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Executive Summary 
The National Policy Statement for Freshwater Management 2020 (NPS-FM) requires regional councils 
to identify and map natural inland wetlands 500 m2 in extent or greater; or those naturally smaller in 
size where known to contain threatened species. However, discriminating wetlands is not a 
straightforward process given the ecological variability and transitional nature of these ecosystems.    

This report summarises a proof of concept developed to delineate and classify wetlands in New Zealand 
using commonly available earth observational data and machine learning techniques. Conducted in 
Northland and Tasman, the pilot development applied a three-phase methodology comprising 
Masking, Classification and GIS post processing. All steps were designed to be run using open-access 
data, open-source algorithms, and commonly available software. Different data inputs were tested 
including the Sentinel-2A Multispectral Instrument with 13 bands, LiDAR and its derivatives, Aerial 
Photography (3 and 4 band) and radiometric data derivatives such as wetness gradient. 

Five modelling scenarios were tested including semantic segmentation using convolutional neural 
networks (CNN) and classification decision trees using Random Forest. The best performing algorithm 
achieving an overall pixel accuracy of 0.83 was a CNN model using Sentinel-2A data, RGBI aerial 
photography and LiDAR. A Random Forest classification model using similar data inputs performed 
almost as well. The best performing CNN and Random Forest models were capable of discriminating 
wetlands at a pixel level from non-wetlands with an accuracy of 0.83.  Spatial concordance of the 
modelled polygons with a small validation set was however relatively low.  This incongruence reflects 
the difficulty of using a rules based GIS process to generate realistic polygons from the modelled pixels 
that approximate mapping by a trained ecologist. 

Currently the model outputs are biased towards a high recall, low precision approach meaning they are 
attempting to predict all plausible wetland areas including likely false positives such as wet pasture, 
drainage channels and areas of vegetation resembling assemblages found in natural wetlands. However, 
confidence thresholds are included with the output polygons to enable a higher precision-based 
refinement of the dataset.  

The findings suggest that an ensemble model of Random Forest combined with CNN could do better 
than any of the individual models tested thus far. This ensemble model would allow examination of 
input feature importance enabling more prediction emphasis to be placed on important features such 
as landscape form or canopy height rather than vegetation or water response where these might be 
less discriminatory.  There is also the potential for a model with fewer output classes to perform better. 
Therefore, it is recommended that a 5 or 6-class aggregated model also be tested. Additionally, an 
approach that applies a separate model for pakahi and gumland may improve model outputs.  

Augmenting the machine learning process with oblique photography for training and validation is likely 
to improve the mapping quality. Accurate GIS data describing impervious surface, soils, stormwater 
assets, ponds and vegetation in the post processing phase will also further improve the quality of the 
mapping approach. 

Whilst it is possible to implement the recommended approach outlined in this proof of concept (as 
described in Appendix 4: Processing Pipeline) it is recommend that the refinements that have been 
identified to lift the accuracy and quality of the model outputs (as outlined in section 8: 
Recommendations) are tested and any potential improvements reflected in an updated processing 
pipeline along with associated algorithms and scripts.  
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In conjunction with the previous literature review undertaken as part of this project (Lythe et al., 2020), 
this proof of concept has confirmed that the proposed approach is potentially feasible to support the 
implementation of the NPS-FM mapping requirements. The proof of concept has identified a preferred 
model approach along with a series of recommendations to improve model accuracy and quality.  
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Glossary 
Term Definition  

Convolutional Neural 
Networks (CNN) 

A representative form of deep learning that is used for visual recognition. 
Convolutional Neural Networks (CNN)s utilise the spatial context of detected 
features to identify objects and classify scenes. 

Decision Trees (DT) 

A flowchart or way of structured thinking where each node represents a feature 
(attribute), each link (branch) represents a decision (rule), and each leaf represents 
an outcome. DT Algorithms include Random Forest, Boosted Regression and 
Classification and Regression Trees (CART).  

Digital Elevation 
Model (DEM) 

Graphical representation of elevation data to digitally represent terrain/land 
surface.  LiDAR derivative.  

Freshwater Ecosystems 
New Zealand (FENZ) 
geodatabase 

National spatial dataset of rivers, lakes and wetlands. It has a minimum mapping 
unit of approximately 0.5 hectares and includes classification of only palustrine 
and inland saline hydrosystems. 

Hydrosystem Broad ecological category based on hydrological and landform setting, salinity, 
temperature.  

Land Cover Database 
version 5 (LCDB v5) 

National spatial dataset of land cover at 30 m resolution and minimum mapping 
unit of 1 ha. 

LiDAR 
Light Detection and Ranging (LiDAR) is an active remote sensing method that 
emits light in the form of a pulse laser and measures the way it is reflected from 
the earth’s surface. 

Near Infra-Red (NIR)  Spectroscopy method that is in the near infrared region of the electromagnetic 
spectrum (780 nm to 2500 nm)  

Normalised Difference 
Vegetation Index 
(NDVI) 

A measure of vegetation density.  

Normalised Difference 
Water Index (NDWI) An estimation of the leaf water content at canopy level 

NPS-FM National Policy Statement for Freshwater Management (2020) 
Object based 
approaches Partitioning an image into homogenous segments (called objects). 

RADARSAT Canadian satellite program run by the Canadian Space Agency (CSA) 
Random Forest (RF) Machine learning algorithm that employs an ensemble of decision trees 

Remote Sensing (RS) 
Remote Sensing is the field of observing the earth using sensors (such as cameras 
or LiDAR) from satellites or aircraft and the process of using this data to monitor 
or detect the physical characteristics of an area.  

RGB / RGBI 

An RGB image, sometimes referred to as a truecolour image, contains red, green, 
and blue colour components for each individual pixel.  An RGBI image has an 
infrared band added.  RGB/RGBI images in this report are aerial photography 
sourced. 

Sentinel-1A and 
Sentinel-1B 

Two satellites which share the same orbital plane with 20 m spatial resolution. 
Sentinel-1 is a Synthetic Aperture Radar (SAR) mission, providing continuous all-
weather radar data.  

Sentinel-2 Satellite imagery of 10m spatial resolution offering new imagery every 5 days.  
Synthetic Aperture 
Radar (SAR) sensors 

Sensors which acquire information under vegetation canopies and in cloudy 
conditions are useful with short-wavelength. 
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Term Definition  

The Landsat Program 
This satellite program is a joint venture by National Aeronautics and Space 
Administration (NASA) and United States Geological Survey (UGGS) providing 
continuous imagery of Earth’s land.  

Topographic Position 
Index (TPI) Algorithm used to determine topographic slope position. LiDAR derivative. 

Topographic Wetness 
Index (TWI) Metric for terrain determined variation in soil moisture. LiDAR derivative. 
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1. Introduction 
Natural wetlands are productive habitats for a range of flora and fauna (Turpie et al., 2015) and provide 
a range of ecosystem services. However, they are also one of the most threatened ecosystems on earth 
(Mahdianpari et al., 2020). In New Zealand, approximately 10% of the historical extent remains (Ausseil 
et al., 2008; Ausseil et al., 2011; Myers et al., 2013; Robertson et al., 2018). Wetland loss and the resulting 
decline of the ecosystem services they provide have widespread negative impacts including vulnerability 
to climate change, biodiversity loss, water quality impacts, cultural effects, human health, amenity and 
recreational use.  

The National Policy Statement for Freshwater Management 2020 (NPS-FM) requires regional councils 
to identify and map their natural inland wetlands to 500 m2 in extent or greater, or those naturally 
smaller known to contain threatened species, and establish and maintain an inventory of wetlands that 
includes (at a minimum), the following information:  

• identifier and location, 
• area and Geographic Information System (GIS) polygon, 
• classification of wetland type, 
• any existing monitoring information, and, 
• may include any other information, e.g. values assessment. 
This NPS-FM requirement is the primary driver of this project. This technical report follows a 
comprehensive review of literature, data requirements and earth observation science techniques for 
wetland mapping at large scales (Lythe et. al., 2020) which outlined the technical approach to be used 
in this proof of concept (POC). 

National wetland inventory development, and in turn wetland management, monitoring, and 
conservation, is one of the application areas that are expected to benefit from the increasing availability 
and capability of big data technologies including machine learning and cloud computing. 

This technical report summarises a POC solution developed to identify, delineate, and classify wetlands 
at a national and/or regional council level using machine learning. It explains the design approach, 
algorithmic methods, data inputs, accuracy, limitations and cost implications of the approach. 

The report layout is as follows: 

1. Introduction 
2. Objectives, study area, classification system 
3. Methods and data processing 
4. Model results and accuracy 
5. Challenges and limitations 
6. Deliverables 
7. Key findings 
8. Recommendations.  
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2. Objectives and Scope 
In this section the scope and objectives of the POC are discussed along with the study area, data inputs 
and classification categories.  

This technical report follows a comprehensive review of literature, data requirements and earth 
observation science techniques for wetland mapping at large scales (Lythe et. al., 2020) which outlined 
the technical approach to be used in this POC. The proposed method was presented and agreed upon 
with the Ministry for the Environment (MfE) and an appointed third-party reviewer. This literature review 
should be referred to by the reader for further context on the methods selected to be carried forward 
to the POC. 

Limitations and risks were discussed during a workshop which covered the recommended approach 
and previous commissioning meeting; some of the limitations that remain are discussed within this 
technical report (Section 5).  

2.1 Proof of Concept Project Objectives  
The purpose of the POC was to design, build and test technical solutions to identify, delineate and 
classify natural inland wetlands down to a minimum mapping unit area of 500 m2 in two geographically 
diverse regional areas of New Zealand.  

The project intent was to:  

• Develop a pragmatic and cost-effective method to map wetland extent to a minimum area of 
500 m² or smaller that can be applied consistently at a national or regional scale and will be 
achievable for councils.  

• Assess the utility and information value of a range of data inputs including medium resolution open 
access satellite imagery, radiometric survey data, LiDAR and high-resolution vertical aerial 
photography including RGB and RGBI bands. 

• Assist in improving the understanding of the extent and location of New Zealand’s remaining 
natural inland wetlands (including smaller degraded wetlands on private land) to aid and improve 
policy implementation, monitoring and compliance, and to also increase our capability for 
environmental reporting.  

• Provide a tool to assist regional councils in carrying out obligations under the NPS-FM.  

2.2 Scope 
Specifically, the POC scope is to: 

• Design and implement deep learning models to identify and delineate  natural inland wetland (as 
defined by the NPS-FM) to an area of 500 m2 or smaller using any of the available suite of data 
supplied by Northland Regional Council and Tasman District Council and/or any other data that is 
freely available. 

• Develop methods to classify identified wetlands using the Johnson and Gerbeaux (2004) framework 
(hydrosystem and wetland class).  

• Undertake a comparison of model results against existing and verified regional wetland mapping. 
• Provide recommendations on optimum method and data inputs. 
• Identify gaps or limitations including on levels of confidence in results and ability to apply the NPS-

FM definitions remotely. 
Note: The outputs from this POC include areas of public conservation land; however, as per the NPS-
FM, regional councils need not map wetlands in these areas and may wish to exclude these areas to 
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improve processing times. Also, the Coastal Marine Area (CMA) has been excluded from the POC 
analysis and map outputs (due to being excluded from the natural inland wetland definition in the NPS-
FM). However, saltmarsh wetlands are still mapped in model outputs either where these wetlands 
naturally occur landward of the CMA due to backwatering of saline influence, or where the CMA is 
poorly mapped.  

The following is not in scope of this project:  

• The assessment of wetlands for biodiversity or functional values (current or potential). 
• Extending the method to identify, delineate or classify former wetlands or other wetlands that do 

not meet the NPS-FM definition of natural inland wetlands including areas of improved pasture 
subject to temporary rain derived water pooling. 

• Assessment of wetland form, structural class or vegetation assemblage. 
• Creating new datasets for input into the model.  

2.3 Study Areas 
The POC was conducted in the Northland and Tasman regions. These areas have been identified as 
suitable for the following reasons: 

• The diversity of wetlands,  
• Availability of suitable data which is representative of a variety of wetlands on a national scale, 
• Existing detailed mapping and classification, 
• Access to expertise to undertake additional ground truthing.  
These areas were also chosen as they are geographically different, with one area chosen in the North 
Island (Figure 1) and one in the South (Figure 2).  

Additionally, a wetness gradient data set was available in Northland from a 2011 radiometric survey 
(Rissman et al., 2019). Using the chosen classification methodology this data could be tested for overall 
effectiveness also.  

The study areas exclude the area seaward of the coastal marine area (mean high water spring, MHWS) 
and open water. For the Tasman region, the extent was limited to the areas covered by existing LiDAR 
data (which represents approximately 15% of the region) with only RGB (no Infra-red band) vertical 
aerial photography being available across the entire region. This is considered to be representative of a 
minimum viable data input situation that would be common across other regions in New Zealand. 
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Figure 1: Northland Regional Council (NRC) study area showing the regional council boundary, urban 

areas, wetlands mapped by NRC using multiple sources of data from 1990 to 2020, and other 
information that has been used in the delineation of wetlands. 
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Figure 2: Tasman District Council (TDC) study area showing the district council boundary, urban areas, 

wetlands mapped using multiple sources of data from 1990 to 2020, LiDAR extent and other information 
that has been used in the delineation of wetlands. Note the three small southern LiDAR blocks were not 

processed in the POC. 
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2.4 Data Inputs 
The total set of input data for each region is shown in Table 1. The data inputs considered to be 
commonly available in New Zealand include RGB or RGBI high resolution vertical aerial photography, 
LiDAR and its derived indices and data collected from the Copernicus programs by the European Space 
Agency (ESA) through the Sentinel missions. In Northland, a perennial wetness gradient layer from the 
2011 radiometric survey was also able to be assessed. Regional councils have various levels of data 
availability for existing mapped natural inland wetlands and known artificial wetlands (Lythe et al., 2020); 
this data will also vary in completeness, accuracy and confidence.  

Table 1: Input data for the study areas, Northland and Tasman.  

Region Data Description 

Northland (Figure 1) 

• RGBI Vertical Aerial Photography 40cm GSD (2019) 
• LiDAR 1m, (2019) and TWI, TPI, CH (derived from LiDAR) 
• Wetland geometries (NRC, 2020) 
• Sentinel-2 multispectral data (2015-2020) 
• Perennial wetness gradient layer from radiometric survey (NRC, 2011) 
• Coastal Marine Area (NRC) 
• Hydrology (NRC) 
• Stormwater assets (NRC) 

Tasman (Figure 2) 

• RGB Vertical Aerial Photography 30cm GSD (2018-19) 
• LiDAR 1m, (2015-19), TWI, TPI, CH (derived from LiDAR) 
• Wetland geometries (TDC, 2020) 
• Sentinel-2 multispectral data (2015-2020) 
• Coastal Marine Area (TDC) 
• Hydrology (TDC) 
• Stormwater assets (TDC) 

2.5 Classification Scheme 
Following a thorough national and international literature review covering the various means to classify 
wetland types (Amani et al., 2017; Brinson and Malvarez, 2002; Brooks et al., 2009; Grenier et al., 2007), 
the New Zealand classification method by Johnson and Gerbeaux (2004) was adopted for the POC. This 
is a semi-hierarchical classification system covering hydrosystem, wetland class, structural class and 
vegetation composition (Figure 3). The tiers of classification allow for wetlands to be recognised and 
described at different levels of detail, depending on what applications are intended. 

Only the broader top tiers of the classification system (i.e. just hydrosystem and wetland class) are 
applied in the POC. The higher levels in the hierarchy are most applicable to broad-scale inventory, 
survey, or mapping, to sort wetlands into meaningful groupings for data storage, retrieval, and 
interpretation (Johnson and Gerbeaux, 2004). This method is also already adopted by some regional 
councils and it supports the possible aggregation of wetland classes, if required, to improve model 
output accuracy and confidence. Johnson and Gerbeaux (2004) note the four most important 
hydrosystems as estuarine, riverine, lacustrine, and palustrine. These hydrosystems align with those 
considered in this project (Lythe et al., 2020).  
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Figure 3: Semi-hierarchical classification system for New Zealand Wetlands (Adapted from Johnson and 

Gerbeaux, 2004).  
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3. Methodology 
A three-phase approach was employed (Figure 4) consisting of: 

1. Masking – medium resolution probability model of wetland probability, 
2. Classification – high resolution classification of imagery into wetland class using semantic 

segmentation. Several data inputs were tested for effectiveness in multi-class wetland 
classification, 

3. Post processing – including vectorisation, hydrosystem classification and validation of wetland 
class. 

 
Figure 4: Solution Design 

The results from each phase were used as input into the next phase with the resulting wetland polygons 
and attributes including hydrosystem assigned progressively. Each phase of this process is explained in 
this section. 
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3.1 Masking 
The Masking phase is mainly a big data management procedure intended to reduce the target study 
area to a sub-region with a high probability of containing a wetland and therefore minimising the data 
set size and computational requirements. 

A decision tree model was developed using a Random Forest algorithm. Random Forest is a supervised 
learning algorithm where the "forest" it builds, is an ensemble of decision trees. It is a bagging or 
aggregating technique with the trees in Random Forests run in parallel. There is no interaction between 
these trees while building the trees. It operates by constructing a multitude of decision trees at training 
time and outputting the mean prediction (regression) of the individual trees. 

The Random Forest model was trained using a randomly selected subset of polygons from the FENZ 
and LCDB5 wetland datasets and considered the spectral properties of Sentinel-2 multi-band imagery 
and the LiDAR derivatives; Topographic Wetness Index (TWI) and Digital Elevation Model (DEM). The 
spatial resolution of processing output raster was 100 m2 enabling the resulting data to work seamlessly 
with the subsequent classification model which is using 0.40 m input RGB(I) aerial photography. A low 
precision-high recall approach was taken to threshold the results. The outcome of this stage is a binary 
raster image where non wetland areas are masked for input into stage 2 (Figure 5). 

 
Figure 5: Random Forest Mask result in Northland area shown against NRC wetland polygons. Larger disc 

= high probability and smaller disc = low probability of this pixel containing a wetland. 



Proof of Concept for Wetland Mapping May 2021 
Prepared for Ministry for the Environment  Final 

Morphum Environmental Ltd and Lynker Analytics  12 

The following table presents several additional statistical parameters including:  

• True Positive (TP) = the model correctly predicts the positive class  
• False Positive (FP) = the model incorrectly predicts the positive class  
• True Negative (TN) = the model correctly picks the negative class  
• False Negative (FN) = the model incorrectly predicts the negative class  
• Precision = TP / (TP + FP)  
• Recall = TP / (TP + FN)  
• F1 = 2 X ((Precision X Recall) / (Precision + Recall))  

The impact of Precision and Recall is described visually in Figure 6.   

 
Figure 6: Illustration of Recall and Precision for wetland detection. 

The Random Forest algorithm was validated against known wetland polygon data provided by NRC and 
TDC.  In Northland, the accuracy and the overall weighted average accuracy of the mask was 83% while 
in Tasman the score was 92%. There is a higher-class imbalance in Tasman. Overall, these results are 
quite promising indicating these masks will be useful for filtering the CNN results. 

One of the advantages of the Random Forest algorithm is that prediction is based on input features 
considered important for classification. This allows information gain to be understood at a feature level. 
Figure 7 shows the information gain for this model.  

 

 

Precision shows how precise the model is out of those predicted to be positive. 

Recall calculates how many of the actual positives the model capture through 
labelling it as True Positive. 

The F1 score conveys the balance between the precision and the recall. An F1 score 
reaches its best value at 1 and worst value at 0. A low F1 score is an indication of 
both poor precision and poor recall. 



Proof of Concept for Wetland Mapping May 2021 
Prepared for Ministry for the Environment  Final 

Morphum Environmental Ltd and Lynker Analytics  13 

Table 2 Accuracy of Northland Random Forest Mask 
 Precision Recall F1 Samples 

Not wetland 0.83 0.88 0.86 5606 

Wetland 0.82 0.77 0.80 4218 
     

Accuracy   0.83 9824 

Weighted Average 0.83 0.83 0.83 9824 

Table 3 Accuracy of Tasman Random Forest Mask 
 Precision Recall F1 Samples 

Not wetland 0.87 0.73 0.79 285 

Wetland 0.93 0.97 0.95 1005 
     

Accuracy   0.92 1290 

Weighted Average 0.91 0.92 0.91 1290 

 

 
Figure 7: Information gain from Random Forest model. 

It reveals that the three most important inputs to the model are composite indices derived from 
Sentinel-2 (S); vegetation index, soil index and water index. Canopy Height (CHM) and Digital Elevation 
Model (DEM) derived from the LiDAR survey were fourth and fifth. Med = Median, STD = Standard 
Deviation, DEM = 100 pixel radius, DEM2 = 40 pixel radius.   

The outcome of this stage is a binary raster image where non wetland areas are masked (excluded) for 
input into stage 2 (Figure 5). 
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3.2 Classification 
Wetland delineation and classification was undertaken primarily using semantic segmentation via a 
Convolutional Neural Network (CNN). CNNs are a class of neural networks in deep learning that are 
commonly applied to computer vision and image analysis. It resembles the neuron connectivity pattern 
in human brains. Specifically, a CNN is made up of one input layer, multiple hidden layers, and an output 
layer. The hidden layers structurally include convolutional layers, ReLU (activation function) layers, 
pooling layers, fully connected layers, and normalization layers. Compared to other classification 
algorithms, CNN requires much less pre-processing and can achieve better results as the number of 
training cycles increase. 

Four separate CNN model scenarios were tested. A fifth Random Forest classification model was also 
assessed (Table 3). 

Table 3: Classification model inputs 

Model 1 - CNN Model 2 - CNN Model 3 - CNN Model 4 - CNN Model 5 - RF 

RGBI Aerial 
Photography 

LiDAR 

Sentinel-2 
Multispectral data 

RGBI Aerial 
Photography 

LiDAR 

Sentinel-2 
Multispectral data 

Radiometry 
(wetness) 

RGB Aerial 
Photography 

 

RGB Aerial 
Photography 

LiDAR 

Sentinel-2 
Multispectral data  

LiDAR 

Sentinel-2 
Multispectral 
data 

 

Active Learning was used to train the models – a methodology used to achieve high accuracy models 
using only the most essential training inputs (Figure 8). Model training was undertaken using 
approximately 94,000 points encompassing both regions and including all wetland classes. These were 
randomly sampled using a subset of the most confident datasets (based on information provided by 
Council personnel) available in Northland and Tasman containing 15,853 Wetland polygons.   

The max-entropy sampling method is used to ensure only the most informative samples are reviewed 
and labelled by a human expert, leading to savings in human effort and processing time. The confidence 
in delineation and classification of the available existing mapped wetland areas was discussed with NRC 
and TDC. For TDC, a list of wetlands that were known to have been surveyed in the field was provided, 
and this was used to inform the subset of mapped wetlands with high confidence. For NRC, it was 
advised that wetlands from a variety of datasets have a high level of confidence, this included separate 
datasets for ‘heathlands and ‘saltmarsh’, as well as, wetlands from an amalgamated ‘known wetlands’ 
dataset with confidence attribute scores of ‘2’; particularly the ‘Top150’ wetlands.  

The CNN also needed to learn what is not a wetland and so 52,056 points were sampled outside of 
wetlands for the CNN to train on. The neural network models then propose labels on the areas that 
have the largest entropy (least confidently labelled or most uncertain). 

In the training phase, these are iteratively reviewed and corrected by suitably experienced wetland 
experts and then added to the pool of labelled data for model retraining.  
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This continues until all high entropy areas are exhausted, which indicates that the model is now 
suitable for running against future, unlabelled data.  

In total 12,963 new human input training annotations across all wetland classes were captured based 
on the optical orthophotography, slope surface and topographic wetness index (TWI). This work was 
conducted iteratively in between model inference cycles. 

Table 4: Point annotation training data summary. NRC and TDC inputs were generated from existing 
Council wetland polygons. New were generated in the POC. 

 Point Annotation 

Wetland Class NRC  TDC  NRC New TDC New 

Bog  3,380 39 315 111 

Ephemeral  48 3 150 57 

Fen  541 45 210 15 

Marsh  1,455 25 538 174 

Pakihi & Gumland  9,662 62 493 50 

Saltmarsh  16,489 93 621 262 

Seepage  31 2 103 -  

Shallow water  3,702 16 695 282 

Swamp  6,553 60 1248 569 

     

Total wetland  41,861 345 4,373 1,520 

Not wetland  49,772 2,284 6914 156 

     

Total Points 91,633 2,629 11,287 1,676 

Figure 8: Active learning workflow 
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The remote sensing inputs used for training these models are shown below (Figure 9). These multi-
image candidates were iteratively surfaced to the wetland ecology team using the max entropy sampling 
method. This sampling method also mitigates the effects of sampling bias in the training set or from 
the reviewers.  

 
Figure 9: Imagery inputs used for training. Top left TWI, top-right NDWI, bottom left RGB, bottom right 

Slope. 

Multiple semantic segmentation inference cycles were run using Python and Tensorflow/Keras. The 
result of this stage is a classified image with a spatial resolution of 2m depicting the predicted 
boundaries and class of wetland. A confidence score is applied to each wetland geometry. 

3.3 GIS Post Processing 
Following the machine learning phase, a GIS process is used to: 

• Eliminate scatter and noise from the inference results,  
• Vectorise and dissolve polygons, 
• Flag excluded wetlands, 
• Apply a decision process to assign hydrosystem classification, and, 
• Validate wetland class. 
 
The GIS rules, presented in Appendix 1, outline the rules that were trialled in this POC within the 
limitations of GIS data available or supplied as part of this project. Each regional and district council 
throughout NZ will hold GIS data useful for this phase with varying levels of resolution, completeness, 
and accuracy. Therefore, it is acknowledged that GIS post processing rules will need to be refined for 
each region based on available data. This applies particularly to the degree of mapped known 
constructed and artificial wetlands, however, also to the resolution and spatial accuracy of mapped 
watercourses. However, any regional refinement should always be an improvement from the national 
level rules. Furthermore, regional councils will be able to refine wetland inventories over time as GIS 
datasets are created or improved. 
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3.3.1 Vectorisation 
The deep learning models produce multi-class raster images at a 0.3 or 0.4 m super-pixel resolution. 
These images spanned the entire masked image footprint. A GIS post processing method is used filter 
out noise (speckle), generalise, vectorise and clip to the target boundary. 

A confidence threshold was used to determine a polygon boundary. For the NRC data this was set at a 
RF probability >35% (100% is higher confidence) and a CNN probability of >80%. This threshold was 
set to remove noise while retaining a high degree of recall. For the TDC this was set at a RF probability 
>40% and a CNN probability of >80%. RF and CNN probabilities are included in the model outputs as 
attributes to allow end users to further filter output polygons and/or prioritise further investigations. It 
should be noted that the RF and CNN probabilities included in the final model output are the mean 
probabilities attributed from the rasters.  

It is recommended that further refinement of the probability thresholds applied to the raw undissolved 
model outputs is undertaken to optimise recall and precision. This can be assessed against Goodness 
of Fit analysis (Hargrove et al., 2006) results to assist in optimising the thresholds used. This process 
could involve iteratively filtering out raw machine learning output polygons based on each permutation 
of RF and CNN confidence scores in 1% increments. The resulting remaining polygons then dissolved 
and the Goodness of Fit (GOF) (Hargrove et al., 2006) tested against a set of held-out high confidence 
validation known wetland polygons to identify the combination of confidence score filters that returned 
the greatest GOF. It is likely that the optimal probability thresholds will differ between regions.  

Once the raster is converted to a polygon feature and the confidence thresholding applied, an eliminate 
polygon process is used to eliminate small polygons. This was necessary to filter noise and some false 
positive results. Seepage, shallow water and ephemeral wetland outputs smaller than 100 m2, and other 
wetland outputs smaller than 300 m2 were removed. In the POC this process was performed on the raw 
model outputs prior to dissolving. This may have inadvertently removed, or fragmented, larger wetland 
areas comprised of multiple wetlands classes. It is recommended that future filtering on size to remove 
noise is undertaken on the dissolved feature dataset. 

The polygons were then dissolved, merging them with the polygon from the surrounding features that 
it shares the longest boundary with. This merge is completed regardless of wetland classification with 
the final polygons including attributes reporting the wetland class percentage composition within each 
dissolved polygon. The dominate wetland class is also provided.  

3.3.2 Excluded Wetlands 
The NPS-FM definition of natural wetlands includes a series of exclusions. These exclusions include 
wetlands constructed by artificial means, geothermal wetlands, and areas of improved pasture1. 
Furthermore, there is no clear distinction within the RMA definitions between wetlands and lakes and 
as with between wetland classes, there is a natural gradient between wetland and lake systems. 
However, lakes can be defined as having a greatest dimension of 500 m (Irwin, 1975). Other general 
industry accepted thresholds include lakes having a water depth of at least 2 m, and an area of at least 
0.5 ha. 

There may be similar characteristics between lakes and some wetland classes, or components of wetland 
classes (i.e. similarities between open water areas associated with shallow water wetlands and swamps). 
There may also be similar characteristics between artificial and natural wetlands. Therefore, a GIS post 

 
1 that, at the commencement date, are dominated by (that is more than 50%) of exotic pasture species and is subject to temporary rain 
derived water pooling 



Proof of Concept for Wetland Mapping May 2021 
Prepared for Ministry for the Environment  Final 

Morphum Environmental Ltd and Lynker Analytics  18 

processing approach was undertaken to flag potential lakes and artificial wetlands. The decision process 
is outlined in Appendix 1, Table 9.  

The accuracy and validity of this flagging process is limited by the availability, completeness and 
accuracy of GIS input data. For example, no GIS data of known artificial wetlands including constructed 
stormwater ponds and wetlands was obtained when requested from any of the Northland district 
councils. Thus, the artificial and lake flagging process is considered an indication only and could be 
updated over time as regional councils refine wetland inventories to include constructed and artificial 
systems. There is also opportunity to refine this process where more accurate regional GIS data inputs 
currently exist or can be produced. Some further opportunities are also outlined in Table 9. 

No GIS post processing rules were created for flagging geothermal wetlands as geothermal wetlands 
are non-existent or rare within the pilot study regions and it is expected that this wetland hydrosystem 
can be effectively excluded through the model training process. 

Similarly, no GIS post processing rules were created for flagging output polygons that are located in 
areas of potential improved pasture (as defined by the NPS-FM). The decision to not include a decision 
process to exclude areas of improved pasture is a result of several factors including:  

• The lack of industry agreement or guidance on the interpretation of the improved pasture definition 
at the time of undertaking this pilot project (i.e. agreed list of pasture species or guidance on what 
level of activity constitutes management of pasture). We understand that MfE is working though 
such implementation concerns and seeking to provide guidance to the industry.  

• The level of evidence that may be required to demonstrate improved pasture may be beyond what 
can be assessed as part of a desktop assessment and/or model training exercise.  

• The subjectivity in applying assessment scales when considering the dominance (more than 50%) 
of exotic pasture species and the limitation that this assessment is to be undertaken at the time of 
the commencement date of the NPS-FM.  

• The fact that a certain level of exclusion of areas of managed pasture species dominated areas will 
occur inherently though the model training process.  

We anticipate that this level of accuracy can be refined over time as regional councils manage and 
progressively improve their wetland inventories.  

3.3.3 Hydrosystem 
In practical terms, hydrosystems are of relevance for grouping wetlands over relatively large areas and 
on a regional basis (Johnson and Gerbeaux, 2004), with the four most important hydrosystems being 
estuarine, riverine, lacustrine, and palustrine. These hydrosystems align with those considered in this 
project (Lythe et al. 2020).  

Taking result polygons from the vectorisation stage, we applied a sequential decision process to classify 
the wetland polygon into hydrosystem classes based on: 

• Proximity to LCDB5 coastal vegetation types (estuarine)2 
• Proximity to watercourses (riverine) 
• Proximity to lakes and ponds (lacustrine) 

 
2 Note: Opportunities to improve the estuarine hydrosystem flagging rules using alternative data with a focus on elevation, salinity 
and or coastal proximity, rather than course LDCB vegetation data are being investigated.  
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Each target polygon is tagged with a hydrosystem class based on the criteria and decision sequence as 
outlined in Appendix 1, Table 10. Each of the dissolved model output polygons may be assigned more 
than one hydrosystem class.  

There is considerable overlap between the units within each level of the classification system (including 
hydrosystem level) and boundaries of hydrosystems cannot be expected to be clearly definable on the 
ground (Johnson and Gerbeaux, 2004). Therefore, it is concluded to be unrealistic to employ a desktop 
exercise, including using simple GIS based rules, to apply wetland hydrosystem classification with a high 
degree of accuracy and confidence. This is further compounded by resolution and accuracy of GIS input 
data. Thus, the applied hydrosystem classes are considered an indication only and could be updated 
over time as regional councils refine wetland inventories. Some of the key constraints for each decision 
are indicated in Table 10. There is also opportunity to refine this process where more accurate regional 
GIS data inputs currently exist or can be produced. Some further opportunities are also outlined in Table 
10. 

3.3.4 Class Sense Check 
In addition to validating the model wetland class predictions with known field validated wetland data 
(held out from the model training process), the project sought to utilise GIS input data to further sense 
check the model wetland class classifications. 

Consideration was given to following a “fuzzy logic” weighting exercise similar to (or aligning with) that 
used by Ausseil et al. (2008). However, confidence in the accuracy of classification outputs from the 
fuzzy logic approach means that comparing wetland class outputs from the two approaches for the 
purpose of validation and sense checking would have little value. Based on field validation undertaken 
as part of the project, Ausseil et al. (2008) reported an overall agreement of 60%, however, this varied 
greatly between wetland classes. The report (Ausseil et al., 2008) considered that overall wetland 
classification probably underestimated the marsh extent, overestimated seepages, and confused bog 
and fen. The accuracy of the results was likely a result of two factors; similarity and overlap between 
some wetlands classes in reality, as well as, the resolution of input GIS data (the fundamental soils layer 
(FSL) for example).  

Therefore, rather than using GIS input data though a “fuzzy logic” weighting exercise or a decision rules 
process to re-assign or change the wetland class outputs from the machine learning process; it was 
decided to use a series of GIS decision rules to flag wetland classification outputs from the machine 
learning process that may be inconsistent with the class that may be expected based on GIS information. 
The decision process is outlined in Appendix 1, Table 11. 

As with hydrosystems, there is considerable overlap between wetland classes (Johnson and Gerbeaux, 
2004), and the accuracy and validity of this flagging process is limited by the availability, completeness 
and accuracy of GIS input data. Therefore, the polygons flagged though the sense checking rules 
decision process is anticipated to provide a tool to support regional council refine wetland inventories 
over time. 

3.3.5 Stepwise procedure 
The overall method is summarised in a stepwise manner here: 

1. Assemble all input data. Note raster inputs vary by model.  
2. Calculate indices – NDWI, TWI, DEM, NDVI, Soil Index. 
3. Resample all inputs to a unified sample distance.  This varies by model.  Assemble raster 

data into multiband composite.   
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4. Gather local training annotations per class to calibrate model to region.   
5. Train model using libraries in Appendix 3. 
6. Run RF inference using model codebase supplied.  Hold Mask raster for later use. 
7. Run CNN inference using model codebase supplied choosing appropriate model for data 

available. 
8. Remove noise from the CNN wetland-prediction raster using raster processing software 

specifically targeting outlying pixels and filling small gaps in wetland areas. 
9. Convert the raster output to polygons in GIS software using the Raster to Polygon 

algorithm. All settings were left at default. 
10. Apply confidence attributes to polygons using RF confidence and mean probability of “CNN 

not wetland”. Use these parameters for filtering out false positives and optimising recall 
and precision, if required or desired. 

11. Run GIS post processing tools. These are grouped into 6 ArcGIS Pro Models that run 
individual logical segments to dissolve the original data, classify the outputs, check against 
existing features and raster, such as slope. These tools do the bulk of the data analysis and 
preparation for the final output.  

12. Apply polygon size filter to further reduce noise, if required or desired. 
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4. Model Results and Accuracy 
The following tables and discussion examine the performance of the machine learning model 
predictions relative to hand labelled or ground checked validation data points within the area of interest.   

The validation data was not used to train the machine learning models but was captured at the same 
time and using the same process as the training data. The per pixel statistics are calculated on the raw 
machine learning output and are before the GIS post processing which includes thresholding, 
vectorisation and simplification. 

In addition, Goodness of Fit analysis (Hargrove et al., 2006) was undertaken on the model outputs, to 
compare the delineation against a subset of high confidence known wetland polygons. The comparison 
was made using model outputs following vectorisation, filtering on polygon size and probability values, 
and dissolving. 

A random subset of 50 held out polygons (not used in the model training) from the NRC ‘Top150’ 
wetland dataset were used to compare spatial concordance against any model output polygon that 
intersected with the 50 held-out polygons. The Goodness of Fit analysis was undertaken on these 
datasets irrespective of class. The Goodness of Fit score was 31.5%, indicating a weak to moderate 
spatial concordance between the two datasets. The overall proportion of the model output subset 
intersected with the held-out subset was 36%. In contrast the overall proportion of intersect for the 
held-out subset was 87.5%. This is reflective of the high recall obtained by the probability thresholds 
set in the POC. It is recommended that further refinement of the probability thresholds applied to the 
raw undissolved model outputs is undertaken to optimise recall and precision using Goodness of Fit 
analysis. 

The same analysis was undertaken for the TDC model using a subset of 57 held-out polygons from the 
mapped wetlands that were known to have been field validated. The Goodness of Fit score was 2.2%, 
indicating an extremely poor spatial concordance between the two datasets. The overall proportion of 
the model output subset intersected with the held-out subset was 10.8%. In contrast the overall 
proportion of intersect for the held-out subset was 20.7%. While the overall spatial concordance was 
poor, this is again reflective of the high recall obtained through the POC process in some locations. As 
above, it is recommended that further refinement of the probability thresholds applied is undertaken.  

Overall, the spatial concordance of the modelled polygons with a small validation set was relatively low. 
While this is incongruent to the pixel level analysis reported below, it reflects the difficulty of using a 
rules-based GIS process (vectorisation) to generate realistic polygons from the modelled pixels that 
approximate mapping by a trained ecologist. 

4.1 Model 1 – CNN including RGBI, Sentinel-2, TWI, DEM 
Model 1 considers three open access data sources. These are arguably the most relevant and widely 
available open access imagery composition in the New Zealand setting. Most regional councils have a 
regular repeat visit orthophotography survey scheduled approximately every 3 to 5 years which 
increasingly includes the fourth infrared channel. Sentinel-2 data is open access and spans the period 
2015 to the present while LiDAR coverage has been steadily increasing over New Zealand in recent 
years. 

LiDAR returns can be interpolated to create high-resolution digital elevation models (DEM) and 
Topographic Wetness Index (TWI), from which wetland indicators based on flow convergence and near-
surface soil moisture can be derived (Lang et al., 2013; Lang and McCarty, 2014; Millard and Richardson, 
2013, 2015; O’Neil et al., 2018, 2019). 
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The statistics for this model are shown in Table 5. The support column refers to the number of samples 
of each class included in the validation process. Binary (wetland/not-wetland) statistics are followed by 
Multi-class statistics. 

Table 5: Classification statistics for Model 1 - Northland 
 Precision Recall F1 Score Samples 
Not Wetland 0.85 0.95 0.89 1171 
Wetland 0.81 0.70 0.75 877 
Accuracy   0.82 2048 
Weighted Avg   0.83 2048 
     
Bog 0.59 0.63 0.61 27 
Fen 0.67 0.12 0.21 16 
Marsh 0.50 0.02 0.04 44 
Not Wetland 0.85 0.95 0.89 1171 
Pakihi Gumland 0.86 0.76 0.81 222 
Saltmarsh 0.88 0.88 0.88 336 
Seepage 0.00 0.00 0.00 2 
Shallow water 0.63 0.53 0.58 58 
Swamp 0.80 0.59 0.68 172 
Accuracy   0.84 2048 
Weighted Avg 0.83 0.84 0.83 2048 

 

In terms of binary classification, this model has an accuracy of 0.82 and a weighted average F1 score of 
0.83 which suggests this method will be suitable for delineating wetlands at the scale required. The area 
shown in Figure 10 shows the model results with previously mapped wetlands (left) and modelled 
wetlands (right). The modelled data is reliably identifying known wetlands and identifying a wider area 
of wetland then previously mapped. 



Proof of Concept for Wetland Mapping May 2021 
Prepared for Ministry for the Environment  Final 

Morphum Environmental Ltd and Lynker Analytics  23 

 
Figure 10: Model results showing extent of previously mapped wetlands (left) and modelled wetlands 

(right) in Northland. 

This model reports an overall multi-class accuracy of 0.84 and a weighted average F1 score of 0.83. Both 
metrics are reasonable given the complexity of wetland ecosystems.  

Looking at the individual classes, it is clear that some of the categories are more easily discriminated 
than others. Saltmarsh and Pakihi/Gumland have the highest F1 score at 0.88 and 0.81 respectively. 
Swamp, Bog and Shallow water are next best in the 0.68 through 0.58 range. Several of the classes such 
as Seepage and Marsh remain too sparse to return a statistically significant F1 score.   

Overall, the variability in Precision and Recall is high indicating that there are probably too many classes 
under consideration by the model.  The binary classification results suggest this model is useful for 
delineation but refinement of class categories may be required to lift individual class scores.  

4.2 Model 2 – CNN including RGBI, Sentinel-2, TWI, DEM and Radiometry 
Model 2 considers the same data sets as in Model 1 with the addition of the wetness gradient layer 
from a radiometric survey. This was only available in the Northland study area. It is noted that the 
radiometry data is sampled at a spatial resolution of 50 m, 125 times the resolution of the aerial 
photography. This data set was resampled to 0.4 m for modelling purposes. 

The statistics for this model are shown in Table 6. The support column refers to the number of samples 
of each class included in the validation. Binary statistics are followed by Multi-class statistics. 
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Table 6: Classification statistics for Model 2 - Northland 
 Precision Recall F1 Score Samples 
Not Wetland 0.92 0.60 0.73 876 
Wetland 0.76 0.96 0.85 11 
Accuracy   0.81 2048 
Weighted Avg   0.80 2048 
     
Bog 0.50 0.05 0.10 19 
Ephemeral 0.00 0.00 0.00 3 
Fen 0.00 0.00 0.00 20 
Marsh 0.44 0.13 0.20 31 
Not Wetland 0.78 0.94 0.85 1181 
Pakihi Gumland 0.74 0.68 0.71 197 
Saltmarsh 0.89 0.79 0.84 348 
Seepage 0.00 0.00 0.00 2 
Shallow water 0.40 0.46 0.43 41 
Swamp 0.74 0.27 0.39 206 
     
Accuracy   0.78 2048 
Weighted Avg 0.77 0.78 0.75 2048 

 

In terms of binary (wetland/not wetland) classification, this model has an accuracy of 0.81 which 
suggests this method will be suitable for delineating wetlands at the scale required. 

This model also reports an overall multi-class accuracy of 0.78 and a weighted average F1 score of 0.75. 
Both of these metrics are lower than the previous CNN model. The only class with a reasonable F1 score 
is Saltmarsh. Again, several of the classes such as Bog, Ephemeral, Seepage and Fen remain too sparse 
to return a statistically significant F1 score. It is possible that increasing the number of input layers 
introduced feature interactions that were harmful or that the capacity of the network to learn from the 
additional features was exhausted.  

A subsequent project might examine the use of radiometric derived features in a Random Forest model 
where feature importance can be examined and compared to feature correlations. 

4.3 Model 3 – CNN including RGB only. 
Model 3 considers traditional visible band (RGB) vertical aerial photography only. Assessing this scenario 
helps build an understanding of the visible band data importance and the added impact of the LiDAR, 
Sentinel-2 and Infra-red data. The model statistics for this model are shown in Table 7. The support 
column refers to the number of samples of each class included in the validation. Binary statistics are 
followed by Multi-class statistics. 
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Table 7: Classification statistics for Model 3 - Northland 
 Precision Recall F1 Score Samples 
Not Wetland 0.85 0.85 0.85 630 
Wetland 0.68 0.50 0.57 394 
Accuracy   0.72 1024 
Weighted Avg   0.75 1024 
     
Bog 0.00 0.00 0.00 10 
Ephemeral 0.00 0.00 0.00 0 
Fen 0.00 0.00 0.00 24 
Marsh 0.00 0.00 0.00 5 
Not Wetland 0.85 0.85 0.85 630 
Pakihi Gumland 0.28 0.57 0.38 58 
Saltmarsh 0.67 0.90 0.77 172 
Seepage 0.00 0.00 0.00 1 
Shallow water 0.27 0.06 0.10 64 
Swamp 0.21 0.10 0.14 60 
     
Accuracy   0.72 1024 
Weighted Avg 0.68 0.72 0.69 1024 

 

In terms of binary (wetland/not wetland) classification, this model has an accuracy of 0.72 and a 
weighted average F1 score of 0.75 which while lower than Model 1 suggests the RGB data is very useful 
for boundary definition. 

This model reports an overall accuracy of 0.72 and a weighted average F1 score of 0.69. As expected, 
this is lower than Model 1. Saltmarsh is the only class with a reasonable F1 score. All of the other classes 
either have too few samples or are of low accuracy. This model does highlight however that RGB imagery 
is very suitable for masking as the “Not Wetland” class has a high F1 score of 0.85. 

4.4 Model 4 –  CNN including RGB, Sentinel-2, TWI, DEM 
Model 4 is identical to Model 1 without the infrared channel available. This model when run in Tasman 
returns an accuracy and a weighted average F1 score of 0.79 which suggests this method will be suitable 
for delineating wetlands at the scale required (Table 8 and Figure 11). This result is slightly lower than 
Model 1 where the infrared channel was included. Precision rates are quite high for several classes 
however there is limited accurate validation data available meaning some class validation statistics are 
zero. 
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Table 8: Classification statistics for Model 4 - Tasman 
 Precision Recall F1 Score Samples 
Not Wetland 0.85 0.95 0.89 1171 
Wetland 0.81 0.70 0.75 877 
Accuracy   0.82 2048 
Weighted Avg   0.83 2048 
     
Bog 0.88 0.97 0.93 236 
Fen 0.79 0.85 0.81 13 
Marsh 0.22 0.05 0.08 40 
Not Wetland 0.00 0.00 0.00 18 
Pakihi Gumland 0.68 0.75 0.71 141 
Saltmarsh 0.92 0.94 0.93 162 
Seepage 0.92 0.72 0.81 261 
Shallow water 0.00 0.00 0.00 1 
Swamp 0.69 0.81 0.74 152 
Accuracy   0.79 1024 
Weighted Avg 0.80 0.79 0.79 1024 

 

 
Figure 11: Model results showing extent of previously mapped wetlands (left) and modelled wetlands 

(right) 

This model has a high recall amongst non-forested wetlands in the Tasman District. Overall, the Random 
Forest model generates higher confidence predictions meaning a slightly higher value was used to 
threshold the final polygon layer. The minimum polygon size threshold in the raster processing of 300 
m2 however resulted in a loss of smaller seepage and other wetlands. 
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4.5 Model 5 – Random Forest including Sentinel-2, TWI, DEM 
Model 5 presents results from a Random Forest model including all of the inputs from Model 1 
excluding the RGBI vertical aerial photography. It enables analysis of a Decision Tree algorithm, as well 
as the merits of LiDAR and Sentinel-2 data without aerial photography. The statistics for this model are 
shown in Table 9. The support column refers to the number of samples of each class included in the 
validation. Binary statistics are followed by Multi-class statistics. 

Table 9: Classification statistics for Model 5 
 Precision Recall F1 Score Samples 
Not Wetland 0.83 0.88 0.86 5606 
Wetland 0.82 0.77 0.80 4218 
Accuracy   0.83 9824 
Weighted Avg   0.83 9824 
     
Bog 0.91 0.82 0.86 121 
Ephemeral 1.00 0.25 0.40 8 
Fen 0.86 0.46 0.60 68 
Marsh 0.78 0.26 0.39 179 
Not Wetland 0.82 0.90 0.86 5544 
Pakihi Gumland 0.82 0.73 0.77 1039 
Saltmarsh 0.79 0.81 0.80 1754 
Seepage 0.00 0.00 0.00 7 
Shallow water 0.94 0.58 0.72 262 
Swamp 0.85 0.63 0.72 842 
     
Accuracy   0.82 9824 
Weighted Avg 0.82 0.82 0.81 9824 

 

In terms of binary (wetland/not wetland) classification, this model has an accuracy of 0.83 and a 
weighted average F1 score of 0.83, equivalent to Model 1. 

This model reports an overall multi-class accuracy of 0.82 and a weighted average F1 score of 0.81. Both 
metrics are reasonable given the complexity of wetland ecosystems. The best performing classes are 
Bog and Saltmarsh, but Swamp and Shallow Water are also performing well. There are also some very 
high Precision and Recall rates which is promising in terms of this approach. Overall, this model is more 
consistent across the classes. 

4.6 Comparison of Methods 
A range of modelling scenarios have been considered across the two study areas. High, medium and 
low-resolution imagery and LiDAR data have been assessed in combination and in isolation. Semantic 
segmentation (CNN) and decision tree (Random Forest) modelling approaches have also been tested. 

Based on the analysis, it is concluded that RGBI, LiDAR and Sentinel-2 input data are very influential in 
wetland classification. The CNN model including all of the open access data achieves the highest 
weighted average F1 score at 0.83. However, the Random Forest model is only marginally inferior with 
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a weighted average F1 score of 0.81. Further, Model 5 (Random Forest) delivers better class specific 
accuracy and consistency than the CNN models. 

The CNN model which includes radiometry data reports a lower overall accuracy than the CNN and 
Random Forest models. It is likely that increasing the number of input layers introduced feature 
interactions that were harmful or that the capacity of the network to learn from the additional features 
was exhausted.  

All of the models are biased towards recall meaning there is generally over prediction. This means that 
areas of wet pasture, ditches and other areas bearing similarities with wetland vegetation are reported 
(Figure 12). The class predictions are less accurate than the binary prediction.  This was expected at the 
outset and, while required under the NPS-FW provisions, is not as critical compared with the potential 
efficiencies of identifying and delineating wetlands at a desktop level; providing a platform for wetland 
inventory refinement overtime, including the attribution of accurate wetland classes.  

 
Figure 12: Example of model including drainage channel in pastureland. 

The dual modelling approach generates additional model confidence parameters that can be used by 
regional councils to filter and prioritise the output polygons. These include the Random Forest 
prediction confidence and the probability of “Not Wetland” from the CNN models.  Applying these 
filters in isolation or in combination is a useful way to reduce false positives and prioritise important 
wetlands.  It would also be advisable to consider using LiDAR derived Canopy Height and NDVI in 
conjunction with the polygons to further highlight wetlands with more biodiversity. 

Overall, the findings from the POC suggest that wetlands can be delineated using AI applied to 
earth observation data however class discrimination is more difficult due to the variability and 
transitional nature of these ecosystems. 

Forested wetlands, seepages and ephemeral wetlands are particularly challenging given their temporal 
variability and remote sensing characteristics. An ensemble model targeting consolidated categories 
where a Random Forest model is combined with a CNN model may do better than any of the individual 
models used in this POC. This approach would allow more emphasis to be placed on important features 
such as landscape form and canopy height rather than vegetation or water response. The CNN models 
are more difficult to tune towards the dominant inputs which has resulted in more false positive returns 
than is practically useful. 

Optimising the confidence and probability scores will also improve the final polygon selection. The 
example below (Figure 13) shows the reduction in wetland polygon area on the right as increasingly 
aggressive thresholding rules are applied. The Random Forest confidence threshold is particularly useful 
in reducing false positives in many cases such as urban and farming areas. 



Proof of Concept for Wetland Mapping May 2021 
Prepared for Ministry for the Environment  Final 

Morphum Environmental Ltd and Lynker Analytics  29 

 
Figure 13: Swamp in Northland with different polygon threshold rules applied.  Left: No threshold. 

Middle: 16% RF and 79% CNN. Right: 40% RF and 79% CNN 

Polygon examples from Model 1 are shown in Appendix 2. The project code, weights file, requirements 
e.g. python libraries are summarised in Appendix 3. 
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5. Challenges and Limitations 
Several potential challenges were identified in the scoping of the POC, some of which were outlined in 
the Literature Review Document (Lythe et al. 2020) and discussed at workshops with the Ministry and 
stakeholders. Key outstanding limitations and challenges faced in the POC are discussed below.  

 

Overlap of Hydrosystem Classification Classes  

There is considerable natural overlap between the units within each level of the classification system 
(both for hydrosystem and wetland class) and boundaries of hydrosystems cannot be expected to be 
clearly definable on the ground (Johnson and Gerbeaux, 2004). Therefore, it is unrealistic to expect that 
a desktop exercise, including using simple GIS based rules, can apply wetland hydrosystem classification 
with a high degree of accuracy and confidence. This is further compounded by resolution and accuracy 
of GIS input data. Thus, the applied hydrosystem classes are considered an indication only and could 
be updated over time as regional council refine wetland inventories. There is also opportunity to refine 
this process where more accurate regional GIS data inputs currently exist or can be produced.  

 

Overlap of Wetland Classification Classes  

One functional use of wetland classification information is to enable the selection and prioritisation of 
wetlands for enhancement and protection in a manner that ensures a full range of wetland types and 
biodiversity values are protected. As with hydrosystems, there is also natural overlap of wetland classes. 
There is difficulty in distinguishing classes with confidence when observing and training remotely. In 
other studies, classification accuracies have generally been higher where fewer classes of wetland are 
used (Mahdianpari et. al., 2020). The models have produced accuracy results that vary by class.  Forested 
wetlands, seepages and ephemeral wetlands report the lowest accuracy.   The latter two type are mostly 
excluded based on size from the final data set.  Amalgamation of class results may be required to more 
clearly discriminate classes using the CNN based approach. 
 

Wetland and Lake Definition 

There is no clear distinction within the RMA definitions between wetlands and lakes; and as with 
between wetland classes, there is a natural gradient between wetland and lake systems.  

It is possible that the characteristics for some wetland types, such as shallow open water wetlands or 
open water components of swamps may resemble lake systems, and as such, the machine learning 
outputs may include lakes.  

Our approach to this has been to acknowledge that lakes will also be included in the model outputs 
and then rely on a GIS post processing phase to flag potential lakes; with regional councils progressively 
improving their wetland inventories overtime.  

 

Application of NPS-FM Definitions  

The project scope was focussed on a POC method to identify, delineate and classify wetlands as per the 
NPS-FM definition. At the time of implementing this POC, there was some industry uncertainty 
regarding the interpretation and implementation of some aspects of these definitions, including the 
definitions of improved pasture and artificial wetlands, for example:  
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• Is there a clear distinction between artificial wetlands, and ‘induced’ wetlands (undefined in the 
RMA)? 

• What constitutes a wetland that is constructed by artificial means? Does that extend to: pugged 
ephemeral channels; backwatering by culverts; surface discharges of water?  

• Is there an agreed list of pasture species?  
• What level of activity constitutes management of pasture? 
We understand that MfE is working though such implementation concerns and seeking to provide 
guidance to the industry. 

Therefore, there is a potential limitation on the accuracy of the model outputs to align with the NPS-
FM definitions resulting from the uncertainty in the initial interpretation of the definitions, as well as the 
ability of both the model training and machine learning process to be able to distinguish between 
wetlands that are included and excluded by the NPS-FM definition (Figure 14).  

The approach to this has been to:  

• Rely on the model training process to contain a level of inherent exclusion of areas that are likely 
to be considered ‘improved pasture’, 

• Train the model to identify wetlands acknowledging that certain artificial wetlands will also be 
included in the model outputs (where they have similar characteristics to natural wetlands) and then 
rely on a GIS post processing phase to flag potential artificial wetlands (dependant of accuracy and 
completeness of GIS data); with regional councils progressively improving their wetland inventories 
over time.  
 

 
Figure 14: Example of model including wet pasture adjacent to a shallow water wetland. 
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Seasonal Variation  

Wetland boundaries fluctuate seasonally and annually. The RGBI data used in the wetland classification 
POC is summer only, so the classification outputs may carry a seasonal bias. Counter-balancing this is 
the LiDAR based inputs which should be unbiased for seasonal variation. Multispectral data from the 
Sentinel satellites will also mitigate this bias.  

 

Scale and Vectorisation  

When assessing and determining wetland class in the field, the scale of the subject area, composition 
of the various matrices of soils and hydrology, as well as, the vegetative community responses, and the 
consideration of the wider landscape all form part of the consideration.  

However, the machine learning algorithms report class at a pixel level base, meaning that the full 
considerations that would be taken into account in a manual and practical sense by a human are not 
fully applied. For example, the model may be confused where open water areas of swamps may have 
characteristics similar to shallow open water or ephemeral wetlands (when saturated); or the margins of 
a shallow water wetland may appear as a marsh or swamp. 

Our approach to mitigate this limitation has been to report on the percentage of wetland class 
composition within each dissolved polygon. The dominant class is also reported. This reporting may 
assist regional councils in refining classifications at a later date. 

 

Variable Spatial Resolution of the Machine Learning Model Inputs 

Variable spatial resolution of the machine learning model inputs presents a challenge when mapping at 
sub-hectare scales. The spatial resolution of data inputs varies from 0.40 m (aerial photography) to 1 m 
(LiDAR) through to 10 m (Sentinel-2) and 50 m (radiometry). The coarser inputs have been resampled 
to the highest spatial resolution which preserves the information in the aerial photography. However, 
this also means that any variability across the 50 m radiometric pixel are not accurately represented. 

 

Lack of Required GIS Input Data  

The flagging of artificial wetland relies on GIS input data to be able to intersect the model outputs with 
known artificial wetlands. Very little data relating to known artificial wetlands including stormwater 
and/or wastewater wetlands or ponds and private constructed ponds and wetlands (for stock drinking, 
aesthetic reasons, or other) was sourced for the trial regions. With the exception of wetlands that were 
identified as artificial within one of the existing wetland datasets for the Tasman region, no data of 
known artificial wetlands was obtained. It is noted that increasingly well designed constructed wetlands 
will appear as natural systems from aerial photography alone with diverse vegetation and bathymetry 
making them hard to distinguish remotely. Risks with mapping and classifying constructed wetlands as 
‘natural’ should be understood to avoid instances where required maintenance activities require 
consenting. 

In order for the GIS post processing phase to accurately flag potential artificial wetlands with high 
confidence, Councils will need to develop and compile records of artificial wetlands and ponds. This 
exercise could include digitising stormwater and wastewater wetlands and ponds, compiling consented 
structures and compiling information from Farm Environment Plans. Such an exercise has other benefits 
and uses including for asset management, contaminant accounting and compliance.  
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Positional Accuracy, Completeness, and Quality of GIS Input Data  

Assigning wetland hydrosystem and applying the GIS post processing sense check rules is limited by 
the positional accuracy, completeness and quality of GIS input data. For example, when making the 
assumption the wetland outputs that are in close proximity to larger continuous flowing stream and 
river channels are riverine wetlands, there is an assumption that the GIS geometry of the river channel 
is correct. 

Some regional and district councils may have differing levels of accuracy, completeness and quality of 
GIS input data and there is an opportunity to improve this input data over time.  

 

Confidence of Existing Wetland Datasets  

The CNN model was initially trained using existing data of known wetlands. For Tasman, only data that 
was flagged as having been field validated was used. For Northland, data that was confirmed as having 
high confidence in delineation and class by NRC staff was used. Notwithstanding that, it is still possible 
that errors in delineation and classification exist in these datasets.  

However, the availability of high confidence existing delineated and classified wetland data is a potential 
limitation in the initial model training; as well as, the validation of the model outputs (through held out 
data). The validity of the accuracy stats reported relies upon high confidence data to validate against.  

 

Confidence in Remote Training  

Classification of wetland class though human annotations was not always possible with a high degree 
of confidence using the rural specification vertical aerial photography (0.40 m). This included the 
assigning of class, the extent of the class footprint and the consideration of wetlands with matrices of 
wetland classes. Where a high degree of confidence was not possible, annotations were not placed; this 
included potentially small seepage areas or wetlands beneath terrestrial vegetation cover.  

The low and medium resolution inputs also introduce noise into the final predictions as these spectral 
responses represent a much wider surface area than the high-resolution inputs. 
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6. Deliverables 
The deliverables from this POC include the following: 

A. An Esri File Geodatabase containing: 
i. Raster data file generated by Random Forest model used to mask each region. MASK_NRC, 

MASK_TDC. Spatial resolution 100m for NRC and 30m for TDC supplied in NZGD 2000 
coordinate system. 

ii. A polygon feature class of raw wetland polygons for each region as generated through the 
machine learning phase. WETLANDS__RAW_NRC, WETLANDS_RAW_TDC. 

iii. A polygon feature class of wetland polygons following filtering, filtering, smoothing and 
attribute generation for each region as generated through the machine learning phase. 
WETLANDS_DISS_NRC, WETLANDS_DISS_TDC (Appendix 5). 

iv. ArcGIS Pro package which includes all ancillary layers which were used to create the final 
outputs and model builder tools. 

 

B. An Esri File Geodatabase containing 
i. Geospatial data created in the POC, including wetland layer from dissolving FENZ and 

LCDB5 polygons; and NRC CMA boundary created through joining various model outputs 
supplied by NRC.  

 
C. Python code including machine learning model and model parameters for: 

i. Random Forest Mask model. 
ii. CNN model variants 

 

D. Final report (this document) 
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7. Key Findings 
In this section the principal findings from the POC are summarised.  

a. The Random Forest algorithm is an effective technique to identify an area with a high probability of 
containing a wetland. The Northland overall model accuracy as measured by the F1 score was 0.83 
while the Tasman F1 score was 0.91. 
 

b. Using a CNN algorithm trained on open access and free data (Model 1) specifically; Sentinel-2 
multispectral imagery, RGBI aerial photography and LiDAR, wetlands can be discriminated from 
non-wetlands with a weighted average F1 score of 0.83. 

 
c. Adding the Radiometry derived wetness gradient layer to the CNN (Model 2) didn’t improve the 

classification result. This would indicate that either the sensor resolution is too coarse or that the 
wetness signal is already incorporated within the multispectral Sentinel-2 data. 
 

d. A CNN model using RGB vertical aerial photography alone (Model 3) delivers an inferior result 
(weighted average F1-score of 0.75) than when combined with the other open access data sets. 

 
e. A CNN model trained on open access and free data (Model 4) specifically; Sentinel-2 multispectral 

imagery, RGB aerial photography and LiDAR, wetlands can be discriminated from non-wetlands with 
a weighted average F1 score of 0.79. 

 
f. A Random Forest multi-class model (Model 5), using the same inputs as Model 1, delivers a very 

similar result with a weighted average F1 score of 0.81 but more consistent and individually better 
class accuracies. 
 

g. The multi-class CNN model has variable accuracy across the target wetland classes.  Class decisions 
should be reviewed by local experts and these models used primarily for delineation. 
 

h. The Random Forest model confidence is a useful tool to filter and reduce the polygon output.  When 
used in combination with the CNN model confidence it enables the user to adjust the ratio of Recall 
and Precision. 

 
i. Further modelling is recommended to move this work from POC to production use including testing 

of an ensemble model combining Random Forest with CNN as well as trialling a reduced class set. 
 

j. The Random Forest and CNN methods can be consistently applied at a regional or national scale. 
It is recommended that local training annotations be added to localise and refine the base models 
for individual regional council use. 

 
k. The machine learning libraries used in the modelling are open source and multiple widely available 

GIS software packages will be capable of applying the post processing workflow including QGIS, 
ArcGIS, MapInfo etc. 

 
l. Attributing wetland class percentage composition for dissolved polygons containing multiple 

classes is a straightforward and efficient way of preserving the heterogeneity of complex wetland 
systems. It further allows for class aggregation to occur within a GIS process downstream. 
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m. The GIS post processing phase is a deterministic method whereby external GIS data are assessed to 
validate the results from the stochastic CNN model. Hydrosystem is determined in this way, as is 
whether the wetland may be artificial. Additional data such as impervious surface, oblique 
photography, soils data and vegetation can be used to sense check the CNN class result. In this 
POC, the GIS data is of variable quality and so this area represents a possible area of improvement 
and focus by regional councils. There is an opportunity to more fully test the GIS post processing 
rules in a Region with a richer GIS dataset.  

 
n. Use of land use, impervious surface and other GIS data prior to vectorisation is also recommended.  

This will minimise false positives and ensure wetland polygons avoid intersecting the built 
environment. 
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8. Recommendations 
In this section recommendations are made to move this work from POC to production use. This 
considers findings from the wide-ranging sensor and algorithmic scenario tests that have been 
developed in this POC. The chief recommendations are: 

8.1 Key Recommendations 
1. An ensemble model that integrates a Random Forest algorithm combined with CNN algorithm is 

the recommended modelling approach going forward.  This will allow better fine-tuning of the 
image inputs to the terrains and vegetation assemblages. 
 

2. Data inputs for wetland delineation should include as many of these data types as are available: 
Vertical rural aerial photography (RGBI), LiDAR, Sentinel-2 multispectral imagery. 
 

3. Model accuracy is likely to be greater with fewer output classes. It is recommended that a 5 or 6-
class aggregated model be used. Furthermore, it is recommended that a model for pakahi and 
gumland, if not all forested wetlands, is developed separately to the other classes to ascertain if 
this will also improve overall accuracy.   
 

4. The Random Forest prediction confidence and CNN probability scores can be used to threshold 
resulting polygons for inclusion or exclusion. It is recommended that further refinement of the 
probability thresholds applied to the raw undissolved model outputs is undertaken to optimise 
recall and precision. This can be assessed against Goodness of Fit analysis results to assist in 
optimising the thresholds used. However, it is likely that the optimal probability thresholds will 
differ between regions. 
 

5. GIS Post processing is an important phase post ML (as well as pre and post vectorisation) and 
relies on high quality inputs including impervious surface data, soils, hydrology, vegetation, 
stormwater assets. It is recommended to apply and assess the GIS Post processing phase in a 
region with rich and high confidence GIS data.  
 

6. The incorporation of high-resolution oblique imagery for training and validation is 
recommended.  Oblique images have proven very effective for human wetland identification in 
some regions as they offer views into the canopy. 
 

7. It is probable that different models containing different weights and parameters will be required 
for different ecoregions to better approximate the vegetation, landscape and ecosystem 
characteristics of an area.  The recommended modelling approach and inputs shouldn’t change. 
Local training annotations however will need to be added to localise and tailor the POC models 
for individual regional council use. 

 

8. Filtering on size to remove noise, if applied, should be undertaken on the dissolved feature 
dataset to avoid the potential for fragmentation and removal of multi class wetlands when 
applied on the raw machine learning outputs.  
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8.2 Overview of limitations 
The best performing CNN and Random Forest models developed in the POC were capable of 
discriminating wetlands at a pixel level from non-wetlands with an accuracy of 0.83.  Spatial concordance 
of the modelled polygons with a small validation set of wetland polygons from regional councils was 
however relatively low.  This is due in large part to the model design which generates outputs that are 
biased towards high recall meaning they are predicting all plausible wetland areas including likely false 
positives such as wet pasture, drainage channels and areas of vegetation resembling assemblages found 
in natural wetlands. This over-prediction leads to many more polygons being generated than might be 
required under NPS-FW but it also ensures all probable wetlands are identified. 

The modelling generates two confidence thresholds which can be used to enable selection, refinement, 
and reduction of the polygon dataset by councils.   Due to variations in prediction confidence across 
wetland class however it is difficult to reliably use a single threshold uniformly.  Overall, forested 
wetlands, seepages and ephemeral wetlands are least reliably predicted due to scarcity of examples and 
the challenges with observing beneath forest canopy.  Furthermore, there are regional variations across 
New Zealand that will mean different models may be required to suit landscape, hydrological and 
vegetation characteristics.  Several recommendations have been made to address these limitations 
which are summarised in Section 8.1.   
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Appendix 1 GIS Rules for Post Processing 
The GIS rules presented in the tables below outline the rules that were trialled in this POC, within the 
limitations of GIS data available or supplied as part of this project.  

Each regional and district council throughout NZ will hold GIS data useful for this phase to with varying 
levels of resolution, completeness, and accuracy. Therefore, it is acknowledged that GIS post processing 
rules will need to be refined for each region based on available data. This applies particularly to the 
degree of mapped known constructed and artificial wetlands, but also to the resolution and spatial 
accuracy of mapped watercourses. However, any regional refinement should always be an improvement 
from the national level rules and regional councils will be able to refine wetland inventories over time 
as GIS datasets are created or improved. 
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Table 10: GIS rules for the flagging of potential lakes and artificial wetlands 

Flagged as Rule Input Data Reason Constraints Opportunity 
Lake Where wetlands intersect 

with a lake 
FCDB5  
LINZ Topo 
FENZ 

Lakes are not wetlands but 
may contain wetlands at the 
margin 

True lacustrine wetlands may 
be located around the 
margins of lakes and could be 
flagged depending of the 
location of wetland polygons 
outputs and input lake data  

Development of a process to 
disaggregate lacustrine 
wetlands from the edges of 
lakes 

Artificial Where wetlands intersect 
with known reservoirs, 
weirs or dams or are 
connected solely by 
reticulated pipe networks 

LINZ Topo Indicate constructed wetland 
area 

Lack of detailed data 
identifying artificial wetlands 
provided (stormwater and 
wastewater wetlands, 
consented dams, Farm 
Environment Plans etc) 

Opportunity to refine this 
process where more accurate 
regional GIS data inputs 
currently exist or can be 
produced; alternative council 
can update wetland 
inventories over time.  

Where wetland intersects 
with known artificial 
wetland 

Date supplied by 
TDC titled 
‘WetlandExtents_ 
Dissolved’  

Wetlands known to be 
artificial 

  

Not a wetland Where wetland intersects 
with an area judged not 
to be a wetland 

Date supplied by 
TDC titled 
‘WetlandExtents_ 
Dissolved’  

Area is not considered a 
wetland under Clarkson 2013 
and Tasman Regional 
Management Plan 
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Table 11 : GIS rules for assigning indicitive hydrosystem classification 
Hydroclass Rule Input Data Reason Constraints Opportunity 

Riverine If wetland is:  
Within 10m of a REC 4th 
order stream or above 

REC  The dominant function in 
riverine wetlands is continually 
or intermittently flowing 
freshwater in open channels. 
These are typically associated 
with the larger stream and river 
systems. Palustrine wetlands 
may often intersect with 
geometries of smaller stream 
geometries.  

The REC layer is not spatially 
accurate (A wetland within 10 
m of the REC geometry may 
not be within 10 m of the river 
on the ground) but does allow 
filtering to the higher order 
streams. 

Assign stream order to a more 
spatially accurate stream layer 
where the geometry exists in a 
connected network and/or use 
reach catchment size where 
available. 
 
Consider flood data if available 

Lacustrine If wetland is:  
Within 5 m of a lake or 
pond greater than 0.5 ha 
in area; 
Within 5 m of lake with 
greatest dimension 
greater than 500 m 

LCDB5 
LINZ Topo 
FENZ 

These wetlands are associated 
with waters, bed and 
immediate margins of lakes.  
Lakes are arbitrarily defined in 
Johnson and Gerbeaux (2004) 
as having a major dimension of 
500 m or more. 

The lake data may be spatially 
inaccurate. This could result in 
false positives and negatives. 
The threshold value will need 
to be sense checked to 
determine error rate. 

Explore options for also 
considering depth of the water 
body (i.e. wetlands associated 
with water bodies over 2 m in 
depth) 

Estuarine If wetland is: 
Within a polygon defined 
as mangrove, herbaceous 
saline vegetation or 
estuarine open water; 
Within or, within 10 m of, 
estuarine open water. 

LCDB5 
LINZ Topo 
FENZ 

If the wetland has estuarine 
vegetation, then saline 
conditions can be assumed. 

Relies on there being a degree 
of spatial accuracy in the 
LCDB5 classes relating to saline 
vegetation 

Where regional councils have 
higher accuracy vegetation 
cover data this could be 
utilised  
 
Explore options for also 
considering elevation and 
distance from the CMA  

Palustrine  All wetlands not meeting 
the riverine, lacustrine, or 
estuarine hydrosystem 
class rules. 
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Table 12: GIS rules for applpying sense check  
Flagged as Rule Input Data Reason Constraints Opportunity 

Potentially not a 
Bog 

Where bog intersect with 
a stream 

LCDB5 
LINZ 

Bogs are rainfall fed only  Opportunity to refine this 
process where more accurate 
regional GIS data inputs 
currently exist or can be 
produced (i.e. detailed OLFP or 
stream datasets especially 
where upstream catchment 
areas are known) 

Where bog intersects 
with a stream of 4th order 
or above 

REC Bogs are rainfall fed only The REC layer is not spatially 
accurate  

 

Where bog is on soil that 
is not peat 

FSL Bogs are only present on peat 
soils. 
Soils defined as peat have 
greater than 50% peat content. 

FSL has a coarse scale and 
based on dominant soil type. 
S-map, which has better 
quality data, has limited 
coverage. 

Better quality soil data will 
become available through S-
Map 

Where bog is on ground 
with average slope below 
bog footprint of steeper 
than 4°. 

Locally 
available 
LiDAR data 

Bogs are located on almost 
level ground.  
Flat to gently undulating land 
is define as 0° to 3° by 
Landcare Research - Our 
Environment: Steepness of 
Slope data layer 

  

Where bog intersects 
with a hydroclass that is 
riverine 

Assigned 
hydroclass  

Bogs are rainfall fed only 
whereas a riverine hydroclass 
has input from intermittently 
or flowing water 

Relies on accuracy of data used 
to apply hydrosystem; this may 
flag an error in hydrosystem as 
well as wetland class.  

 

Potentially not a 
Fen 

Where fen intersects with 
a stream of 4th order or 
above 

REC Fens are rainfall and 
groundwater fed only 

The REC layer is not spatially 
accurate  

 

Where fen intersect with 
a stream 

LCDB5 
LINZ 

Fens are rainfall and 
groundwater fed only 

 Opportunity to refine this 
process where more accurate 
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Flagged as Rule Input Data Reason Constraints Opportunity 
regional GIS data inputs 
currently exist or can be 
produced (i.e. detailed OLFP or 
stream datasets especially 
where upstream catchment 
areas are known) 

 Where fen intersects with 
a hydroclass that is 
riverine 

Assigned 
hydroclass  

Fens are rainfall and 
groundwater fed only whereas 
a riverine hydroclass has input 
from intermittently or flowing 
water 

Relies on accuracy of data used 
to apply hydrosystem; this may 
flag an error in hydrosystem as 
well as wetland class.  

 

Potentially not a 
Swamp 

Where swamp is on 
ground with average 
slope below swamp 
footprint of steeper than 
4°. 

Locally 
available 
LiDAR data 

Swamps are located mainly on 
valley floors, plains and deltas. 
Flat to gently undulating land 
is define as 0° to 3° by 
Landcare Research - Our 
Environment: Steepness of 
Slope data layer 

  

Potentially not a 
saltmarsh 

Where saltmarsh 
intersects with a 
hydroclass the is not 
estuarine 

Assigned 
hydroclass  

Saltmarsh are in a saline 
environment so must have an 
estuarine hydroclass 

Relies on accuracy of data used 
to apply hydrosystem; this may 
flag an error in hydrosystem as 
well as wetland class.  

 

Potentially not a 
seepage 

Where seepage is on land 
with slope less than 21° 

Locally 
available 
LiDAR data 

Seepages are generally on 
moderate to steep hills.  
Moderately steep land is 
defined as being steeper than 
21° by Landcare Research, Our 
Environment, Steepness of 
Slope data layer 

  

Potentially not 
an ephemeral 
wetland 

Where ephemeral 
wetland is on peat soil. 

FSL Ephemeral wetlands are only 
located on mineral soils. 

FSL has a coarse scale and 
based on dominant soil type. 
S-map, which has better 
quality data, has limited 
coverage. 

Better quality soil data will 
become available through S-
Map 
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Flagged as Rule Input Data Reason Constraints Opportunity 
Impervious 
Surfaces 

Where wetland intersects 
with known impervious 
surfaces from: 
Building outline; 
Airport. 
Where wetland is within 
1.5m of: 
Road centreline; 
Rail centrelines. 

LINZ Wetlands will not be situated 
on impervious surfaces and are 
unlikely to be near to 
manmade structures. 

Data availability – regional 
councils will have various levels 
of accuracy and completeness 
of impervious data.  

Rather than applying 
intersection with impervious 
service data as a flagging sense 
check stage, the process may 
be improved by applying an 
exclusion of this nature at the 
masking stage (depending on 
the level of confidence in the 
datasets used).  
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Appendix 2 Example Classification Results 
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Image: 1 Image: 2 Image: 3 
Description: Model outputs identifying additional potential wetland Description: Model outputs identifying additional potential wetland; possible false 

positive 
Description: Model outputs identifying additional potential wetland; possible false 

positive 

   

Image: 4 Image: 5 Image: 6 
Description: High degree of ‘insideness’ of known wetland and high recall on 

model output including likely false positives 
Description: High degree of ‘insideness’ of known wetland and high recall on model 

output 
Description: High recall and likely false positive model outputs 
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Image: 7 Image: 8 Image: 9 
Description: Model outputs identifying additional potential wetland Description: High degree of ‘insideness’ of known wetland and high recall on model 

output 
Description: High degree of ‘insideness’ of known wetland and high recall on 

model output (pakahi) 

   

Image: 10 Image: 11 Image: 12 
Description: Model outputs identifying additional potential wetland  Description: High spatial concordance with mapped known wetland Description: Exclusion of CMA from model outputs 
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Image: 13 Image: 14 Image: 15 
Description: High spatial concordance with mapped known wetland and model 

outputs identifying additional potential wetlands 
Description: High spatial concordance with mapped known wetland  Description: High degree of ‘insideness’ of known wetland and high recall on 

model output including likely false positive model results 
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Appendix 3 Machine Learning Algorithm 
The project code will be copied to the Ministry's Github repository. 

The repository consists of: 

• Python code and a neural network model weights file.  
 

• The python script will run the wetland inference over the imagery inputs to produce a wetland 
class raster. 

 
• The models are trained on vertical aerial photography (RGB or RGBI), Sentinel-2 multispectral 

imagery, LiDAR and radiometric derived wetness. 
 

The repository contains a requirements.txt file that lists the python libraries required to run the code 
and a README.md file that describes how to run the ML inference. 
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Appendix 4 Processing Pipeline 
The following steps are required to perform the Machine Learning classification, polygon generation 
plus post processing procedure.  The software requirements include: GIS processing software such as 
ArcGIS or QGIS, Rasterio, Python software libraries, Keras/Tensorflow and a GPU compute environment.  
The procedure can be run on a Windows or Linux operating system.  

The processing steps are as follows: 

1. Assemble all input data.  Note raster inputs vary by model. Imagery should be in TIF format. 
 

2. Calculate indices – NDWI, TWI, DEM, NDVI, Soil Index. 
 

3. Resample all inputs to a unified spatial resolution.  This varies by model and converges to 
the highest resolution.  Assemble raster data into multiband composite. 

4. Gather local training annotations per class to calibrate model to ecoregion.   
 

5. Train model using libraries in Appendix 3. 
 

6. Run RF inference using model codebase supplied. 
 

7. Run CNN inference using model codebase supplied. 
 

8. Remove noise from the CNN wetland-prediction raster using tools such as ArcGIS Desktop’s 
Majority Filter, Boundary Clean, Expand, Shrink. Specifically targeting outlying pixels and 
filling small gaps in wetland areas. 
 

9. Convert the raster output to polygons using software such as ArcGIS Desktop’s  Raster to 
Polygon tool. 
 

10. Apply Random Forest and CNN confidence parameters to polygon layer and optimise 
thresholds for filtering out false positives and optimising recall and precision, if required or 
desired. 

 
11. Apply confidence attributes to polygons using RF and CNN raster layers. RF confidence and 

mean confidence of “CNN not wetland”. These confidences can be used to further filter the 
wetland polygon candidates. 
 

12. Run GIS post processing tools. These are grouped into 6 ArcGIS Pro Models that run 
individual logical segments to dissolve the original data, classify the outputs, check against 
existing features and raster, such as slope. These tools do the bulk of the data analysis and 
preparation for the final output.  
 

13. Apply polygon size filter to further reduce noise, if required or desired. 
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Appendix 5 Geodatabase Attribute List 

Table 13: Summary of Wetland Polygon Attributes 
Attribute Description 

OBJECTID Unique object identifier for each dissolved wetland polygon 

Shape Feature type 

Lake check 
Identifies wetlands that could potentially be a lake by intersection with known 
lakes and ponds 

Artificial check 
Identifies wetlands that could potentially be an artificial (not natural) wetlands 
by intersecting with regional and district level mapped known artificial 
wetlands.  

Known not wetland 
check 

Identifies wetlands that could potentially not be a wetland based on known 
areas that have been designated as not wetland (for example, field assessed 
and mapped as not being wetland). 

Bog check 
Identifies a wetland assigned as a bog, that could potential not be a bog using 
the rules outlined in appendix 1 

Fen check 
Identifies a wetland assigned as a fen, that could potential not be a fen using 
the rules outlined in appendix 1 

Swamp check 
Identifies a wetland assigned as a swamp, that could potential not be a swamp 
using the rules outlined in appendix 1 

Saltmarsh check 
Identifies a wetland assigned as a saltmarsh, that could potential not be a 
saltmarsh using the rules outlined in appendix 1 

Seepage check 
Identifies a wetland assigned as a seepage, that could potential not be a 
seepage using the rules outlined in appendix 1 

Ephemeral check 
Identifies a wetland assigned as ephemeral, that could potential not be 
ephemeral using the rules outlined in appendix 1 

Lacustrine 
Assigns the wetland to the lacustrine hydrosystem based on proximity to a 
known lake  

Riverine 
Assigns the wetland to the riverine hydrosystem based on proximity to rivers (of 
stream order 4 or greater) 

Estuarine 
Assigns the wetland to the estuarine hydrosystem when the wetland is within an 
area of known saline vegetation types 

Palustrine All wetlands not assigned as a lacustrine, riverine or estuarine hydrosystem 

Hydroclass Name of assigned hydroclass 

Impervious or similar 
Identifies a wetland that could potential not be a wetland due to proximity with 
known impervious surfaces or buildings. 

Bog % Percentage of dissolved wetland polygon that is bog 

Ephemeral % Percentage of dissolved wetland polygon that is ephemeral 

Fen % Percentage of dissolved wetland polygon that is fen 

Marsh (%) Percentage of dissolved wetland polygon that is marsh 

Pakihi and gumland % Percentage of dissolved wetland polygon that is pakihi and gumland 
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Saltmarsh % Percentage of dissolved wetland polygon that is saltmarsh 

Shallow water % Percentage of dissolved wetland polygon that is shallow water 

Swamp % Percentage of dissolved wetland polygon that is swamp 

Seepage % Percentage of dissolved wetland polygon that is seepage 

Wetland class  The dominant wetland class based on the class percentages  

Wetland Confidence 
(CNN) 

Mean level of confidence in wetland delineation based of the final dissolved 
wetland attributed from the CNN raster using zonal statistics. Level of 
confidence ranges from 0 to 100 with a higher value attributed to higher 
confidence 

Wetland Confidence 
(RF) 

Mean level of confidence in wetland delineation of the final dissolved wetland 
extent attributed from the Random Forest model raster using zonal statistics. 
Level of confidence ranges from 0 to 100 with a higher value attributed to 
higher confidence  

Shape length Maximum length of dissolved wetland 

Shape area Dissolved wetland area 
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