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EXECUTIVE SUMMARY 

Land, Air, Water Aotearoa (LAWA) leverages a database of water quality and ecological 

health indicators to report on the state and trend of these attributes at individual sites and at 

a national scale. Trends are calculated for indicators over the last 5, 10 and 15 years using a 

two-stage process, via a Mann–Kendall or Seasonal Kendall statistical test. 

 

Concerns have been expressed that while this method results in a large number of sites with 

likely trends, some of these trends appear relatively weak and it is difficult to identify potential 

causes for the trends observed. In addition, there have been instances at some sites where a 

trend in one direction has been indicated by the data, but the following year a trend in the 

opposite direction has been identified. While trends may change over time at sites due to 

climatic cycles or implementation of management actions, regular trend switching does not 

foster confidence in trend detection approaches and makes it hard to determine appropriate 

management responses. 

 

While cases of trend switching have been identified, the scale and frequency with which this 

occurs is unclear across the country. To investigate this, we quantified the consistency of 

trends calculated on a rolling 8-year dataset over a 10-year period. We also compared the 

current LAWA approach to trend detection with an alternative approach (quantile regression; 

QR) for each of five water quality and ecological indicators: black disc (BDISC), dissolved 

reactive phosphorus (DRP), Escherichia coli (ECOLI), Macroinvertebrate Community Index 

(MCI) and ammoniacal nitrogen (NH4N).  

 

Across all five indicators less than 40% of sites showed consistent trend categories for all 

three datasets (1–8 years, 2–9 years and 3–10 years), although most changes in trend 

category were relatively small and less than 35% of sites had a change in trend direction 

across the three rolling datasets. While changes in trend strength and direction at a site over 

time are not unexpected, we found that up to 15% of sites changed from a ‘very likely’ trend 

in one direction to either ‘likely’ or ‘very likely’ in the reverse direction over the three rolling 

datasets. At a national scale the proportion of sites in each of the trend categories was 

relatively consistent (less than 10% difference) between the default LAWA method and an 

alternative approach, where the median of the three rolling datasets was used. 

 

Results of the comparison between the LAWA and QR method showed that the latter was 

consistently more conservative than the LAWA method for all five water quality indicators. 

A higher percentage of sites were classified as likely improving, likely degrading and 

indeterminate with the QR method than with the LAWA method, whereas significantly fewer 

sites were classified as very likely improving or very likely degrading (5–45% for the LAWA 

method vs 3–32% for the QR method). 

 

Finally, state and trend scores are currently given as two distinct metrics in LAWA and there 

is a desire to simplify how they are presented, ideally as a single metric or value. We looked 
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at two possible approaches for combining state and trend into a new ‘condition’ attribute, 

where each site was classified as ‘good’, ‘at risk’, ‘recovering’ or ‘bad’. 

 

The proportion of sites in each classification varied by indicator. For example, less than 5% 

of sites were classified as ‘bad’ for NH4N for the 5-year trend period, whereas more than 

45% were classified as ‘bad’ for ECOLI over the same period. One limitation was the 

requirement that for a given site both state and trend scores must be available (many sites 

have one or the other, but not both) before condition can be calculated. 

 

The results presented here highlight that trend scores are likely to change from year to year. 

Changes in trends over time are not unexpected, but a change from a very likely trend in one 

direction to a very likely trend in another direction, resulting from only a few new data points, 

raises concerns about the robustness of the trend detection. 

 

While we present some possible solutions to reduce the frequency of trends switching 

directions with the addition of small amounts of data, ultimately we suggest that more work is 

needed to identify the best approach to dealing with this issue. We suggest that a simulation-

based assessment of the approaches be undertaken, where datasets with various trends, 

noise levels and censored values are simulated, trends calculated and results compared, 

with a specific focus on trend consistency. Within the current methodological framework we 

see four areas that warrant deeper examination: 1) using the rolling window approach, and 

the effect of using different-sized windows; 2) changing the trend attribution cut-off to be 

more conservative; 3) increasing the number of values above (or below) the detection limit 

that are required before a trend can be calculated; and 4) implementing trend slope 

thresholds that represent ecological significance. Each of these changes has the potential to 

reduce trend switching, without a wholesale change in methodology. QR could then be 

looked at in more detail using the simulation-based assessment outlined above. Finally, 

additional analyses looking at methods that account for spatial autocorrelation (e.g. state-

space modelling) and methods that account for larger-scale natural environmental (e.g. 

climatic) cycles would also be valuable, as these have been identified as potential trend 

drivers. 

 

The combination of the state and trend scores into a new ‘condition’ attribute seems 

relatively straightforward and could be used to generate simplified national-scale 

visualisations and summaries. The limitation of requiring both state and trend attributes to be 

present for a given site to calculate ‘condition’ could be overcome by continuing to also 

present state and trend data separately, so no information is lost. 
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1. BACKGROUND 

Land, Air, Water Aotearoa (LAWA) leverages a database of water quality and 

ecological health indicators to report on the state and trend of these attributes at 

individual sites and at a national scale. Data are derived from monitoring of more than 

1,000 sites around Aotearoa New Zealand, with this network maintained by regional 

councils and the National Institute of Water and Atmospheric Research (NIWA). The 

‘state’ describes the attribute in terms of National Policy Statement for Freshwater 

Management (NPS-FM) bands (A, B, C, D or E), with ‘A’ being indicative of ‘good’ 

water quality, and ‘D’ and ‘E’ being indicative of poor water quality. The ‘trend’ 

describes the attribute in terms of temporal changes (very likely improving, likely 

improving, indeterminate, likely degrading and very likely degrading). Trends are 

calculated for water quality and ecological indicators over the last 5, 10 and 15 years, 

and are used to infer changes and evaluate relationships between water quality and 

ecological indicators and drivers (Ministry for the Environment and StatsNZ 2023). 

 

LAWA trend analysis was previously done with a p-value, null hypothesis (slope = 

zero) approach. A criticism of the p-value-based approach was the relatively small 

number of sites where trends were identified, with the majority of sites in the 

‘indeterminant’ category. One of the reasons for changing to the current method 4–5 

years ago was that it would enable a larger number of sites with possible trends to be 

identified. More importantly, the current method builds on the perspective of McBride 

(2019), who argues that a traditional statistical null hypothesis test approach to trend 

analysis does not make sense. It is very unlikely that a long-term dataset would have 

a slope of exactly zero – so why should the null hypothesis be set as slope = zero 

when this outcome is very unlikely? In LAWA, trends are currently identified using a 

two-stage process focused on confidence in trend direction, rather than determining 

whether there is evidence to reject the null hypothesis that there is no trend. First, 

trend direction and the confidence in trend direction are calculated using either the 

Mann–Kendall assessment or, where seasonality is identified in the observations, the 

Seasonal Kendall assessment (Snelder et al. 2021). Second, trend rate and the 

confidence in trend rate are evaluated using non-parametric Sen slope regressions of 

attribute observations through time (Helsel et al. 2020; Snelder et al. 2021). This 

two-stage process is simplified and reported as a single score, where a continuous 

measure of confidence is split into discrete categories (very likely improving, likely 

improving, indeterminate, likely degrading and very likely degrading [hereafter referred 

to as the ‘LAWA method’]; see Snelder et al. 2021 for details). It is worth noting the 

original null hypothesis method and the current ‘likelihood’ methods are 

mathematically similar, but philosophically different in how they discern whether a 

trend exists and the confidence in any trends identified. 

 

While these methods are typically robust, they do have limitations. Many of the likely 

trends that are identified are relatively weak and it is difficult to determine possible 

causes of the trends. For example, at the likely improvement and likely degrading 



SEPTEMBER 2023  REPORT NO. 3948  |  CAWTHRON INSTITUTE 
 
 

 
 

2 

levels the confidence for this classification is relatively low (down to 66% confidence), 

and therefore it is sometimes hard to ‘see’ the trends in the data and it does not take 

many additional data points to change the trend direction. There are some situations 

where trends identified in one direction switch to trends identified in another direction 

with just a small amount of new data. In addition, some trends have such a low slope 

that the change over time is likely to be ecologically meaningless. Given that regional 

councils may need to alter their management strategies depending on these results, it 

is important to have a robust approach to trend detection that focuses attention on 

trends that are ecologically meaningful and is not overly sensitive to small amounts of 

new data. 

 

Within the existing framework there are some options to be more stringent when 

assigning a trend, such as altering the confidence levels at which a given trend is 

assigned, or increasing the number of measurements above (or below) detection 

limits (currently set to five) that are required before a trend can be robustly identified. 

One potential alternative approach to calculating trends is quantile regression (QR), 

which is also robust to outlier values and censored values, does not make 

assumptions about underlying distributions and can also quantify trends for multiple 

quantiles. Being a regression-based method, QR can potentially be used where the 

temporal resolution of the water quality dataset changes (e.g. quarterly to monthly 

measurements). It also allows the evidence for a trend to be evaluated after 

accounting for the effects of other factors (e.g. management actions, environmental 

changes) through including appropriately defined predictor variables. 

 

There has also been criticism that there is a focus in LAWA on determining whether 

there are linear trends in datasets, while non-linear patterns are often observed in 

datasets over time. Non-linear trends can be assessed using QR, visually, or using 

other approaches, such as generalised additive models (Morton and Henderson 

2008). Here, however, we consider only linear trends. 

 

Currently, LAWA presents state and trend summaries as two distinct metrics. This can 

make it difficult to quickly evaluate the combined condition of sites. For example, a 

very likely degrading trend will be of interest for different reasons for sites that have a 

state of A or D. Similarly, management response at a site with no evidence of a trend 

could be quite different depending on whether the current state is ‘good’ or ‘bad’. 

Therefore, there are benefits to combining the state and trend metrics into a single 

new metric that communicates both of these results at once. 

 

Here, we address the three issues outlined above. Specifically, we: 

1. quantified the consistency of trends across a rolling 8-year period to determine if 

trend switching over time is a common feature 

2. evaluated an alternative method (QR) for calculating trends in water quality 

attributes 
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3. presented an approach to combining both state and trend estimates into a new 

metric of site ‘condition’. 
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2. TREND CONSISTENCY 

A criticism of the current LAWA method is that trends are prone to changing direction 

from year to year. While trends may change over time at sites due to climatic cycles or 

implementation of management actions, regular trend switching does not foster 

confidence in trend detection approaches and makes it hard to determine appropriate 

management responses. For example, situations have been identified where, for a 

given site, the 5-year (2015–19) trend is ‘likely improving’, then the following year 

(2016–20) the trend changes to ‘likely degrading’. This issue arises in part from the 

discretisation of a continuous variable ‘confidence level’ (McBride 2019; Snelder et al. 

2021). The ‘likely’ designation / category includes a 0.66–0.90 confidence of trend 

direction, which is relatively low compared to the typical α = 0.05 (p = 0.95) level that 

is often used to determine statistical significance. In other words, a site with a 67% 

confidence of a ‘likely improving’ trend also has a 33% confidence of a degrading 

trend. It is plausible that a few additional data points may switch the balance and 

provide increased confidence in the alternative trend direction. Although trend 

switching over time has been reported for some sites, the scale and frequency of 

these switches is not clear. 

 

To determine the frequency with which trends change from year to year, we evaluated 

the consistency of LAWA trends across rolling 8-year periods within the last 10 years. 

This was achieved by taking the last 10 years of data at all LAWA sites and 

recalculating trends for the periods 1–8 years, 2–9 years and 3–10 years for each of 

five water quality and ecological indicators – black disc (BDISC), dissolved reactive 

phosphorus (DRP), Escherichia coli (ECOLI), Macroinvertebrate Community Index 

(MCI) and ammoniacal nitrogen (NH4N). We then calculated the percentage of sites 

that had changed trend direction, or had changed trend category but stayed with the 

same direction (e.g. ‘very likely improving’ to ‘likely improving’). Finally, we compared 

the original 10-year trend to the median of the three rolling trends (e.g. if a site had 

rolling trends of ‘likely improving’, ‘indeterminate’ and ‘likely degrading’, it would be 

classified as ‘indeterminate’). While we chose an 8-year window, this decision was 

arbitrary and the window size could be increased or decreased. 

 

Across all five indicators, less than 40% of sites showed consistent trend categories 

for all three datasets (1–8 years, 2–9 years and 3–10 years; Figure 1, top), although 

less than 35% of sites had a change in trend direction (Figure 1, bottom). Rather, it 

was more common to see changes from ‘very likely’ to ‘likely’ (or vice versa), but in a 

consistent direction (up to 34% of sites), or a change from ‘indeterminate’ to a trend 

(or vice versa). Less than 15% of sites had a change from ‘very likely’ in one direction 

to a trend in the opposite direction. While this is a relatively small proportion, it is still 

important. When comparing the proportion of sites in each of the trend categories, 

there were some small differences between the LAWA method and our approach of 

using the median of the three rolling datasets. Specifically, there was a decrease in 

the proportion of ‘very likely improving’ sites for BDISC, MCI, ECOLI and NH4N, 
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whereas there was an increase in the proportion of ‘very likely improving’ sites for 

DRP (Figure 2). This suggests that while individual sites may change their trend from 

year to year, at a national summary scale there is largely consistency in the number of 

sites in each trend category.  
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Figure 1. Consistency of rolling 8-year trends calculated across the last 10 years of monitoring 

data, using the LAWA method. Top: total proportion of sites where the trend category 
changed at least once across the three datasets. Note that this includes changes in the 
same direction (e.g. ‘very likely improving’ to ‘likely improving’). Bottom: results broken 
down by the various trend categories. ‘VL to opposite trend’ indicates where a ‘very likely’ 
trend has changed to either ‘likely’ or ‘very likely’ in the reverse direction. ‘L to opposite 
trend’ indicates where a ‘likely’ trend has changed to either ‘likely’ or ‘very likely’ in the 
reverse direction. ‘Ind to trend’ indicates where an ‘indeterminate’ trend has changed to 
either ‘likely’ or ‘very likely’ in any direction. ‘VL to L same direction’ indicates where a 
‘very likely’ trend has changed to ‘likely’ but in the same direction, or vice versa. ‘no 
change’ indicates a consistent trend across the three 8-year trends. Note that some sites 
changed across all three trend categories across all three rolling datasets and so are 
represented in multiple bars. 
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Figure 2. Consistency of trend scores calculated for rolling 8-year periods calculated across the 
last 10 years of monitoring data, using the LAWA method. The ‘rolling median’ is the 
median classification across the three 8-year periods, whereas ‘LAWA’ is the standard 
10-year trend results. 
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3. QUANTILE REGRESSION TREND CALCULATION 

In this section we 1) compare the results of the LAWA method to a QR method 

(0.5 quantile, or 50th percentile; Yu et al. 2003); 2) compare the default QR method 

described below to a second method, where we reran the QR on multiple quantiles 

(0.1–0.9 by 0.1 intervals) and classified each site based on the most common trend 

observed across the nine quantiles (Table 1); and 3) compare the default QR method 

to an alternative, where we assumed a 1% annual change was required before a 

trend could be assigned (see Section 3.1.2). 

 

 

Table 1. Rules used to determine overall site trend based on multiple quantile regression (QR) 
analyses, calculated on quantiles 0.1–0.9 by 0.1 intervals. VLI = very likely increasing, 
LI = likely increasing, Ind = indeterminate, LD = likely degrading, VLD = very likely 
degrading. 

 

Trend of each quantile 
Number across quantiles  

(out of a possible 9) 
Overall trend 

VLI 5+ VLI 

LI 5+ LI 

Ind 5+ Ind 

LD 5+ LD 

VLD 5+ VLD 

If no single trend has 5+ consistent 

VLI or LI 5+ LI 

VLD or LD 5+ LD 

All other permutations  Ind 

 

 

3.1. Methodology 

In the interest of keeping the results as comparable to the LAWA method as possible, 

the data preparation workflow used for the LAWA method was also applied for the QR 

method. Prior to running the QR analysis, censored values were dealt with, the 

minimum data requirements were checked and only those datasets that contained 

enough datapoints were kept for analysis (Snelder et al. 2021). Trends were 

calculated on log-transformed data. 

 

3.1.1. Quantile regression method 

Quantile regression is similar in intent to regular linear regression, except that instead 

of estimating the mean of the response variable (i.e. a water quality or ecological 

indicator) as a linear combination of predictor variables, interest is directed at a 

specified quantile of the response variable (e.g. the median; 0.5 quantile). Advantages 

of QR over linear regression include that it is more robust to non-normality of the data, 

and it enables analyses to be conducted on population metrics other than mean 
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values. In the current context, the prime predictor variable of interest is time 

(measured in years), where the corresponding effect size is the estimated annual 

trend. Survey month was also included as a predictor variable (when multiple 

sampling periods were used within a year) to account for systematic monthly 

differences in an indicator during the year. As noted above, other predictor variables 

could be included in a QR analysis to evaluate the evidence for a trend over time after 

accounting for other factors that may affect the water quality or ecological indicator. 

Specifically, QR was performed by fitting the model: 

 

𝑦𝑖 = 𝛽0 +∑𝛾𝑗𝑚𝑜𝑛𝑡ℎ𝑗,𝑖

12

𝑗=1

+ 𝛿𝑡𝑖𝑚𝑒𝑖 

 

where 𝑦𝑖 is the ith observation at a monitoring site; 𝛽0 is the deseasonalised baseline 

level; 𝛾𝑗 are the month effects to allow for seasonal changes within the year; 𝑚𝑜𝑛𝑡ℎ𝑗,𝑖 

is a set of dummy variables that = 1 if survey 𝑖 was collect in month 𝑗, and = 0 

otherwise; 𝛿 is the annual trend; and 𝑡𝑖𝑚𝑒𝑖 is the time of the survey (in years). Note 

that inclusion of month effects will lessen any regular seasonal effects in the data, 

which can be particularly relevant if the sampling frequency has changed to allow 

greater comparability of temporal changes. Furthermore, the constraint that 

∑ 𝛾𝑗 = 012
𝑗=1  was applied such that the 𝛽0 parameter does not relate to any particular 

month. The month terms were excluded from the QR for MCI as, typically, this was 

measured only once per year. 

 

Using QR, the likelihood of a trend was evaluated using 1-sided confidence intervals 

and the decision rules given in Table 1. Note that a 1-sided (1 − 𝛼)100% confidence 

interval is constructed by calculating a 2-sided (1 − 2𝛼)100% confidence interval, and 

considering only the relevant lower or upper bound that is of interest. That is, when 

constructing a 1-sided (1 − 𝛼)100% confidence interval, it is of interest to establish 

only a lower or an upper bound on the estimate, rather than both. 

 

 

Table 2. Trend decision rules using 1-sided confidence intervals (CI). 

 

Trend decision 1-sided 67% CI 1-sided 90% CI 

Very likely increasing (VLI) Lower limit > 0 Lower limit > 0 

Likely increasing (LI) Lower limit > 0 Lower limit < 0 

Indeterminant (Ind) All other cases 

Likely decreasing (LD) Upper limit < 0 Upper limit > 0 

Very likely decreasing (VLD) Upper limit < 0 Upper limit < 0 
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3.1.2. Censored values 

Censored values are those values that are either above or below detection limit. The 

default LAWA method deals with censored values by multiplying any values below the 

detection limit by 0.5 and multiplying values above the detection limit by 1.1 (Snelder 

et al. 2021). In addition, where a step-change in detection limit has occurred through 

time, all values below (or above, e.g. for BDISC) are shifted to the highest (or lowest) 

detection limit value. To be used, a given dataset must have a least five values that 

have not been censored (along with all the other data prerequisites; Snelder and 

Fraser 2018). Where a large proportion of values have been censored, this can cause 

issues with the QR method (and likewise with the LAWA method). For example, if a 

large majority of the measures are below detection limit and values * 0.5 are used, 

this results in a large proportion of values in the dataset having the exact same value 

(detection limit * 0.5). This can result in trends being estimated on a series of identical 

numbers plus a small number of non-censored values (e.g. Appendix 1). The resulting 

QR slope estimate will be very small (e.g. 0.0000001), with a tight confidence interval. 

Sites are then assigned ‘very likely’ trends, which given the minuscule slope, 

intuitively seems unreasonable. A way to deal with this issue is to require some 

minimal year-on-year change in the water quality attribute before a trend is considered 

possible – for example, an annual change of at least 1% in the given water quality 

attribute. This results in sites with a high proportion of censored values often being 

assigned ‘indeterminate’ trend scores. Alternatively, as in the LAWA approach, sites 

with a high proportion of censored values could simply be ‘flagged’. 

 

3.1.3. Software 

All analyses were carried out using the statistical computing software R v4.2.3 

(R Core Team 2021). We used the tidyverse v2.0.0 metapackage (Wickham et al. 

2019) for data manipulation, the quantreg package (Koenker et al. 2023) for QR and 

the future v1.32.0 package (Bengtsson 2020) for parallelisation. 

 

 

3.2. Results 

Results of the comparison between the LAWA and QR methods showed that the QR 

method (0.5 quantile) was consistently more conservative than the LAWA method 

(Figure 3). For all five water quality indicators and across all three time periods, the 

QR method resulted in a higher percentage of sites being classified as ‘likely 

improving’, ‘likely degrading’ and ‘indeterminate’ than the LAWA method. Likewise, 

significantly fewer sites were classified as ‘very likely improving’ or ‘very likely 

degrading’ for the QR method compared to the LAWA method (5–45% for the LAWA 

method vs 3–32% for the QR method). This pattern was particularly extreme for 

NH4N; this had relatively high levels of measures below detection limit (see 

Appendix 1), which contributed to the observed differences. 
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Figure 3. Comparison of LAWA and quantile regression (QR) methods for calculating trends in 

water quality and ecological indicators (columns), and across 5-, 10- and 15-year periods 
(rows). Five-year trends for Macroinvertebrate Community Index (MCI) were not 
calculated as MCI data are measured only on an annual basis, and so any 5-year trends 
would be calculated on only 5 data points (or fewer), which is not considered robust. 

 

 

Comparison of the two alternative QR methods (0.5 quantile vs most common trend 

across quantiles) produced similar results (Figure 4). This suggests that if the QR 

method is to be used, the simpler, 0.5 quantile (i.e. the median) metric would be 

adequate to describe trends. Requiring a slope of greater than a 1% annual change in 

the given water quality attribute before a trend could be assigned resulted in a 

decrease in the proportion of sites with a ‘very likely’ or ‘likely’ trend and a subsequent 

increase in the proportion of sites classified as ‘indeterminate’. This pattern was 

extreme for the ecological indicator MCI (Figure 4).   
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Figure 4. Consistency of quantile regression (QR) results using the 0.5 quantile (QR_05) compared 

to using the most common trend across a range of quantiles (QR_All; 0.1–0.9 by 0.1 
intervals), and requiring a minimum slope estimate of 0.001 for increasing trends 
and -0.001 for decreasing trends (QR_thresh). 
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4. COMBINING STATE AND TREND METRICS 

Site state scores can range from ‘A’ to ‘D’ for attributes DRP, NH4N, MCI and BDISC, 

and ‘A’ to ‘E’ for ECOLI, with ‘A’ being indicative of ‘good’ water quality and ‘D’ and ‘E’ 

indicative of poorer water quality. Currently, communicating the condition of a site 

requires descriptions of both the state and trend, as communicating one or the other 

leaves out important information. For example, a ‘very likely degrading’ trend will 

mean different things for sites that have a state of ‘A’ or a state ‘D’. Here, we consider 

two simple methods for combining state and trend metrics into a single new metric, 

‘condition’. The goal of combining state and trend was to make it easier to 

communicate how water quality indicators are behaving at a site and to enable more 

meaningful, high-level summaries by being able to present the proportion of sites in 

different ‘conditions’ for each variable. 

 

 

4.1. Missing data 

A precondition of calculating site condition is having both state and trend data 

available for a given site. For many sites, either state or trend data are not available, 

or the data are available but there are not enough data points to calculate a trend and 

so it is classified as ‘not determined’ (Figure 5). Across the water quality metrics, the 

proportion of sites for which both state and trend were measured decreased as the 

trend period increased (5, 10 and 15 years). Across all possible sites and time 

periods, 35–75% of sites had both trend and state metrics. Ignoring sites that had 

neither state nor trend (i.e. the given water quality metric was not measured at the 

site), this increased to more than 55% (BDISC 15-year period) to 99% (BDISC 5-year 

period) of sites. 
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Figure 5. Percentage of sites that have either state or trend data, or both, missing for each of the 

water quality indicators and time periods. Macroinvertebrate Community Index (MCI) was 
not calculated for the 5-year trend. 

 

 

4.2. Classifying site condition 

We tested two approaches to combining state and trend into a new metric ‘condition’. 

For both approaches we used the 2022 state and trend data available from the LAWA 

website.1 For the first approach, we classified a site as pass / fail determined based 

on the state attribute, and then improving / degrading based on the trend attribute 

(two-by-two classification, plus ‘not determined’ sites). The resulting classification 

meant a site could either be classified as ‘good’ (pass state, improving or 

indeterminate trend), ‘at risk’ (pass state, degrading trend), ‘recovering’ (fail state, 

improving trend), ‘bad’ (fail state, indeterminate or degrading trend), or ‘not 

determined’ (either state or trend not determined; Table 3). Here, we used the ‘A’ and 

‘B’ bands from the NPS-FM as a pass state and the ‘C’, ‘D’ and ‘E’ bands as a fail 

state as ‘proof of concept’ thresholds, and the default LAWA method when calculating 

 
1  https://www.lawa.org.nz/download-data 

https://www.lawa.org.nz/download-data
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trends. Ultimately, it will be up to regional councils and local communities to decide 

what constitutes a pass or fail. Target attribute states (TAS) would be a logical choice 

once these are determined.  

 

For the second approach, we allowed differentiation between the state attribute 

bands. This resulted in eight possible condition scores (four-by-two classification): 

‘very good’ (A, improving or indeterminate), ‘good’ (B, improving or indeterminate 

trend), ‘at low risk’ (A, degrading trend), ‘at risk’ (B, degrading trend), ‘recovering’ (C, 

improving trend), ‘possibly recovering’ (D/E, improving trend), ‘bad’ (C, indeterminate 

or degrading trend), ‘very bad’ (D/E, indeterminate or degrading trend), and ‘not 

determined’ (either state or trend not determined; Table 4). 

 

 

Table 3. Combinations of state and trend used to calculate a new metric condition, based on a 
simple 2 × 2 decision matrix of pass / fail for the state attribute and improving / degrading 
for the trend. VLI = very likely improving, LI = likely improving, I = indeterminate, LD = 
likely degrading, VLD = very likely degrading, ND = not determined. Indeterminate trends 
are sites where it is unclear if the trend is improving or degrading. Not determined are 
sites that did not meet the data requirements to calculate a metric, e.g. too few data 
points. 

 

 

 

 

  

State / trend VLI LI I LD VLD ND 

A Good Good Good At risk At risk ND 

B Good Good Good At risk At risk ND 

C Recovering Recovering Bad Bad Bad ND 

D Recovering Recovering Bad Bad Bad ND 

E Recovering Recovering Bad Bad Bad ND 

ND ND ND ND ND ND ND 
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Table 4. Combinations of state and trend used to calculate new metric condition, based on a 
simple 4 × 2 decision matrix of A / B / C / D / E for the state attribute, and improving / 
degrading for the trend. VLI = very likely improving, LI = likely improving, I = 
indeterminate, LD = likely degrading, VLD = very likely degrading, ND = not determined. 
Indeterminate trends are sites where it is unclear if the trend is improving or degrading. 
Not determined are sites that did not meet the data requirements to calculate a metric, 
e.g. too few data points. 

 

 

4.3. Classification results 

The simple two-by-two classification worked well and was easy to interpret. MCI was 

the only indicator where more than 50% of sites were classified as in ‘bad’ condition. 

For all other indicators, 2–45% of sites were classified as ‘bad’, 10–25% as ‘at risk’, 

2–30% as ‘recovering’ and 12–70% as ‘good’. The proportion of sites in each 

condition band was relatively stable across the 5-, 10- and 15-year trend periods 

(Figure 6).  

 

Visualising condition via national maps illustrates where data are currently lacking and 

some potential spatial patterns. For example, NH4N is ‘good’ across much of the 

country, except Southland and the central North Island, and MCI is ‘bad’ across much 

of the country (Figures 7–11). The increased resolution of the second approach (four-

by-two classification) allowed more detail to be seen when inspecting results, but 

overall it did not add much, and it made summarising high-level patterns more 

cumbersome (Figure 12). 

 

State / 

trend 
VLI LI I LD VLD ND 

A Very good Very good Very good At low risk At low risk ND 

B Good Good Good At risk At risk ND 

C Recovering Recovering Bad Bad Bad ND 

D Possibly 

recovering 

Possibly 

recovering 

Very bad Very bad Very bad ND 

E Possibly 

recovering 

Possibly 

recovering 

Very bad Very bad Very bad ND 

ND ND ND ND ND ND ND 
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Figure 6. Results of combining state and trend attributes using a 2 × 2 decision tree (state: A / B / 

C / D / E; trend: improving / degrading). 
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Figure 7. Condition (BDISC) of LAWA sites across Aotearoa New Zealand, based on 10-year trend 

data. 
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Figure 8. Condition (DRP) of LAWA sites across Aotearoa New Zealand, based on 10-year trend 

data. 
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Figure 9. Condition (NH4N) of LAWA sites across Aotearoa New Zealand, based on 10-year trend 

data. 
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Figure 10. Condition (ECOLI) of LAWA sites across Aotearoa New Zealand, based on 10-year trend 

data. 
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Figure 11. Condition (MCI) of LAWA sites across Aotearoa New Zealand, based on 10-year trend 

data. 
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Figure 12. Results of combining state and trend attributes using a 4 × 2 decision matrix (state: A / B / 

C / D / E; trend: improving / degrading). 
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5. SUMMARY 

Land, Air, Water Aotearoa (LAWA) leverages a database of water quality and 

ecological health indicators to report on the state and trend of these attributes at 

individual sites and at a national scale. Trends are calculated for indicators over the 

last 5, 10 and 15 years using a two-stage process, via a Mann–Kendall statistical test 

and Sen slope regression analysis. Concerns have been expressed that this method 

results in a large number of sites with likely trends, but that some of these trends 

appear relatively weak and it is difficult to identify potential causes for those observed. 

In addition, there have been instances at some sites where a trend in one direction 

has been indicated by the data, but the following year a trend in the opposite direction 

has been identified. This trend switching over time has made some people question 

the robustness of the approach.  

 

Here, we explored two distinct approaches to addressing these limitations for each of 

five water quality and ecological indicators: black disc (BDISC), dissolved reactive 

phosphorus (DRP), Escherichia coli (ECOLI), Macroinvertebrate Community Index 

(MCI) and ammoniacal nitrogen (NH4N). First, we looked at the consistency of trends 

calculated using the LAWA method over three rolling 8-year datasets. Our results 

show that from year to year a given trend had a high chance of changing, with less 

than 40% of sites having a consistent trend category across the three rolling datasets. 

However, most changes in trend category were relatively small, and less than 35% of 

sites had a change in trend direction across the three rolling datasets. It was more 

common to see changes from ‘very likely’ to ‘likely’ (or vice versa) in a consistent 

direction, or a change from ‘indeterminate’ to a trend (or vice versa). 

 

The second method we examined was a QR approach. Within this approach we 

considered three different options: 1) calculating regression estimates on the 0.5 

quantile, 2) calculating regression estimates on nine different quantiles (0.1–0.9) and 

assigning the most common trend across the quantiles as the ‘true’ trend, and 3) 

requiring a 1% or greater annual change in the given water quality parameter before a 

trend could be assigned. Each of the three QR methods resulted in a significant 

increase in the proportion of sites classified as ‘indeterminate’, ‘likely increasing’ and 

‘likely decreasing’ compared with the LAWA approach, with associated decreases in 

the proportion of sites classified as ‘very likely increasing’ and ‘very likely decreasing’. 

This pattern was particularly extreme for the ecological indicator MCI when requiring a 

1% or greater annual change. The large increase in indeterminate sites for NH4N but 

not other metrics when using the 0.5 quantile QR approach, and similarly for MCI 

when using the threshold approach, shows that not all metrics are affected equally by 

the different methods.  

 

We observed differences in the proportion of sites in each of the trend categories 

when comparing the LAWA method to the QR method. This indicates that 1) there 

were some methodological choices made that resulted in the QR method assigning 
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more sites as having indeterminate trends, or 2) there are potential differences in how 

confidence levels translate into ascribed trend categories. This is an area that requires 

further investigation.  

 

Given the limited scope of this analysis, a more thorough study is warranted to 

compare all possible options (the LAWA, QR and any other appropriate methods). We 

suggest using a simulation-based assessment, where datasets with various trends, 

noise levels and censored values are simulated, trends calculated and results 

compared, with a specific focus on trend consistency. Within the current 

methodological framework, we see four areas that warrant a deeper examination: 

1) using the rolling window approach, and the effect of using different-sized windows; 

2) changing the confidence level trend attribution cut-off values to be more 

conservative; 3) increasing the number of values above (or below) the detection limit 

that are required before a trend can be calculated; and 4) implementing trend slope 

thresholds that represent ecological significance. Each of these changes has the 

potential to reduce trend switching, without a wholesale change in methodology. 

QR could then be looked at in more detail using the simulation-based assessment 

outlined above. Finally, additional analyses looking at methods that account for spatial 

autocorrelation (e.g. state-space modelling) and methods that account for larger-scale 

natural environmental (e.g. climactic) cycles would also be valuable, as these have 

been identified as potential trend drivers (Snelder et al. 2021). A simulation-based 

assessment is more informative than applying alternative methods to an actual 

dataset as ‘truth’ is known when simulating data, so the performance properties of 

each method can be determined more objectively.  

 

The combination of the state and trend scores into a new ‘condition’ attribute was 

straightforward to calculate, and the new metric is easy to interpret and can be readily 

presented alongside existing metrics. The new site ‘condition’ metric could also be 

generated quickly to produce simplified national-scale visualisations and summaries. 

The limitation of requiring both state and trend attributes to be present for a given site 

to calculate ‘condition’ could be overcome by continuing to also present state and 

trend data separately, so no information is lost. The only challenge associated with 

the condition metric is determining what state band (A / B / C / D / E) represents a 

‘pass’ or ‘fail’ for a given site. One option could be to apply the metric only to sites 

where a target attribute state has been set. Alternatively, an approach similar to that 

applied here (A and B are a pass, and C, D and E are a fail) could be adopted until 

target attribute states have been implemented nationally.  
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6. APPENDIX 

Raw NH4N data for two sites is presented in Figure A1.1, along with the LAWA and 

QR 10-year trends. These are two sites where the LAWA and QR methods produced 

contrasting results.  

 

At ‘ccc-00005’ (Riccarton Drain), the LAWA trend was ‘likely degrading’, whereas the 

QR trend was ‘indeterminate’. This site had only two censored values in the 10-year 

trend dataset.  

 

At ‘gw-00010’ (Waikanae River at Greenaway Road), the LAWA trend was ‘very likely 

improving’, whereas the QR trend was ‘indeterminate’. This site had a large proportion 

of censored values, and a step-change in the censoring level. Prior to trends being 

calculated, all values less than the highest censored value were replaced with the 

highest censored value (0.01 in this case), so that the step-change did not result in an 

artificial trend. In this case, there were a number of points above the detection limit 

between 2012 and 2014, which has resulted in a ‘very likely improving’ trend for the 

LAWA method. Whether or not ‘gw-00010’ passes the ‘eyeball’ test as a site that 

should be classified as a ‘very likely improving’ trend is subjective, but an increase in 

the required number of non-censored values (currently a minimum of five) would 

reduce the number of sites that are assigned trends.  
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Figure A1.1.  Raw NH4N values for two sites where the LAWA and QR methods produced 
contrasting results. 
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