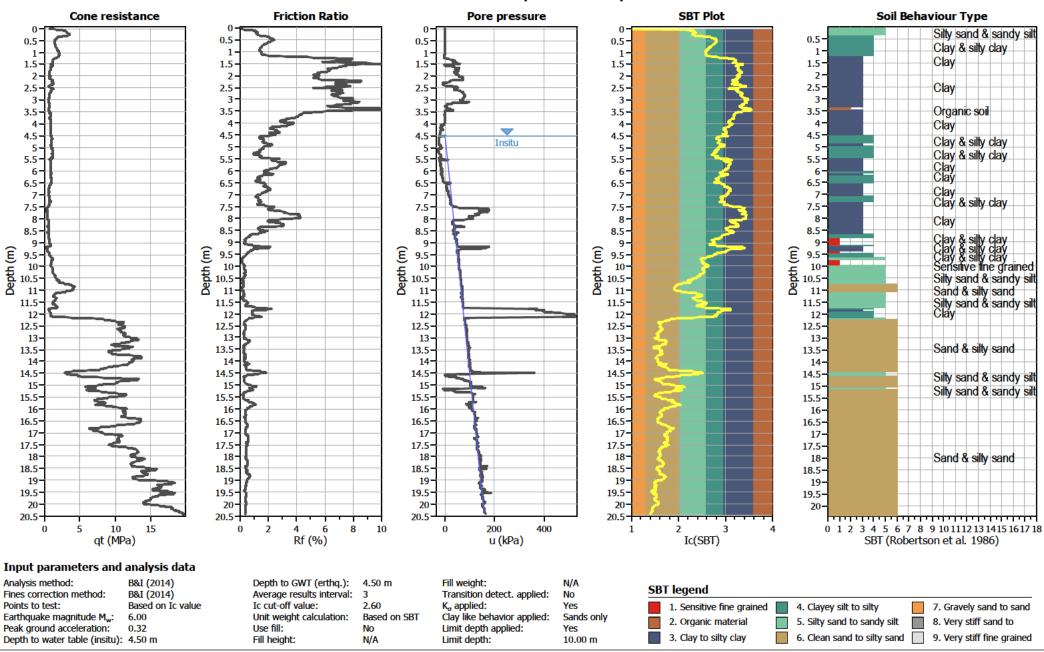
Liquefaction analysis overall plots


CLiq v.3.0.2.1 - CPT Liquefaction Assessment Software - Report created on: 4/02/2022, 1:52:30 PM Project file: C:\Users\LydiaL\CMW Geosciences Pty Ltd\CMW Connect - TGA2021-0096 Pencarrow Estate, Pongakawa\Office Technical\Clig\TGA2021-0096 CLig.clg

CLiq v.3.0.2.1 - CPT Liquefaction Assessment Software - Report created on: 4/02/2022, 1:52:32 PM
Project file: C:\Users\LydiaL\CMW Geosciences Pty Ltd\CMW Connect - TGA2021-0096 Pencarrow Estate, Pongakawa\Office Technical\Cliq\TGA2021-0096 CLiq.clq

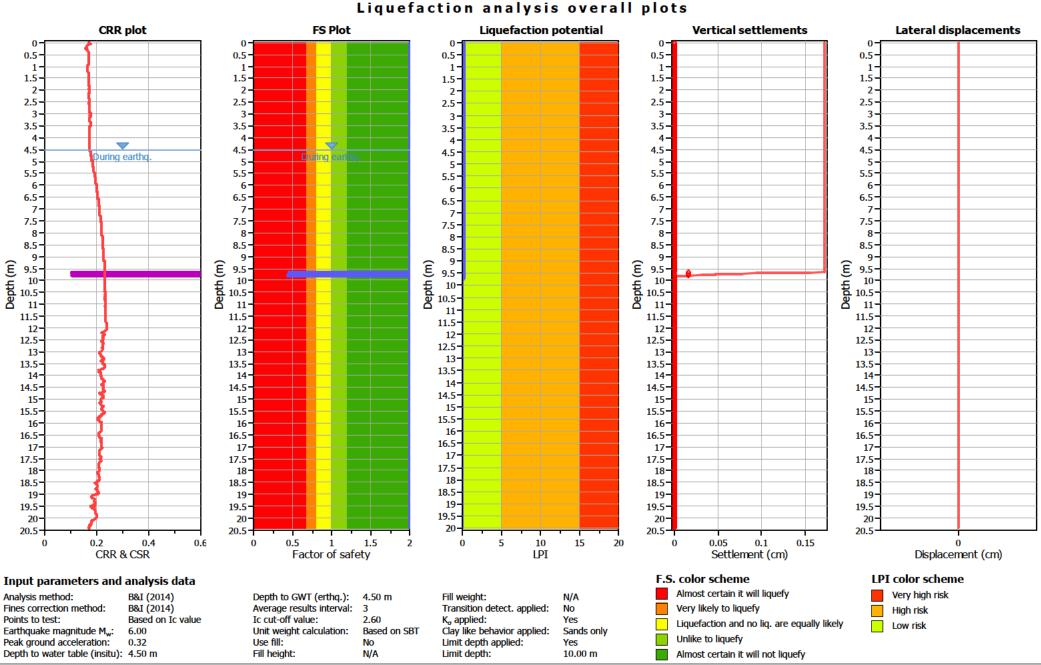


CLiq v.3.0.2.1 - CPT Liquefaction Assessment Software - Report created on: 4/02/2022, 1:52:32 PM Project file: C:\Users\LydiaL\CMW Geosciences Pty Ltd\CMW Connect - TGA2021-0096 Pencarrow Estate, Pongakawa\Office Technical\Cliq\TGA2021-0096 CLiq.clq

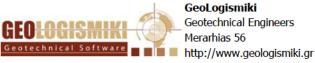


CPT basic interpretation plots

CLiq v.3.0.2.1 - CPT Liquefaction Assessment Software - Report created on: 4/02/2022, 1:52:33 PM Project file: C:\Users\LydiaL\CMW Geosciences Pty Ltd\CMW Connect - TGA2021-0096 Pencarrow Estate, Pongakawa\Office Technical\Clig\TGA2021-0096 CLig.clg

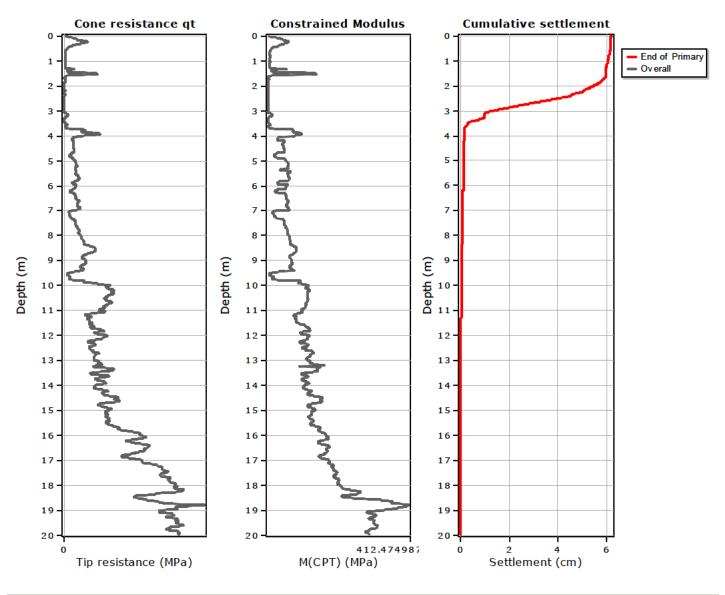


CLiq v.3.0.2.1 - CPT Liquefaction Assessment Software - Report created on: 4/02/2022, 1:52:33 PM Project file: C:\Users\LydiaL\CMW Geosciences Pty Ltd\CMW Connect - TGA2021-0096 Pencarrow Estate, Pongakawa\Office Technical\Cliq\TGA2021-0096 CLiq.clq


CPT basic interpretation plots

CLiq v.3.0.2.1 - CPT Liquefaction Assessment Software - Report created on: 4/02/2022, 1:52:34 PM Project file: C:\Users\LydiaL\CMW Geosciences Pty Ltd\CMW Connect - TGA2021-0096 Pencarrow Estate, Pongakawa\Office Technical\Clig\TGA2021-0096 CLig.clg

CLiq v.3.0.2.1 - CPT Liquefaction Assessment Software - Report created on: 4/02/2022, 1:52:34 PM
Project file: C:\Users\LydiaL\CMW Geosciences Pty Ltd\CMW Connect - TGA2021-0096 Pencarrow Estate, Pongakawa\Office Technical\Clig\TGA2021-0096 CLig.clg


Appendix E: Settlement Analyses

Location:

CPT: CPT01 Total depth: 19.96 m, Date: 24/01/2022 Surface Elevation: 0.00 m Coords: X:0.00, Y:0.00 Cone Type: Cone Operator:

Settlements calculation according to theory of elasticity*

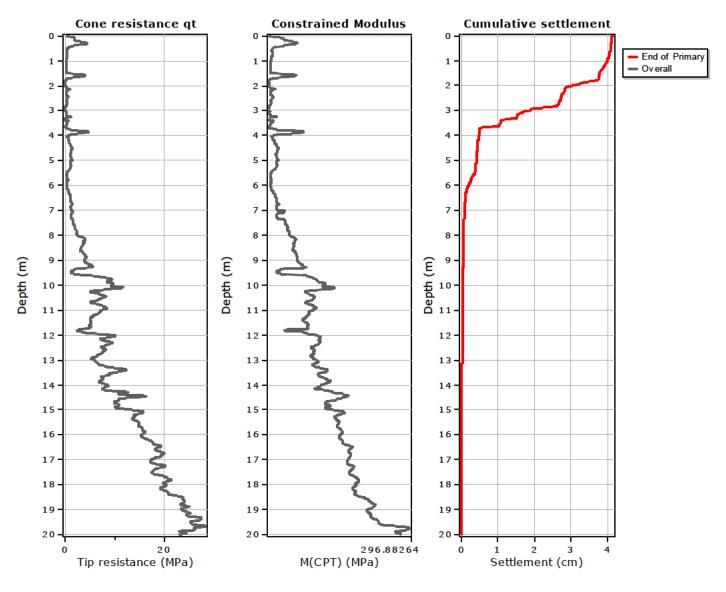
Calculation properties

Footing type: Rectangular Footing width: 15.00 (m) L/B: 1.0 Footing pressure: 10.00 (kPa) Embedment depth: 0.00 (m) Footing is rigid: No Remove excavation load: No Apply 20% rule: No Calculate secondary settlements: No Time period for primary consolidation: N/A Time period for second. settlements: N/A * Primary settlements calculation is performed according to the following formula:

$$S = \sum \frac{\Delta \sigma_v}{M_{CPT}} \Delta z$$

* Secondary (creep) settlements calculation is performed according to the following formula:

$$\mathbf{S} = \mathbf{C}_{\alpha} \cdot \Delta \mathbf{z} \cdot \log(t/t_{p})$$


where $t_{\mbox{\scriptsize p}}$ is the duration of primary consolidation

Location:

CPT: CPT02 Total depth: 20.00 m, Date: 24/01/2022 Surface Elevation: 0.00 m Coords: X:0.00, Y:0.00 Cone Type: Cone Operator:

Settlements calculation according to theory of elasticity*

Calculation properties

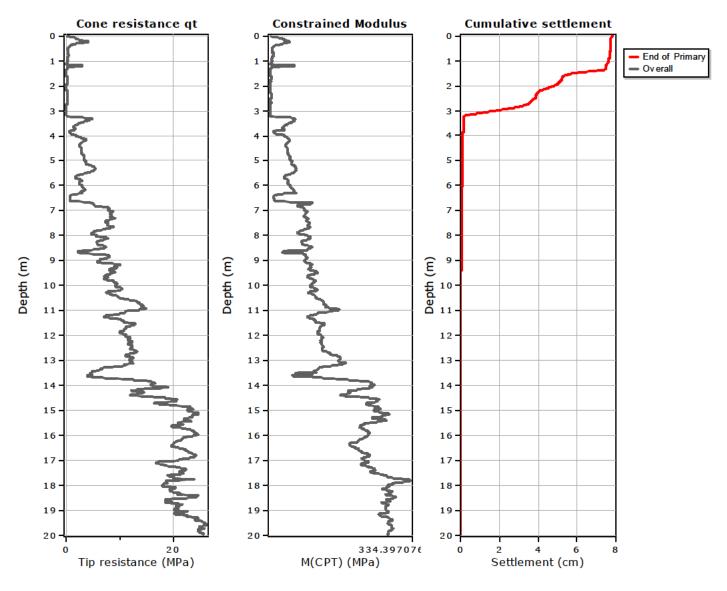
Footing type: Rectangular Footing width: 15.00 (m) L/B: 1.0 Footing pressure: 10.00 (kPa) Embedment depth: 0.00 (m) Footing is rigid: No Remove excavation load: No Apply 20% rule: No Calculate secondary settlements: No Time period for primary consolidation: N/A Time period for second. settlements: N/A * Primary settlements calculation is performed according to the following formula:

$$S = \sum \frac{\Delta \sigma_v}{M_{CPT}} \Delta z$$

* Secondary (creep) settlements calculation is performed according to the following formula:

$$\mathbf{S} = \mathbf{C}_{\alpha} \cdot \Delta \mathbf{z} \cdot \log(t/t_{p})$$

1


where $t_{\mbox{\scriptsize p}}$ is the duration of primary consolidation

Location:

CPT: CPT03 Total depth: 19.97 m, Date: 24/01/2022 Surface Elevation: 0.00 m Coords: X:0.00, Y:0.00 Cone Type: Cone Operator:

Settlements calculation according to theory of elasticity*

Calculation properties

* Primary settlements calculation is performed according to the following formula:

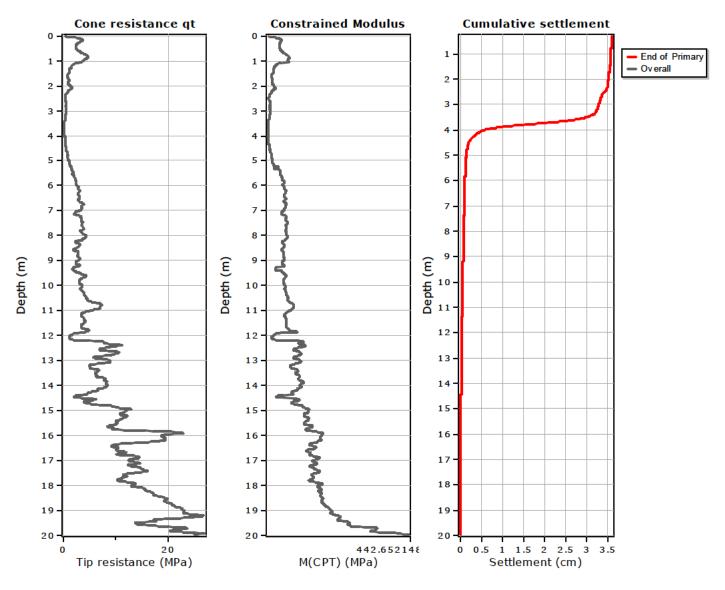
$$S = \sum \frac{\Delta \sigma_v}{M_{CPT}} \Delta z$$

* Secondary (creep) settlements calculation is performed according to the following formula:

$$\mathbf{S} = \mathbf{C}_{\alpha} \cdot \Delta \mathbf{z} \cdot \log(t/t_{p})$$

where t_{P} is the duration of primary consolidation

Footing type: Rectangular Footing width: 15.00 (m) L/B: 1.0 Footing pressure: 10.00 (kPa) Embedment depth: 0.00 (m) Footing is rigid: No Remove excavation load: No Apply 20% rule: No Calculate secondary settlements: No Time period for primary consolidation: N/A Time period for second. settlements: N/A



CPT: CPT04 Total depth: 19.97 m, Date: 24/01/2022 Surface Elevation: 0.00 m Coords: X:0.00, Y:0.00 Cone Type: Cone Operator:

Project:

Location:

Settlements calculation according to theory of elasticity*

Calculation properties

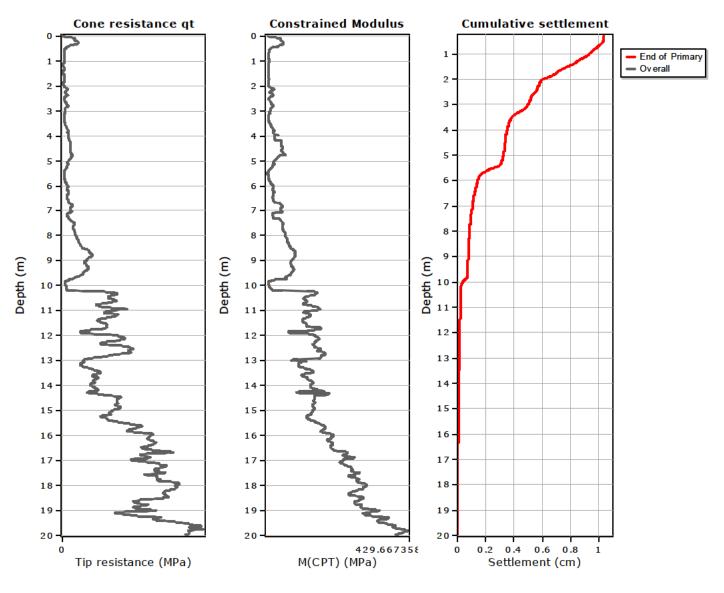
* Primary settlements calculation is performed according to the following formula:

$$S = \sum \frac{\Delta \sigma_v}{M_{CPT}} \Delta z$$

* Secondary (creep) settlements calculation is performed according to the following formula:

$$\mathbf{S} = \mathbf{C}_{\alpha} \cdot \Delta \mathbf{z} \cdot \log(\mathbf{t}/\mathbf{t}_{p})$$

where t_{P} is the duration of primary consolidation


Footing type: Rectangular Footing width: 15.00 (m) L/B: 1.0 Footing pressure: 10.00 (kPa) Embedment depth: 0.30 (m) Footing is rigid: No Remove excavation load: No Apply 20% rule: No Calculate secondary settlements: No Time period for primary consolidation: N/A Time period for second. settlements: N/A

Location:

CPT: CPT06 Total depth: 19.96 m, Date: 24/01/2022 Surface Elevation: 0.00 m Coords: X:0.00, Y:0.00 Cone Type: Cone Operator:

Settlements calculation according to theory of elasticity*

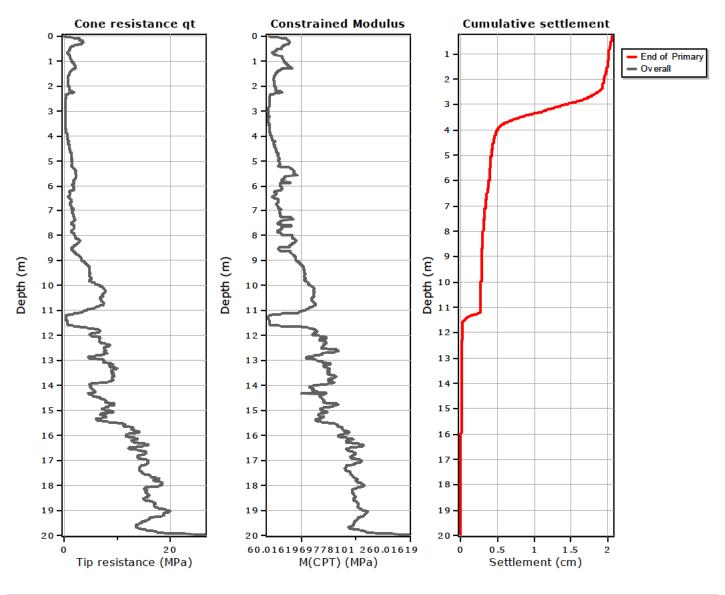
Calculation properties

Footing type: Rectangular Footing width: 15.00 (m) L/B: 1.0 Footing pressure: 10.00 (kPa) Embedment depth: 0.30 (m) Footing is rigid: No Remove excavation load: No Apply 20% rule: No Calculate secondary settlements: No Time period for primary consolidation: N/A Time period for second. settlements: N/A * Primary settlements calculation is performed according to the following formula:

$$S = \sum \frac{\Delta \sigma_v}{M_{CPT}} \Delta z$$

* Secondary (creep) settlements calculation is performed according to the following formula:

$$\mathbf{S} = \mathbf{C}_{\alpha} \cdot \Delta \mathbf{z} \cdot \log(t/t_p)$$


where $t_{\mbox{\scriptsize p}}$ is the duration of primary consolidation

Location:

CPT: CPT07 Total depth: 19.96 m, Date: 24/01/2022 Surface Elevation: 0.00 m Coords: X:0.00, Y:0.00 Cone Type: Cone Operator:

Settlements calculation according to theory of elasticity*

Calculation properties

* Primary settlements calculation is performed according to the following formula:

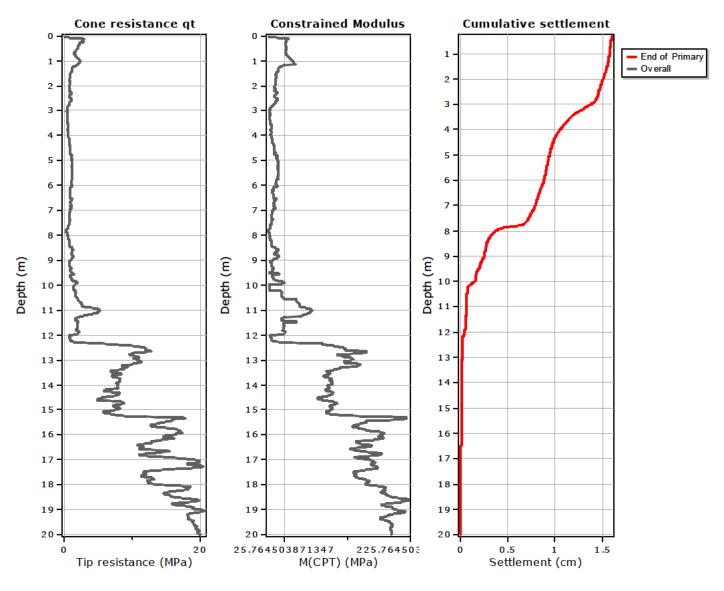
$$S = \sum \frac{\Delta \sigma_v}{M_{CPT}} \Delta z$$

* Secondary (creep) settlements calculation is performed according to the following formula:

$$\mathbf{S} = \mathbf{C}_{\alpha} \cdot \Delta \mathbf{z} \cdot \log(\mathbf{t}/\mathbf{t}_{p})$$

where t_{P} is the duration of primary consolidation

Footing type: Rectangular Footing width: 15.00 (m) L/B: 1.0 Footing pressure: 10.00 (kPa) Embedment depth: 0.30 (m) Footing is rigid: No Remove excavation load: No Apply 20% rule: No Calculate secondary settlements: No Time period for primary consolidation: N/A Time period for second. settlements: N/A


CPeT-IT v.3.0.2.1 - CPTU data presentation & interpretation software - Report created on: 24/01/2022, 2:30:14 PM Project file: C:\Users\LydiaL\CMW Geosciences Pty Ltd\CMW Connect - TGA2021-0096 Pencarrow Estate, Pongakawa\Office Technical\TGA2021-0096 CPeT-IT.cpt 1

Location:

CPT: CPT08 Total depth: 20.00 m, Date: 24/01/2022 Surface Elevation: 0.00 m Coords: X:0.00, Y:0.00 Cone Type: Cone Operator:

Settlements calculation according to theory of elasticity*

Calculation properties

* Primary settlements calculation is performed according to the following formula:

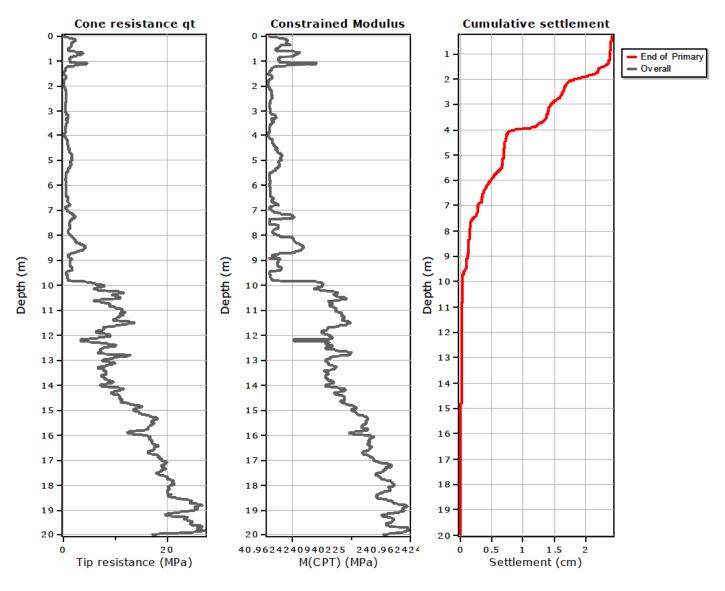
$$S = \sum \frac{\Delta \sigma_v}{M_{CPT}} \Delta z$$

* Secondary (creep) settlements calculation is performed according to the following formula:

$$\mathbf{S} = \mathbf{C}_{\alpha} \cdot \Delta \mathbf{z} \cdot \log(t/t_{p})$$

where t_P is the duration of primary consolidation

Footing type: Rectangular Footing width: 15.00 (m) L/B: 1.0 Footing pressure: 10.00 (kPa) Embedment depth: 0.30 (m) Footing is rigid: No Remove excavation load: No Apply 20% rule: No Calculate secondary settlements: No Time period for primary consolidation: N/A Time period for second. settlements: N/A


1

Location:

CPT: CPT10 Total depth: 19.98 m, Date: 24/01/2022 Surface Elevation: 0.00 m Coords: X:0.00, Y:0.00 Cone Type: Cone Operator:

Settlements calculation according to theory of elasticity*

Calculation properties

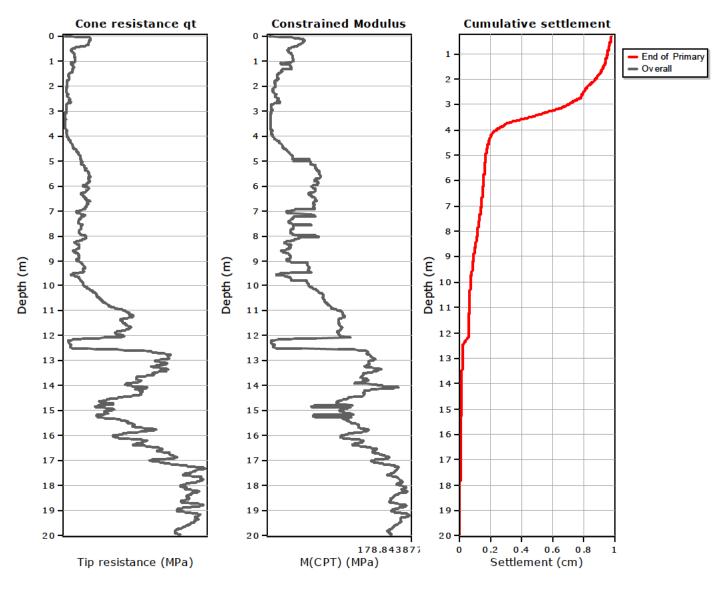
* Primary settlements calculation is performed according to the following formula:

$$S = \sum \frac{\Delta \sigma_v}{M_{CPT}} \Delta z$$

* Secondary (creep) settlements calculation is performed according to the following formula:

$$\mathbf{S} = \mathbf{C}_{\alpha} \cdot \Delta \mathbf{z} \cdot \log(\mathbf{t}/\mathbf{t}_{p})$$

where t_{P} is the duration of primary consolidation


Footing type: Rectangular Footing width: 15.00 (m) L/B: 1.0 Footing pressure: 10.00 (kPa) Embedment depth: 0.30 (m) Footing is rigid: No Remove excavation load: No Apply 20% rule: No Calculate secondary settlements: No Time period for primary consolidation: N/A Time period for second. settlements: N/A

Location:

CPT: CPT11 Total depth: 19.95 m, Date: 24/01/2022 Surface Elevation: 0.00 m Coords: X:0.00, Y:0.00 Cone Type: Cone Operator:

Settlements calculation according to theory of elasticity*

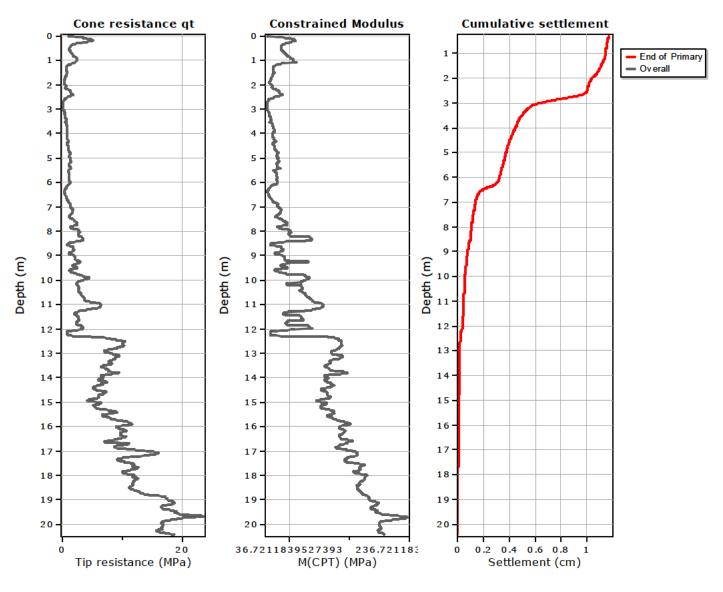
Calculation properties

Footing type: Rectangular Footing width: 15.00 (m) L/B: 1.0 Footing pressure: 10.00 (kPa) Embedment depth: 0.30 (m) Footing is rigid: No Remove excavation load: No Apply 20% rule: No Calculate secondary settlements: No Time period for primary consolidation: N/A Time period for second. settlements: N/A * Primary settlements calculation is performed according to the following formula:

$$S = \sum \frac{\Delta \sigma_v}{M_{CPT}} \Delta z$$

* Secondary (creep) settlements calculation is performed according to the following formula:

$$\mathbf{S} = \mathbf{C}_{\alpha} \cdot \Delta \mathbf{z} \cdot \log(\mathbf{t}/\mathbf{t}_{p})$$


where t_P is the duration of primary consolidation

Location:

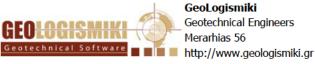
CPT: sCPT05 Total depth: 20.42 m, Date: 24/01/2022 Surface Elevation: 0.00 m Coords: X:0.00, Y:0.00 Cone Type: Cone Operator:

Settlements calculation according to theory of elasticity*

Calculation properties

* Primary settlements calculation is performed according to the following formula:

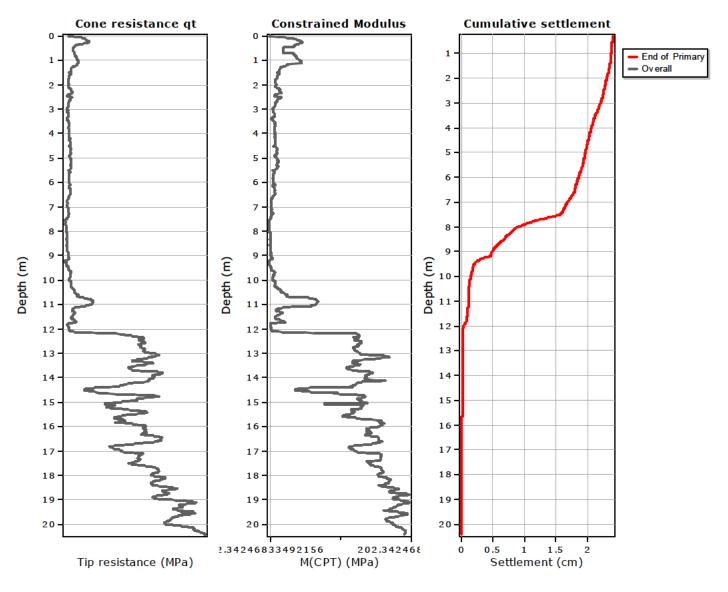
$$S = \sum \frac{\Delta \sigma_v}{M_{CPT}} \Delta z$$


* Secondary (creep) settlements calculation is performed according to the following formula:

$$\mathbf{S} = \mathbf{C}_{\alpha} \cdot \Delta \mathbf{z} \cdot \log(\mathbf{t}/\mathbf{t}_{p})$$

where t_{P} is the duration of primary consolidation

Footing type: Rectangular Footing width: 15.00 (m) L/B: 1.0 Footing pressure: 10.00 (kPa) Embedment depth: 0.30 (m) Footing is rigid: No Remove excavation load: No Apply 20% rule: No Calculate secondary settlements: No Time period for primary consolidation: N/A Time period for second. settlements: N/A


1

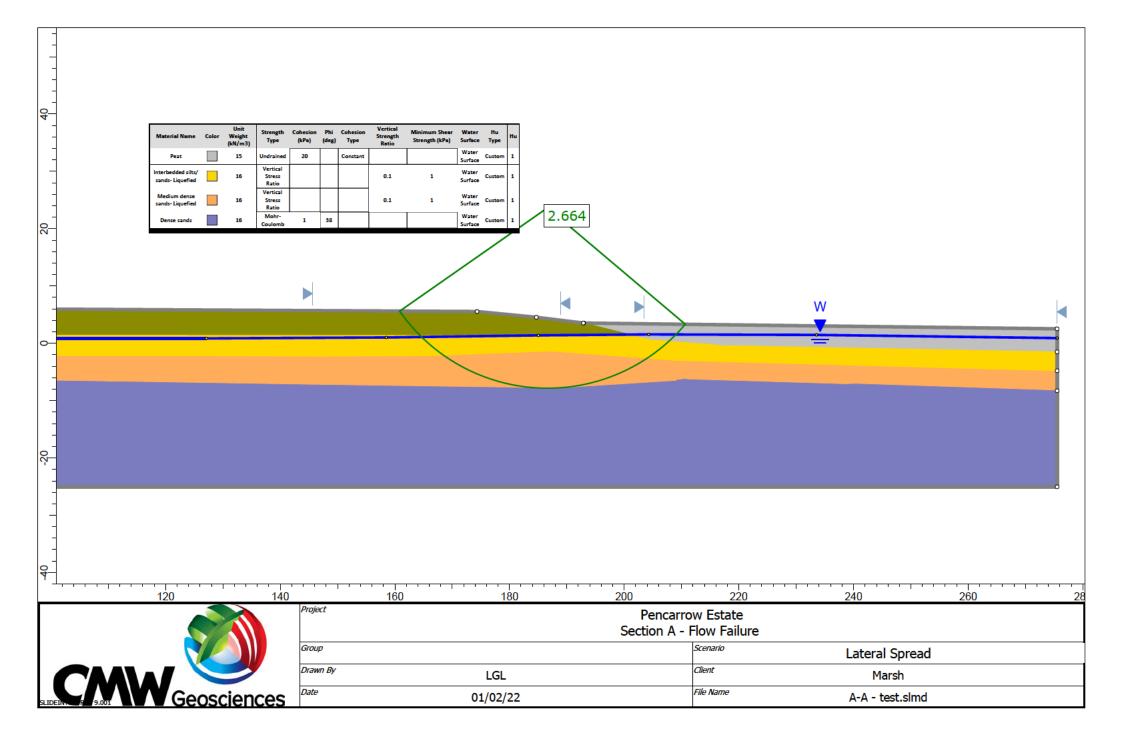
Project: Location: CPT: sCPT12 Total depth: 20.42 m, Date: 24/01/2022 Surface Elevation: 0.00 m Coords: X:0.00, Y:0.00

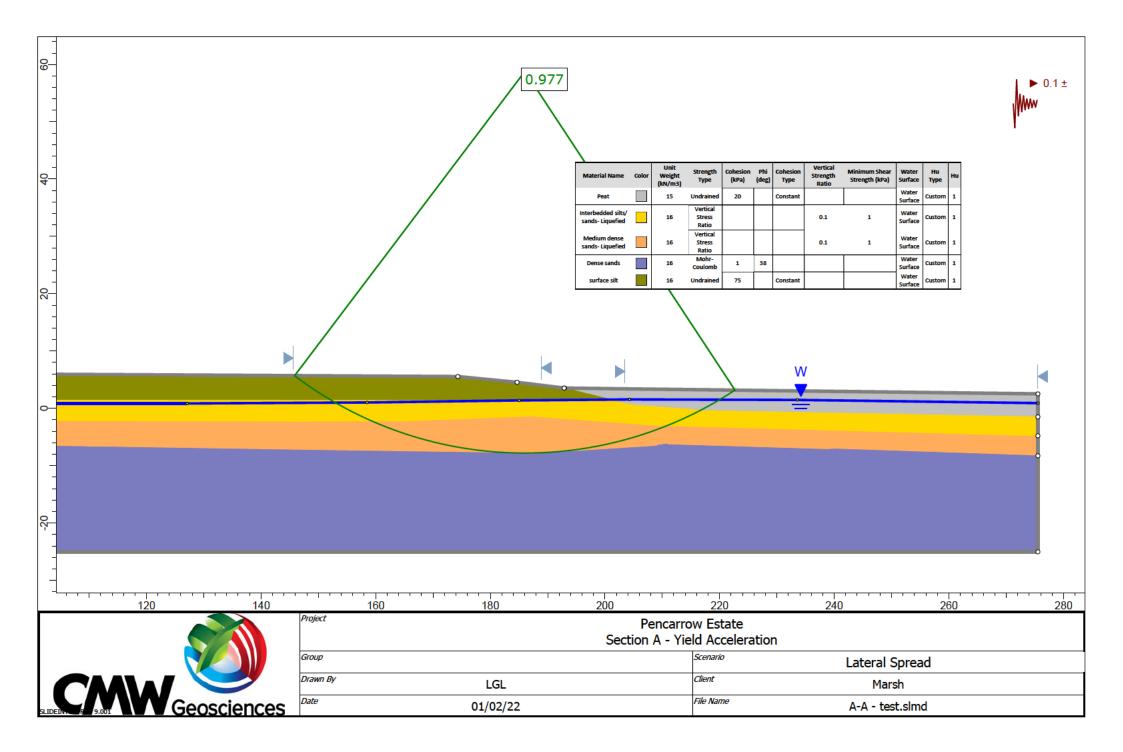
Cone Type: Cone Operator:

Settlements calculation according to theory of elasticity*

Calculation properties

Footing type: Rectangular Footing width: 15.00 (m) L/B: 1.0 Footing pressure: 10.00 (kPa) Embedment depth: 0.30 (m) Footing is rigid: No Remove excavation load: No Apply 20% rule: No Calculate secondary settlements: No Time period for primary consolidation: N/A Time period for second. settlements: N/A * Primary settlements calculation is performed according to the following formula:


$$S = \sum \frac{\Delta \sigma_v}{M_{CPT}} \Delta z$$


* Secondary (creep) settlements calculation is performed according to the following formula:

$$\mathbf{S} = \mathbf{C}_{\alpha} \cdot \Delta \mathbf{z} \cdot \log(\mathbf{t}/\mathbf{t}_{p})$$

where t_P is the duration of primary consolidation

Appendix F: Lateral Spread Analyses

