# Appendix A Exposure durations classified as acute toxicity tests

Appendix Table A.1: Classification of acute toxicity tests for temperate species. Adapted from Warne et al. (2018).

| Test species type   | Life stage <sup>a</sup> | Relevant endpoints <sup>b</sup>                                                | Test duration |
|---------------------|-------------------------|--------------------------------------------------------------------------------|---------------|
| Fish and amphibians | Adults/juveniles        | Allc                                                                           | <21 d         |
|                     | Embryos/larvae          | All                                                                            | <7 d          |
| Macroinvertebrates  | Adults/juveniles        | All                                                                            | <14 d         |
|                     | Embryos/larvae          | All (except fertilisation <sup>f</sup> , larval development/<br>metamorphosis) | <7 d          |
|                     | Embryos/larvae          | Larval development/ metamorphosis                                              | <48 h         |
| Microinvertebrates  | Adults/juveniles/larvae | All (except fertilisation, larval development/<br>metamorphosis)               | <7 d          |
|                     | Embryos/larvae          | Larval development/ metamorphosis                                              | <48 h         |
| Macrophytes         | Mature                  | All                                                                            | <7 d          |
| Macroalgae          | Mature                  | Lethality and growth                                                           | <7 d          |
| Microalgae          | Not applicable          | All                                                                            | ≤24 h         |
| Microorganisms      | Not applicable          | All                                                                            | ≤24 h         |

Notes: a The life stage at the start of the toxicity test. b Endpoints need to be ecologically relevant – see Warne et al. (2018). c For acute tests, 'All' refers to all ecologically relevant endpoints for a particular life stage of a particular species. d Macroinvertebrates include invertebrates where full-grown adults are  $\geq 2 \text{ mm} \log($  for example decapods, echinoderms, molluscs, annelids, corals, amphipods, larger cladocerans [such as Daphnia magna, Daphnia carinata and Daphnia pulex] and insect species where larvae are  $\geq 2 \text{ mm} \log$ ). e Microinvertebrates are defined here as invertebrate species where full-grown adults are typically <2 mm long. Examples of invertebrates that meet this criterion are some cladocerans (for example Ceriodaphnia dubia and Moina australiensis), copepods, conchostracans, rotifer, acari, bryozoa and hydra. f Fertilisation tests are typically  $\geq 1$  h and are considered chronic.

# Appendix B Further details of bioavailability models

#### Appendix Table B.I: Regression-based models currently used or proposed for acute copper criteria/guideline value derivation.

|            |                          | Species/group coefficients derived                                                                                                                                            |                                                 | Predicted       | Slopes |               |          |
|------------|--------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------|-----------------|--------|---------------|----------|
| Model type | Key References           | from                                                                                                                                                                          | TMFs included                                   | R <sup>2</sup>  | рН     | Log(Hardness) | Log(DOC) |
| Hardness   | US EPA (1984)            | Pooled model based on Daphnia magna,<br>D. pulicaria, Oncorhynchus clarkii, O.<br>mykiss, O. tshawytscha, Pimephales<br>promelas, Poecilia reticulata, Lepomis<br>macrochirus | Hardness                                        | Not<br>reported |        | 0.9422        |          |
| MLR        | Brix et al. (2017; 2021) | Ceriodaphnia dubia                                                                                                                                                            | Hardness, pH, DOC                               | 0.69            | 0.99   | 0.13          | 0.64     |
| MLR        | Brix et al. (2017; 2021) | D. magna                                                                                                                                                                      | Hardness, pH, DOC                               | 0.78            | 0.77   | 0.54          | 0.75     |
| MLR        | Brix et al. (2017; 2021) | D. obtusa                                                                                                                                                                     | Hardness, pH, DOC                               | 0.79            | 0.55   | 0.28          | 0.84     |
| MLR        | Brix et al. (2017; 2021) | D. pulex                                                                                                                                                                      | Hardness, DOC (pH included but not significant) | 0.71            | NS     | 0.62          | 0.76     |
| MLR        | Brix et al. (2017; 2021) | O. mykiss                                                                                                                                                                     | Hardness, DOC (pH included but not significant) | 0.55            | NS     | 0.76          | 0.51     |
| MLR        | Brix et al. (2017; 2021) | P. promelas                                                                                                                                                                   | Hardness, pH, DOC                               | 0.76            | 0.96   | 0.99          | 0.67     |
| MLR        | Brix et al. (2017; 2021) | Pooled model, based on all above species                                                                                                                                      | Hardness, pH, DOC                               |                 | 0.78   | 0.58          | 0.70     |

| Model type            | Key References                       | Species/group<br>coefficients derived from                                                                                                             | TMFs included                                                        | Binding coefficients (logK) |         |              |      |       |       |       |
|-----------------------|--------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------|-----------------------------|---------|--------------|------|-------|-------|-------|
|                       |                                      |                                                                                                                                                        |                                                                      | Cu-BL*                      | CuOH-BL | CuCO₃-<br>BL | H-BL | Ca-BL | Mg-BL | Na-BL |
| Fish BLM              | Di Toro et al. 2001                  | P. promelas and O.<br>mykiss                                                                                                                           | Temp., pH, DOC, humic<br>acid, Ca, Mg, Na, K, Cl,<br>SO4, alkalinity | 7.4                         |         |              | 5.4  | 3.6   | 3.6   | 3     |
| Invertebrate BLM      | De Schamphelaere et al. 2002a; 2002b | D. magna                                                                                                                                               | Temp., pH, DOC, humic<br>acid, Ca, Mg, Na, K, Cl,<br>SO4, alkalinity | 8.02                        | 7.32    | 7.01         | 5.4  | 3.47  | 3.58  | 3.19  |
| Fish BLM              | US EPA (2007)                        | As for Di Toro et al.<br>(2001)                                                                                                                        | Temp., pH, DOC, humic<br>acid, Ca, Mg, Na, K, Cl,<br>SO4, alkalinity | 7.4                         | -1.3    |              | 5.4  | 3.6   | 3.6   | 3     |
| Fish/invertebrate BLM | BC (2019) & ECCC (2021)              | Not specifically reported<br>by BC or ECCC but model<br>files state "derived from<br>fathead minnow" and<br>changed based on an<br>"updated database". | Temp., pH, DOC, humic<br>acid, Ca, Mg, Na, K, Cl,<br>SO4, alkalinity | 7.4                         | -0.8    |              | 6.4  | 4.4   | 4.4   | 4     |
| Plant BLM             | ECCC (2021)                          | Not reported by ECCC,<br>but model files suggest<br>adopted from BLM for<br>barley & soils.                                                            | Temp., pH, DOC, humic<br>acid, Ca, Mg, Na, K, Cl,<br>SO4, alkalinity | 5.4                         | 21.2    | -3.3         | 7.2  | 4     | 3.5   |       |

#### Appendix Table B.2: Biotic ligand models currently used or proposed for acute copper criteria/guideline value derivation.

Note: \* BL = Biotic ligand

|          | Key References         | Species/group coefficients derived from                                                                                             | TMFs included                                   | Adjusted R <sup>2</sup> |          | Slopes | 5     |
|----------|------------------------|-------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------|-------------------------|----------|--------|-------|
| Model    |                        |                                                                                                                                     |                                                 |                         | Hardness | рН     | DOC   |
| Hardness | US EPA (1987)          | D. magna, Physa heterostropha, O. mykiss, P.<br>promelas, Salvelinus fontinalis, P. reticulata,<br>Morone saxatilis, L. macrochirus | Hardness                                        | Not reported            | 0.8473   | N/A    | N/A   |
| MLR      | CCME (2018)            | D. pulex                                                                                                                            | Hardness, DOC (pH included but not significant) | 0.584                   | 0.845    | n/a    | 0.284 |
| MLR      | CCME (2018)            | D. magna                                                                                                                            | Hardness, DOC (pH included but not significant) | 0.967                   | 0.865    | n/a    | 0.191 |
| MLR      | CCME (2018)            | Pooled <i>Daphnia</i> (model used by CCME for acute zinc GV)                                                                        | Hardness, DOC (pH included but not significant) | 0.811                   | 0.833    | n/a    | 0.24  |
| MLR      | CCME (2018)            | Ceriodaphnia dubia                                                                                                                  | Hardness, pH (no DOC data available)            | n/a                     | n/a      | n/a    | n/a   |
| MLR      | CCME (2018)            | O. mykiss                                                                                                                           | Hardness, pH (no DOC data available)            | 0.486                   | 1.299    | -0.905 | n/a   |
| MLR      | CCME (2018)            | Salmo trutta                                                                                                                        | Hardness, pH (no DOC data available)            | 0.481                   | 0.348    | -0.347 | n/a   |
| MLR      | CCME (2018)            | P. promelas                                                                                                                         | Hardness, pH (no DOC data available)            | 0.339                   | n/a      | -1.164 | n/a   |
| MLR      | DeForest et al. (2023) | C. dubia (cladoceran)                                                                                                               | Hardness, pH, DOC                               | 0.729                   | 0.282    | -0.862 | n/a   |
| MLR      | DeForest et al. (2023) | D. magna (cladoceran)                                                                                                               | Hardness, pH, DOC                               | 0.449                   | 0.507    | n/a    | n/a   |
| MLR      | DeForest et al. (2023) | D. pulex (cladoceran)                                                                                                               | Hardness, pH, DOC                               | 0.569                   | 0.837    | n/a    | 0.297 |
| MLR      | DeForest et al. (2023) | O. mykiss (rainbow trout)                                                                                                           | Hardness, pH, DOC                               | 0.501                   | 0.99     | -0.392 | n/a   |
| MLR      | DeForest et al. (2023) | P. promelas (fathead minnow)                                                                                                        | Hardness, pH, DOC                               | 0                       | n/a      | n/a    | n/a   |
| MLR      | DeForest et al. (2023) | Pomacea paludosa (snail)                                                                                                            | Hardness, pH, DOC                               | 0.902                   | 0.808    | 0.106  | 0.233 |
| MLR      | DeForest et al. (2023) | P. paludosa (snail)                                                                                                                 | Hardness, DOC                                   | 0.897                   | 0.827    | n/a    | 0.247 |
| MLR      | DeForest et al. (2023) | Pooled fish & invertebrates as listed above                                                                                         | Hardness, pH, DOC                               | -0.06-0.87*             | 0.6      | -0.12  | 0.127 |

#### Appendix Table B.3: Regression-based models currently used or proposed for acute zinc guideline value derivation.

Note: \* Species-dependent intercepts.

#### Appendix Table B.4:

Biotic ligand models currently used or proposed for acute zinc guideline value derivation, including key binding coefficients.

| Model type             | Key References                    | Species/group coefficients<br>derived from                                                                | TMFs included                                                     |        | Binding coefficients (logK) |                 |       |       |         |
|------------------------|-----------------------------------|-----------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------|--------|-----------------------------|-----------------|-------|-------|---------|
|                        |                                   |                                                                                                           |                                                                   | Zn-BL* | ZnOH-BL                     | H-BL            | Ca-BL | Mg BL | Na-BL   |
| Fish BLM               | Santore et al. (2002)             | P. promelas, O. mykiss                                                                                    | Temp., pH, DOC, humic acid, Ca, Mg, Na, K,<br>Cl, SO4, alkalinity | 5.5    |                             | 6.7             | 4.8   |       |         |
| Invertebrate BLM       | Heijerick et al. (2002)           | D. magna                                                                                                  | Temp., pH, DOC, humic acid, Ca, Mg, Na, K,<br>Cl, SO4, alkalinity | 5.3    |                             |                 | 3.3   | 3.1   |         |
| Fish BLM               | De Schamphelaere et al.<br>(2004) | O. mykiss                                                                                                 | Temp., pH, DOC, humic acid, Ca, Mg, Na, K,<br>Cl, SO4, alkalinity | 5.5    |                             | 6.7             | 3.8   | 3.5   |         |
| Fish/ invertebrate BLM | HydroQual                         | D. magna, P. promelas, O. mykiss                                                                          | Temp., pH, DOC, humic acid, Ca, Mg, Na, K,<br>Cl, SO4, alkalinity | 5.5    | -3.8                        | 6.6             | 3.8   | 3.6   |         |
| Invertebrate BLM       | Clifford & McGeer (2009)          | D. pulex                                                                                                  | Temp., pH, DOC, humic acid, Ca, Mg, Na, K,<br>Cl, SO4, alkalinity | 5.6    | -3.8                        | Not<br>reported | 4.9   | 4.4   |         |
| Fish/ invertebrate BLM | DeForest et al. (2012)            | Unified/pooled model based on <i>D.</i><br>magna, <i>D. pulex, P. promelas, O.</i><br>mykiss              | Temp., pH, DOC, humic acid, Ca, Mg, Na, K,<br>Cl, SO4, alkalinity | 5.4    | -3.8                        | 6.4             | 3.8   | 3.3   |         |
| Fish/ invertebrate BLM | Windward (2019)                   | Not specified, model files state<br>based on pooled data, presumably<br>same as earlier HydroQual version | Temp., pH, DOC, humic acid, Ca, Mg, Na, K,<br>Cl, SO4, alkalinity | 5.4    | -2.4                        | 6.4             | 3.8   | 3.3   | 0.2-120 |
| Fish/ invertebrate BLM | DeForest et al. (2023)            | 6 fish & invertebrate species (as per MLRs above)                                                         | Temp., pH, DOC, humic acid, Ca, Mg, Na, K,<br>Cl, SO4, alkalinity | 5.4    | -2.6                        | 6.4             | 4.2   | 3.6   |         |

Note: \* BL = Biotic ligand

# Appendix C Details of acute toxicity testing

This appendix contains a copy of the NIWA report on acute toxicity test for copper and zinc.



# Zinc and copper acute toxicity to a New Zealand native daphnid in natural waters

Prepared for Hydrotoxy Research

September 2024

Prepared by: Karen Thompson

For any information regarding this report please contact:

Karen Thompson Aquatic Ecology and Ecotoxicology Technician Chemistry and Ecotoxicology +64 7 859 1895 karen.thompson@niwa.co.nz

National Institute of Water & Atmospheric Research Ltd PO Box 11115 Hamilton 3251

Phone +64 7 856 7026

| NIWA CLIENT REPORT No: | 2024299HN      |
|------------------------|----------------|
| Report date:           | September 2024 |
| NIWA Project:          | HYR24201       |

| Quality Assurance Statement |                          |                               |  |  |  |
|-----------------------------|--------------------------|-------------------------------|--|--|--|
| DHdog .                     | Reviewed by:             | Dr. Chris Hickey, RMA Science |  |  |  |
| Jowney                      | Formatting checked by:   | Jo Downey                     |  |  |  |
| M. P. Bru                   | Approved for release by: | Michael Bruce                 |  |  |  |

© All rights reserved. This publication may not be reproduced or copied in any form without the permission of the copyright owner(s). Such permission is only to be given in accordance with the terms of the client's contract with NIWA. This copyright extends to all forms of copying and any storage of material in any kind of information retrieval system.

Whilst NIWA has used all reasonable endeavours to ensure that the information contained in this document is accurate, NIWA does not give any express or implied warranty as to the completeness of the information contained herein, or that it will be suitable for any purpose(s) other than those specifically contemplated during the Project or agreed by NIWA and the Client.

# Contents

| Execu | Executive summary6 |                                                    |                |  |  |
|-------|--------------------|----------------------------------------------------|----------------|--|--|
| 1     | Intro              | duction                                            | .7             |  |  |
| 2     | Meth               | ods                                                | .8             |  |  |
|       | 2.1                | Water collection and characterisation              | .8             |  |  |
|       | 2.2                | Acute Daphnia thomsoni toxicity testing            | .9             |  |  |
|       | 2.3                | Reference toxicant                                 | 11             |  |  |
|       | 2.4                | Chemical analysis1                                 | 11             |  |  |
|       | 2.5                | Test acceptability criteria                        | 11             |  |  |
|       | 2.6                | Statistical analysis1                              | 11             |  |  |
| 3     | Resul              | ts and discussion1                                 | 12             |  |  |
|       | 3.1                | Characterisation of natural waters1                | 12             |  |  |
|       | 3.2                | Daphnia toxicity testing                           | 12             |  |  |
| 4     | Sumn               | nary2                                              | 28             |  |  |
| 5     | Ackno              | owledgements                                       | 29             |  |  |
| c     | Class              | any of obbyoutions and torms                       | 20             |  |  |
| 0     | GIOSS              | ary of appreviations and terms                     | su             |  |  |
| 7     | Refer              | ences                                              | 31             |  |  |
| Арре  | ndix A             | Hill Labs results - Natural water characterisation | 33             |  |  |
| Арре  | ndix B             | Hill Labs results – Zinc                           | 35             |  |  |
| Арре  | ndix C             | Hill Labs results - Copper                         | 37             |  |  |
| Арре  | ndix D             | Hill Labs results – Okutua, zinc and copper        | 39             |  |  |
| Арре  | ndix E             | Toxicity tests raw data4                           | 41             |  |  |
| Арре  | ndix F             | CETIS statistical analyses – Mahurangi             | 47             |  |  |
| Арре  | ndix G             | CETIS statistical analyses – Hoteo                 | 56             |  |  |
| Арре  | ndix H             | CETIS statistical analyses – Okutua (pH adjusted)6 | 65             |  |  |
| Арре  | ndix I             | CETIS statistical analyses – Clutha7               | 75             |  |  |
| Арре  | ndix J             | CETIS statistical analyses – Waihou                | 35             |  |  |
| Арре  | ndix K             | Physico-chemical data for zinc tests               | <del>)</del> 5 |  |  |

| Appendix L | Physico-chemical data for copper tests97         |
|------------|--------------------------------------------------|
| Appendix M | NIWA's unpublished zinc and copper toxicity data |

#### Tables

| Table E-1:  | Summary of the natural water sample characteristics and toxicity statistics                                                                                   | 6      |
|-------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------|--------|
| Table 2-1.  | Summary of natural water sample sites and collection dates                                                                                                    | 0<br>8 |
| Table 2-2:  | Laboratory Danhaia culture water composition from NIWA SOP 11.0                                                                                               | 0      |
|             | (NIWA 2022).                                                                                                                                                  | 9      |
| Table 2-3:  | Summary of <i>D. thomsoni</i> toxicity test conditions.                                                                                                       | 10     |
| Table 3-1:  | Characteristics of the natural water samples.                                                                                                                 | 12     |
| Table 3-2:  | Nominal and measured zinc concentrations at the start $(T_0)$ and end $(T_{48})$ of the Mahurangi Stream <i>Daphnia</i> survival toxicity test.               | 13     |
| Table 3-3:  | Nominal and measured zinc concentrations at the start ( $T_0$ ) and end ( $T_{48}$ ) of the Hoteo River <i>Daphnia</i> survival toxicity test.                | 14     |
| Table 3-4:  | Nominal and measured zinc concentrations at the start $(T_0)$ and end $(T_{48})$ of the Okutua Creek <i>Daphnia</i> survival toxicity test.                   | 15     |
| Table 3-5:  | Nominal and measured zinc concentrations at the start $(T_0)$ and end $(T_{48})$ of the Clutha River <i>Daphnia</i> survival toxicity test.                   | 15     |
| Table 3-6:  | Nominal and measured zinc concentrations at the start $(T_0)$ and end $(T_{48})$ of the Waihou River <i>Daphnia</i> survival toxicity test.                   | 16     |
| Table 3-7:  | Toxicity statistics as statistically derived by CETIS <sup>™</sup> (µg/L zinc) for <i>D. thomsoni</i> 48-hour survival in each natural water tested.          | 20     |
| Table 3-8:  | Nominal and measured copper concentrations at the start ( $T_0$ ) and end ( $T_{48}$ ) of the Mahurangi Stream <i>Daphnia</i> survival toxicity test.         | 20     |
| Table 3-9:  | Nominal and measured copper concentrations at the start ( $T_0$ ) and end ( $T_{48}$ ) of the Hoteo River <i>Daphnia</i> survival toxicity test.              | 21     |
| Table 3-10: | Nominal and measured copper concentrations at the start $(T_0)$ and end $(T_{48})$ of the Okutua Creek <i>Daphnia</i> survival toxicity test.                 | 22     |
| Table 3-11: | Nominal and measured copper concentrations at the start $(T_0)$ and end $(T_{48})$ of the Clutha River <i>Daphnia</i> survival toxicity test.                 | 22     |
| Table 3-12: | Nominal and measured copper concentrations at the start $(T_0)$ and end $(T_{48})$ of the Waihou River <i>Daphnia</i> survival toxicity test.                 | 23     |
| Table 3-13: | Toxicity statistics as statistically derived by CETIS <sup>TM</sup> ( $\mu$ g/L copper) for <i>D. thomsoni</i> 48-hour survival in each natural water tested. | 27     |
| Table 4-1:  | Summary of the natural water sample characteristics and toxicity statistics for <i>D. thomsoni</i> exposed to zinc and copper in 48-hour survival test.       | 28     |
| Table K-1:  | Summary of physico-chemical measures from acute <i>D. thomsoni</i> zinc toxicity testing with Mahurangi Stream water.                                         | 95     |
| Table K-2:  | Summary of physico-chemical measures from acute <i>D. thomsoni</i> zinc toxicity testing with Hoteo River water.                                              | 95     |
| Table K-3:  | Summary of physico-chemical measures from acute <i>D. thomsoni</i> zinc toxicity testing with pH adjusted Okutua Creek water.                                 | 95     |
|             |                                                                                                                                                               |        |

| Table K-4: | Summary of physico-chemical measures from acute <i>D. thomsoni</i> zinc toxicity testing with Clutha River water.               | 96  |
|------------|---------------------------------------------------------------------------------------------------------------------------------|-----|
| Table K-5: | Summary of physico-chemical measures from acute <i>D. thomsoni</i> zinc toxicity testing with Waihou River water.               | 96  |
| Table L-1: | Summary of physico-chemical measures from acute <i>D. thomsoni</i> copper toxicity testing with Mahurangi Stream water.         | 97  |
| Table L-2: | Summary of physico-chemical measures from acute <i>D. thomsoni</i> copper toxicity testing with Hoteo River water.              | 97  |
| Table L-3: | Summary of physico-chemical measures from acute <i>D. thomsoni</i> copper toxicity testing with pH adjusted Okutua Creek water. | 97  |
| Table L-4: | Summary of physico-chemical measures from acute <i>D. thomsoni</i> copper toxicity testing with Clutha River water.             | 98  |
| Table L-5: | Summary of physico-chemical measures from acute <i>D. thomsoni</i> copper toxicity testing with Waihou River water.             | 98  |
| Table M-1: | Summary of NIWA's unpublished or publicly unavailable New Zealand native species acute zinc toxicity testing data.              | 99  |
| Table M-2: | Summary of NIWA's unpublished or publicly unavailable New Zealand native species acute copper toxicity testing data.            | 101 |

### Figures

| Figure 3-1:  | Survival of <i>D. thomsoni</i> (compared to control) versus measured zinc concentrations for Mahurangi Stream natural water sample.           | 17 |
|--------------|-----------------------------------------------------------------------------------------------------------------------------------------------|----|
| Figure 3-2:  | Survival of <i>D. thomsoni</i> (compared to control) versus measured zinc concentrations for Hoteo River natural water sample.                | 17 |
| Figure 3-3:  | Survival of <i>D. thomsoni</i> (compared to control) versus measured zinc concentrations for pH adjusted Okutua Creek natural water sample.   | 18 |
| Figure 3-4:  | Survival of <i>D. thomsoni</i> (compared to control) versus measured zinc concentrations for Clutha River natural water sample.               | 19 |
| Figure 3-5:  | Survival of <i>D. thomsoni</i> (compared to control) versus measured zinc concentrations for Waihou River natural water sample.               | 19 |
| Figure 3-6:  | Survival of <i>D. thomsoni</i> (compared to control) versus measured copper concentrations for Mahurangi Stream natural water sample.         | 24 |
| Figure 3-7:  | Survival of <i>D. thomsoni</i> (compared to control) versus measured copper concentrations for Hoteo River natural water sample.              | 24 |
| Figure 3-8:  | Survival of <i>D. thomsoni</i> (compared to control) versus measured copper concentrations for pH adjusted Okutua Creek natural water sample. | 25 |
| Figure 3-9:  | Survival of <i>D. thomsoni</i> (compared to control) versus measured copper concentrations for Clutha River natural water sample.             | 26 |
| Figure 3-10: | Survival of <i>D. thomsoni</i> (compared to control) versus measured copper concentrations for Waihou River natural water sample.             | 26 |

# **Executive summary**

Natural water samples were collected from five rivers and streams across New Zealand, chosen based on their representativeness of the pH, hardness, and dissolved organic carbon (DOC) variability in New Zealand streams, as identified in a previous study (Gadd et al. 2022). These sites were also selected due to the absence of upstream anthropogenic discharges. The water samples exhibited the following ranges: pH from 6.0 to 7.6, hardness between 2.7 and 74 mg/L (as CaCO<sub>3</sub>), and DOC concentrations ranging from <0.3 to 12 mg/L.

Zinc and copper toxicity in these waters was tested with a native NZ freshwater daphnid, *Daphnia thomsoni* (Order Cladocera, commonly called a "water flea") in an acute 48-hour survival test.

The toxicity tests met acceptability criteria based on survival of control organisms ( $\geq$ 90%). The measured concentrations in the lowest positive treatments in the Mahurangi and Hoteo test waters demonstrated potential zinc contamination. Mean measured zinc (excluding those with potential contamination) or copper concentrations were used for statistical analyses. Zinc and copper exposures resulted in reduced survival of *D. thomsoni* in all five natural waters tested in a dose-dependent manner.

The zinc  $EC_{50}$  concentrations for this species ranged from 343 to 826 µg/L. The highest toxicity was observed in the natural water sample with the lowest pH and hardness, and highest DOC concentration. The lowest toxicity was observed in waters with the highest tested pH and hardness. The copper  $EC_{50}$  concentrations for this species ranged from 32 to 272 µg/L. The highest toxicity was observed in the natural water samples with low DOC concentration and the lowest toxicity was observed in waters with environmentally moderate pH and hardness (Table E-1).

The toxicity modifying characteristics of the five natural water samples and their corresponding toxicity testing endpoints for the zinc and copper 48-hour *D. thomsoni* tests are summarised below in Table E-1.

| Natural   | рН                | Hardness<br>mg/L<br>CaCO <sub>3</sub> | DOC _<br>mg/L | Zi                                                      | nc                                                      | Copper                                                  |                                                         |  |
|-----------|-------------------|---------------------------------------|---------------|---------------------------------------------------------|---------------------------------------------------------|---------------------------------------------------------|---------------------------------------------------------|--|
| water     |                   |                                       |               | EC <sub>10</sub> ª<br>(95% CL) μg/L<br>Zn <sup>2+</sup> | EC <sub>50</sub> ª<br>(95% CL) μg/L<br>Zn <sup>2+</sup> | EC <sub>10</sub> ª<br>(95% CL) μg/L<br>Cu <sup>2+</sup> | EC <sub>50</sub> ª<br>(95% CL) μg/L<br>Cu <sup>2+</sup> |  |
| Mahurangi | 7.58              | 73.5                                  | 2.18          | 511 (459-551)                                           | 826 (782-873)                                           | 89 (65-150)°                                            | 211 (159-255)                                           |  |
| Hoteo     | 7.49              | 58.1                                  | 3.73          | 374 (279-442)                                           | 751 (661-853)                                           | 180 (178-183) <sup>c</sup>                              | 272 (261-284)                                           |  |
| Okutua    | 6.03 <sup>b</sup> | 2.74                                  | 11.9          | 162 (78-208)                                            | 343 (282-416)                                           | 74 (n/a-93)                                             | 103 (78-136)                                            |  |
| Clutha    | 7.17              | 33.7                                  | 0.38          | 243 (124-311)                                           | 526 (432-641)                                           | 22 (n/a-26)                                             | 32 (26-39)                                              |  |
| Waihou    | 7.26              | 15.7                                  | <0.3          | 204 (121-252)                                           | 404 (344-474)                                           | 23 (n/a-30)                                             | 41 (33-51)                                              |  |

| Table E-1:    | Summary of the natural water sample characteristics and toxicity statistics for D. thomsoni |
|---------------|---------------------------------------------------------------------------------------------|
| exposed to zi | inc and copper in 48-hour survival tests.                                                   |

<sup>a</sup> EC<sub>x</sub>: The statistically determined test concentration causing a X% effect on the endpoint after the specified exposure period. <sup>b</sup> As pH adjusted for testing. <sup>c</sup> EC<sub>15</sub> value as EC<sub>10</sub> not available with the linear interpolation analysis used.

# 1 Introduction

Water quality guidelines, such as those established for Australia and New Zealand (ANZECC (2000) and ANZG (2018)), are designed to protect aquatic organisms from chronic (long-term) exposure to harmful substances in water bodies.

Acute guidelines focus on the concentrations of pollutants that may cause short-term or immediate toxic effects on aquatic life. They are essential for managing water quality across both natural and industrial environments, as they provide regulatory bodies with crucial benchmarks to prevent lethal impacts on aquatic organisms and the disruption of ecosystems.

A key consideration in setting guideline values is the role of *toxicity modifiers*—environmental factors that affect the bioavailability and, consequently, the toxicity of contaminants. Significant toxicity modifiers include pH, water hardness, and dissolved organic carbon (DOC). These factors influence the chemical speciation, solubility, and interaction of pollutants with aquatic organisms, ultimately modifying their toxic effects.

- pH: Variations in pH alter the speciation of metals and chemicals, influencing their solubility and bioavailability. Lower pH levels, for instance, increase the solubility of metals, making them more bioavailable and potentially more toxic.
- Water hardness: Primarily influenced by calcium and magnesium concentrations, hardness can decrease the toxicity of certain metals. Calcium and magnesium ions compete with toxic metals at biological uptake sites, reducing their toxic effects.
- Dissolved Organic Carbon (DOC): DOC can bind to pollutants such as metals, lowering their bioavailability and mitigating their toxicity.

Natural waters (e.g., streams and rivers) exhibit significant chemical diversity, influenced by factors such as geology, land use, climate, and biological activity. These variations can affect the natural waters (toxicity modifying) characteristics like pH, hardness, and the concentrations of organic and inorganic substances.

Incorporating toxicity modifiers into acute water quality guidelines is critical for ensuring that protection levels for aquatic life are accurate and site-specific. This approach enables guidelines to account for local water chemistry, improving their reliability and promoting healthier aquatic ecosystems.

This report presents research that tested the acute toxicity of zinc and copper in five natural waters collected from various regions in New Zealand. The tests were conducted using the native freshwater species *Daphnia thomsoni* (Order Cladocera, commonly referred to as "water fleas"). This project was funded by the Ministry for the Environment (MfE) under a sub-contract with Hydrotoxy Research.

# 2 Methods

#### 2.1 Water collection and characterisation

Five natural waters from New Zealand were collected, covering a range of chemistries, but broadly representative of a range of rivers and stream conditions found in New Zealand – rather than extreme examples. The natural waters were also required to be largely pristine – not affected by point sources or diffuse pollution such as intensive agriculture or urban land use.

The five natural waters collected were the same as those used in a preceding chronic zinc toxicity testing study which included chronic testing with *D. thomsoni* (Gadd et al. 2022).

Mahurangi, Hoteo, Okutua and Clutha samples were collected by NIWA personnel in clean 5 L HDPE containers. Samples were also collected for chemical analysis to characterise the water. All samples were packaged with ice or ice packs and shipped overnight to the NIWA Hamilton Laboratory, where they were refrigerated (<4°C, in dark) until ecotoxicity testing commenced, or transferred to the chemical analysis laboratory (Hill Laboratories)<sup>1</sup>. The Waihou sample was collected by CST Group on behalf of NIWA into a drinking water supply truck and transported to NIWA where it was held in a 2000 L HDPE tank at ambient temperature in the dark until ecotoxicity testing commenced or transferred to the chemical analysis laboratory (Hill Laboratory Experiment). The natural water site locations, characteristics and collection dates are summarised in Table 2-1.

| Natural water                                                   | Easting, Northing NZTM | Region         | <b>Characteristics</b> <sup>a</sup>                                              | Date collected |
|-----------------------------------------------------------------|------------------------|----------------|----------------------------------------------------------------------------------|----------------|
| Mahurangi Stream @<br>Forestry Headquarters<br>(Redwoods Park)  | 1747750, 5965035       | North Auckland | Small lowland stream,<br>catchment of exotic<br>forestry                         | 7/02/2024      |
| Hoteo River at Gubb<br>(NRWQN site AK1)                         | 1735254, 5972546       | North Auckland | Lowland stream,<br>catchment includes<br>exotic forestry and some<br>agriculture | 7/02/2024      |
| Okutua Creek                                                    | 1377965, 5212859       | West Coast     | Pristine, tannin-stained<br>stream, typical for West<br>Coast indigenous forest  | 7/02/2024      |
| Clutha River / Mata-Au<br>at Luggate Bridge<br>(NRWQN site AX1) | 1305431, 5040387       | Otago          | Pristine river from<br>glacial-fed lake                                          | 13/02/2024     |
| Waihou River                                                    | 1847019, 5788327       | Waikato        | Spring-fed pristine clear<br>water stream                                        | 4/12/2023      |

#### Table 2-1: Summary of natural water sample sites and collection dates.

<sup>a</sup> from Gadd et al. (2022).

All natural water samples were analysed by Hill Laboratories for hardness (as calcium and magnesium) and DOC (as dissolved non-purgeable organic carbon, DNPOC). The analytical methods used are outlined in Appendix A. The physico-chemical parameters (pH, dissolved oxygen and electrical conductivity) of each sample were measured by NIWA upon arrival at the laboratory (Table 3-1).

<sup>&</sup>lt;sup>1</sup> Testing was delayed due to the unavailability of the initially selected test species (*Echyridella menziesi* larvae), necessitating the establishment of *D. thomsoni* cultures, which further postponed testing.

### 2.2 Acute Daphnia thomsoni toxicity testing

#### 2.2.1 Daphnia collection and laboratory maintenance

*Daphnia thomsoni* are freshwater micro-crustaceans belonging to the order Cladocera (commonly known as "water fleas") and are native to New Zealand. *D. thomsoni* were collected on 1<sup>st</sup> April 2024 from a known population in a local pond on private land and maintained in the NIWA Hamilton Ecotoxicology Laboratory. Initial acclimation to laboratory culture water (Table 2-2) was carried out in four steps:

- Day 0: 25% laboratory culture water and 75% source water.
- Day 1: 50% laboratory culture water and 50% source water.
- Day 2: 75% laboratory culture water and 25% source water.
- Day 3: 100% laboratory culture water.

Organisms were then cultured individually in 55 mL containers with 40 mL of laboratory culture water in a static renewal system. Water in the culture containers was changed three times per week by aliquoting culture water and food into new containers and transferring *Daphnia* to the new water using a wide mouthed plastic transfer pipette. *D. thomsoni* were fed daily with 150  $\mu$ L YTC (yeast-trout chow mixture) and 150  $\mu$ L of green alga *Raphidocellis subcapitata* (concentration of 1 x 10<sup>8</sup> cells/mL). Culture room temperature, nominally 20°C, was monitored periodically.

| 22). |
|------|
|      |

| Ingredient or parameter                 | Amount or Value | Units      |
|-----------------------------------------|-----------------|------------|
| Fernhollow Spring Water (GF/C filtered) | 18.5            | %          |
| Aged UV nanopure water                  | 81.5            | %          |
| NaHCO <sub>3</sub>                      | 48              | mg/L       |
| CaSO <sub>4</sub>                       | 30              | mg/L       |
| MgSO <sub>4</sub>                       | 30              | mg/L       |
| KCI                                     | 2               | mg/L       |
| Vitamin B <sub>12</sub>                 | 0.01            | mg/L       |
| Se                                      | 0.002           | mg/L       |
| рН                                      | 7.8 ± 0.2       | pH units   |
| Conductivity                            | 0.23            | mS/m       |
| Hardness                                | 40 to 50        | mg CaCO₃/L |

After approximately one month of acclimation in the laboratory culture water and the production of a sufficient number of juveniles from the culture, testing commenced. Neonates less than 24 hours old were collected and used as needed for toxicity testing.

#### 2.2.2 Survival in test waters

*Daphnia* were exposed to each natural water prior to the start of each test to ensure high survival rates of control organisms could be achieved. Two replicates of 10 organisms were used for each and *Daphnia* survival and mobility was assessed after a 48-hour exposure.

#### 2.2.3 Toxicity testing

Acute toxicity was tested with *Daphnia thomsoni* using 48-hour survival endpoints. Standard toxicity testing protocols developed at NIWA (NIWA 2022b), based on OECD Test 202 (2004) were used in this study (as summarised in Table 2-3). Tests were performed under static conditions in 55 mL polypropylene containers. On test initiation, ten <24-hour old neonates from the laboratory culture (Section 2.2.1) were added to each test container holding the various test solutions, with 3 replicates for each zinc and copper treatment concentration and 5 negative control replicates per natural water test. Active organisms were selected using a clean narrow mouth transfer pipette into the test containers.

Test solutions were prepared in volumetric flasks by spiking 100 ppm or 1000 ppm stock solutions of zinc (as  $ZnSO_4, 7H_2O$ ) or copper (as  $CuSO_4$ ) to 0.45  $\mu$ m filtered natural waters at least 24 hours before aliquoting into the test containers and adding organisms. A minimum of five treatment test concentrations up to a maximum of nine (zinc or copper) were used in each test, with different concentrations for each natural water aiming to bracket the likely  $EC_{50}$  in a geometric series with a factor less than 3 between test concentrations. Nominal test concentrations were supplied by the client.

| Test protocol:               | NIWA SOP 10.0 (NIWA 2022b)                                                                                                                                                                                            |
|------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Reference method:            | OECD (2004)                                                                                                                                                                                                           |
| Test organisms:              | Daphnia thomsoni (previously known as D. carinata, Burns<br>et al. (2017))                                                                                                                                            |
| Organism source:             | Fernhollow pond, Waikato                                                                                                                                                                                              |
| Test duration:               | 48-hour                                                                                                                                                                                                               |
| Test type:                   | Static                                                                                                                                                                                                                |
| Test chambers:               | 55 mL polypropylene beakers                                                                                                                                                                                           |
| Replicates:                  | 5 for controls, 3 for treatments                                                                                                                                                                                      |
| Organisms/container:         | 10                                                                                                                                                                                                                    |
| Age of test organisms:       | <24-hour neonates from pre-test acclimation                                                                                                                                                                           |
| Test dilutions               | Minimum of 5, maximum of 9 concentrations, varying from 45-11,000 μg/L for zinc and 1-1391 μg/L for copper                                                                                                            |
| Lighting:                    | 16:8h light:dark                                                                                                                                                                                                      |
| Temperature:                 | 20 ± 2°C                                                                                                                                                                                                              |
| Aeration:                    | Nil                                                                                                                                                                                                                   |
| Feeding during test:         | None                                                                                                                                                                                                                  |
| Chemical data:               | Initial and final conductivity, temperature, pH, dissolved<br>oxygen, zinc or copper of selected test treatments.<br>Hardness (as dissolved calcium and magnesium) and<br>dissolved organic carbon of natural waters. |
| Observation:                 | 24- and 48-hour survival                                                                                                                                                                                              |
| Effect measured:             | Survival                                                                                                                                                                                                              |
| Test acceptability criteria: | Mean control survival ≥90%                                                                                                                                                                                            |

| Table 2-3: | Summary of D. thomsoni toxicity test conditions. |
|------------|--------------------------------------------------|
|------------|--------------------------------------------------|

Tests were performed at  $20 \pm 2^{\circ}$ C with a 16 h light/8 h dark photoperiod. *Daphnia* mortality was observed and recorded after 24 hours and at test termination, 48 hours.

Temperature, dissolved oxygen (DO), pH and electrical conductivity were measured on the test solutions at test initiation and five selected treatments at test termination (Appendix K and Appendix L).

Subsamples of five selected test concentrations were collected and filtered (0.45  $\mu$ m) for dissolved metals analysis at the start (Time zero, T<sub>0</sub>) and end (Time 48, T<sub>48</sub>) of each test. At test initiation (T<sub>0</sub>) the subsamples were taken from the prepared solutions prior to aliquoting into test chambers and at test termination (T<sub>48</sub>) the subsamples were partly collected from all treatment replicates (n=5 for controls and n=3 for positive treatments) and composited.

The selection of treatments for physico-chemical parameter measurement and chemical analysis (zinc or copper) was guided by the 48-hour *D. thomsoni* test survival results. Five concentrations that encompassed partial responses were identified to be included in the statistical analysis, thereby resolving the dose-response curve that encompasses the full survival-response range.

#### 2.3 Reference toxicant

Reference toxicant testing was undertaken concurrently to measure the sensitivity and condition of the test organisms using the standard test procedures (NIWA 2022b). Zinc sulfate is used as the reference toxicant and results from this test were compared to the long-term data set (NIWA, unpublished). This is part of the quality control procedures and enables comparability between laboratory test results in standard dilution water at different times. The zinc sulfate stock concentration was validated by chemical analysis (Hill Labs, data not shown).

#### 2.4 Chemical analysis

Hill Laboratories analysed subsamples of each of the natural waters for total hardness (measured as dissolved calcium and dissolved magnesium) and DOC (measured as non-purgeable organic carbon, DNPOC) (Appendix A) and selected test solution subsamples (T<sub>0</sub> and T<sub>48</sub>) for the applicable dissolved metal (zinc or copper) (Appendix B, Appendix C and Appendix D).

#### 2.5 Test acceptability criteria

The test was deemed acceptable if control organisms had greater than or equal to 90% mean survival (NIWA 2022b) (Appendix E).

#### 2.6 Statistical analysis

The zinc and copper concentrations used in the statistical analyses were a mean of the concentrations measured at the test start  $(T_0)$  and end  $(T_{48})$ .

The Daphnia test results were statistically analysed using CETIS<sup>™</sup> v2.1.4.5 (Comprehensive Environmental Toxicity Information System) software and corresponding user manual by Tidepool Scientific (2001-2022). CETIS<sup>™</sup> is a statistical application designed for analysing and reporting doseresponse results from aquatic, terrestrial and sediment toxicity tests. All statistical analyses follow US EPA standard guidelines for toxicity data analysis.

Initial analysis determined if there was a survival concentration relationship and if so, an ANOVA compared the survival at each concentration to determine the no observed effect concentration (NOEC) and the lowest observed effect concentration (LOEC). A regression model (3P log-logistic non-linear regression) was fitted where possible, otherwise a linear interpolation was conducted to calculate point estimates (EC<sub>50</sub> and EC<sub>10</sub>) with associated 95% confidence intervals ( $\alpha$ =0.05). When linear interpolation was applied, EC<sub>15</sub> values were calculated rather than EC<sub>10</sub> values (Appendix F, Appendix G, Appendix H, Appendix I and Appendix J).

# 3 Results and discussion

#### 3.1 Characterisation of natural waters

The water hardness, DOC and physico-chemical measurements of the five natural water samples are summarised in Table 3-1.

| Table 3-1:      | Characteristics of the natural water samples. Okutua Creek water (shaded grey) was adjusted |
|-----------------|---------------------------------------------------------------------------------------------|
| prior to toxici | ty testing due to low survival in test water.                                               |

| Natural<br>water    | NIWA<br>laboratory<br>ID | Temp.ª<br>°C | рН   | Conductivity<br>μS cm <sup>-1</sup> | Dissolved<br>Oxygen<br>(DO)<br>mg/L 0 <sub>2</sub> | Dissolved<br>calcium/<br>magnesium<br>mg/L | Hardness<br>mg/L<br>CaCO <sub>3</sub> | DOC⁵<br>mg/L | Dissolved<br>zincº µg/L | Dissolved<br>copper <sup>c</sup><br>µg/L |
|---------------------|--------------------------|--------------|------|-------------------------------------|----------------------------------------------------|--------------------------------------------|---------------------------------------|--------------|-------------------------|------------------------------------------|
| Mahurangi<br>Stream | 24.003.1                 | 18.4         | 7.58 | 242                                 | 10.7                                               | 16/8.1                                     | 73.5                                  | 2.18         | 3.2                     | <0.5 <sup>d</sup>                        |
| Hoteo<br>River      | 24.003.2                 | 18.3         | 7.49 | 201                                 | 10.7                                               | 14/ 5.7                                    | 58.1                                  | 3.73         | 4.4                     | 1.1                                      |
| Okutua<br>Creek     | 24.003.3                 | 18.0         | 4.96 | 27                                  | 10.9                                               | 0.48/0.37                                  | 2.74                                  | 11.9         | 4.4                     | 1.3                                      |
| Clutha<br>River     | 24.003.4                 | 18.1         | 7.17 | 72.4                                | 11.2                                               | 12/ 0.74                                   | 33.7                                  | 0.38         | 2.9                     | <0.5 <sup>d</sup>                        |
| Waihou<br>River     | 24.003.5                 | 19.1         | 7.26 | 89.9                                | 8.9                                                | 3.3/ 1.8                                   | 15.7                                  | <0.3         | 3.3                     | 0.8                                      |

<sup>a</sup> At time of measurements. <sup>b</sup> Measured as dissolved non-purgeable organic carbon (DNPOC). <sup>c</sup> Test initiation and test termination mean measured concentrations. <sup>d</sup> Less than detection limit.

The pH of Okutua Creek was 4.96 and the water had very low hardness (2.74 mg/L, Appendix A), outside of the range that would be suitable for the *Daphnia* to survive. The pH of the Okutua water was therefore adjusted using sodium hydroxide (NaOH) to a higher pH. The final adjusted pH of the Okutua Creek natural water used in testing was 6.03.

#### 3.2 Daphnia toxicity testing

The measured zinc and copper concentrations for selected Mahurangi, Hoteo, Clutha and Waihou treatments are provided in Appendix B and Appendix C respectively. The zinc and copper measured concentrations for the pH adjusted Okutua natural water are provided in Appendix D. Raw data (Appendix E) and detailed results from the statistical analyses are provided for all toxicity tests in Appendix F to Appendix J. A summary of physico-chemical analyses for the zinc and copper tests are included in Appendix K and Appendix L respectively.

The air temperature of the controlled temperature room which held the test vessels was  $20 \pm 2.0$  °C throughout the duration of the tests. The zinc test solution temperatures at test initiation were 19-20 °C and the dissolved oxygen concentration 8.0-9.3 mg/L O<sub>2</sub>. At the test termination the dissolved oxygen was 8.6-9.2 mg/L O<sub>2</sub>, and the solution temperatures ranged from 20-21 °C.

The pH of the zinc test solutions used in statistical analysis measured at the start and end of the exposure ranged from 7.7-8.1 pH units for Mahurangi, 7.6-8.0 pH units for Hoteo, 5.7-6.5 pH units for pH adjusted Okutua, 7.3-7.6 pH units for Clutha and 7.5-7.9 pH units for Waihou (Appendix K).

The copper test solution temperatures at test initiation were 19-20°C and the dissolved oxygen concentration ranged from 8.2-9.8 mg/L  $O_2$ . At the test termination the dissolved oxygen ranged from 8.6-9.2 mg/L  $O_2$ , and the solution temperatures were 20°C. The pH of the copper test solutions used in statistical analysis measured at the start and end of the exposure ranged from 7.2-8.0 pH units for Mahurangi, 7.5-7.8 pH units for Hoteo, 5.6-6.6 pH units for pH adjusted Okutua, 7.5-8.0 pH units for Clutha and 7.5-7.9 pH units for Waihou (Appendix L).

The zinc and copper toxicity results are summarised in Table 3-7 and Table 3-13 respectively.

#### 3.2.1 Test acceptability

After 48 hours the average survival in the Mahurangi, Hoteo, Okutua, Clutha and Waihou natural water control treatments was 96%-100% thereby meeting the criterion for test validity ( $\leq$ 10% mortality in control treatments) (Appendix E).

The *D. thomsoni* reference toxicant 48 h survival  $EC_{50}$  for zinc was 998 (812-1,226) µg/L Zn<sup>2+</sup> (± 95% CL). The reference toxicant testing criterion is that the  $EC_{50}$  falls within 2 standard deviations of the long-term average, however NIWA has limited data for this species (Appendix M).

#### 3.2.2 Zinc tests

Zinc concentrations in most of the test samples measured by Hill Labs (Appendix B and Appendix D) were within 17% of the nominal concentrations. However, there was evidence of possible zinc contamination in the Mahurangi Stream and Hoteo River 'Concentration 1' samples (both nominally  $100 \ \mu g/L \ Zn^{2+}$ ) subsampled at test termination (T<sub>48</sub>). These two measurements were not used in statistical analysis as are considered as outliers, only the test initiation (T<sub>0</sub>) measured concentrations were used. Mean measured concentrations (excluding outliers) were used in all data analyses. Zinc concentrations measured in the Mahurangi, Hoteo, Okutua (pH adjusted), Clutha and Waihou natural waters test solutions at the initiation of the exposure period were all within 8% of the concentrations of zinc in the test solutions at the end of the exposure period, indicating stability throughout the test period (Table 3-2 to Table 3-6).

Table 3-2:Nominal and measured zinc concentrations at the start (T<sub>0</sub>) and end (T<sub>48</sub>) of the MahurangiStream Daphnia survival toxicity test.Measured by Hill Labs, nm = not measured. Percentage differencescalculated for nominal and mean measured concentrations, and initial and final measured test concentrations.Shaded cells indicate concentrations used in statistical analyses.

| Treatment                    | Nominal<br>concentration<br>(µg/L Zn <sup>2+</sup> ) | Mean<br>48-hour<br>survival<br>(%) | Measured T <sub>0</sub><br>concentration<br>(µg/L Zn <sup>2+</sup> ) | Measured T <sub>48</sub><br>concentration<br>(µg/L Zn <sup>2+</sup> ) | Mean<br>measured<br>concentration<br>(µg/L Zn <sup>2+</sup> ) | Difference<br>between nominal<br>and mean<br>measured<br>concentrations<br>(%) | Difference<br>between $T_0$ and<br>$T_{48}$ measured<br>concentrations<br>(%) |
|------------------------------|------------------------------------------------------|------------------------------------|----------------------------------------------------------------------|-----------------------------------------------------------------------|---------------------------------------------------------------|--------------------------------------------------------------------------------|-------------------------------------------------------------------------------|
| Concentration<br>0 - Control | 0                                                    | 100                                | 3.3                                                                  | 3.1                                                                   | 3.2                                                           | 200                                                                            | 6                                                                             |
| Concentration<br>1           | 100                                                  | 100                                | 103                                                                  | 460ª                                                                  | 103 <sup>b</sup>                                              | 3 <sup>b</sup>                                                                 | -                                                                             |

| Treatment          | Nominal<br>concentration<br>(μg/L Zn <sup>2+</sup> ) | Mean<br>48-hour<br>survival<br>(%) | Measured T <sub>0</sub><br>concentration<br>(µg/L Zn <sup>2+</sup> ) | Measured T <sub>48</sub><br>concentration<br>(µg/L Zn <sup>2+</sup> ) | Mean<br>measured<br>concentration<br>(µg/L Zn <sup>2+</sup> ) | Difference<br>between nominal<br>and mean<br>measured<br>concentrations<br>(%) | Difference<br>between T <sub>0</sub> and<br>T <sub>48</sub> measured<br>concentrations<br>(%) |
|--------------------|------------------------------------------------------|------------------------------------|----------------------------------------------------------------------|-----------------------------------------------------------------------|---------------------------------------------------------------|--------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------|
| Concentration<br>2 | 220                                                  | 100                                | 230                                                                  | 250                                                                   | 240                                                           | 9                                                                              | 8                                                                                             |
| Concentration<br>3 | 484                                                  | 90                                 | 490                                                                  | 490                                                                   | 490                                                           | 4                                                                              | 0                                                                                             |
| Concentration<br>4 | 1,065                                                | 27                                 | 1,080                                                                | 1,030                                                                 | 1,055                                                         | 0                                                                              | 5                                                                                             |
| Concentration<br>5 | 2,343                                                | 0                                  | 2,400                                                                | 2,300                                                                 | 2,350                                                         | 0                                                                              | 4                                                                                             |
| Concentration<br>6 | 5,154                                                | 0                                  | nm                                                                   | nm                                                                    | -                                                             | -                                                                              | -                                                                                             |
| Concentration<br>7 | 11,000                                               | 0                                  | nm                                                                   | nm                                                                    | -                                                             | -                                                                              | -                                                                                             |

<sup>a</sup> Considered an outlier so not used in statistical analysis. <sup>b</sup> Based on T<sub>0</sub> measured concentration only.

Table 3-3:Nominal and measured zinc concentrations at the start  $(T_0)$  and end  $(T_{48})$  of the Hoteo RiverDaphnia survival toxicity test.Measured by Hill Labs, nm = not measured. Percentage differences calculatedfor nominal and mean measured concentrations, and initial and final measured test concentrations. Shadedcells indicate concentrations used in statistical analyses.

| Treatment                    | Nominal<br>concentration<br>(µg/L Zn <sup>2+</sup> ) | Mean<br>48-hour<br>survival<br>(%) | Measured T <sub>0</sub><br>concentration<br>(µg/L Zn <sup>2+</sup> ) | Measured T <sub>48</sub><br>concentration<br>(µg/L Zn <sup>2+</sup> ) | Mean<br>measured<br>concentration<br>(μg/L Zn <sup>2+</sup> ) | Difference<br>between nominal<br>and mean<br>measured<br>concentrations<br>(%) | Difference<br>between T <sub>0</sub> and<br>T <sub>48</sub> measured<br>concentrations<br>(%) |
|------------------------------|------------------------------------------------------|------------------------------------|----------------------------------------------------------------------|-----------------------------------------------------------------------|---------------------------------------------------------------|--------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------|
| Concentration<br>0 - Control | 0                                                    | 100                                | 4.2                                                                  | 4.5                                                                   | 4.35                                                          | 200                                                                            | 7                                                                                             |
| Concentration<br>1           | 100                                                  | 100                                | 105                                                                  | 510ª                                                                  | 105 <sup>b</sup>                                              | 5 <sup>b</sup>                                                                 | -                                                                                             |
| Concentration<br>2           | 220                                                  | 100                                | 230                                                                  | 240                                                                   | 235                                                           | 9                                                                              | 4                                                                                             |
| Concentration<br>3           | 484                                                  | 70                                 | 520                                                                  | 490                                                                   | 505                                                           | 1                                                                              | 6                                                                                             |
| Concentration<br>4           | 1,065                                                | 33                                 | 1,080                                                                | 1,030                                                                 | 1,055                                                         | 2                                                                              | 5                                                                                             |
| Concentration<br>5           | 2,343                                                | 0                                  | 2,400                                                                | 2,400                                                                 | 2,400                                                         | 2                                                                              | 0                                                                                             |
| Concentration<br>6           | 5,154                                                | 0                                  | nm                                                                   | nm                                                                    | -                                                             | -                                                                              | -                                                                                             |
| Concentration<br>7           | 11,000                                               | 0                                  | nm                                                                   | nm                                                                    | -                                                             | -                                                                              | -                                                                                             |

 $^{\rm a}$  Considered an outlier so not used in statistical analysis.  $^{\rm b}$  Based on  $T_0$  measured concentration only.

Table 3-4:Nominal and measured zinc concentrations at the start ( $T_0$ ) and end ( $T_{48}$ ) of the Okutua CreekDaphnia survival toxicity test.Measured by Hill Labs, nm = not measured. Percentage differences calculatedfor nominal and mean measured concentrations, and initial and final measured test concentrations. Shadedcells indicate concentrations used in statistical analyses.

| Treatment                    | Nominal<br>concentration<br>(µg/L Zn <sup>2+</sup> ) | Mean<br>48-hour<br>survival<br>(%) | Measured T <sub>0</sub><br>concentration<br>(µg/L Zn <sup>2+</sup> ) | Measured T <sub>48</sub><br>concentration<br>(µg/L Zn <sup>2+</sup> ) | Mean<br>measured<br>concentration<br>(µg/L Zn <sup>2+</sup> ) | Difference<br>between nominal<br>and mean<br>measured<br>concentrations<br>(%) | Difference<br>between $T_0$ and<br>$T_{48}$ measured<br>concentrations<br>(%) |
|------------------------------|------------------------------------------------------|------------------------------------|----------------------------------------------------------------------|-----------------------------------------------------------------------|---------------------------------------------------------------|--------------------------------------------------------------------------------|-------------------------------------------------------------------------------|
| Concentration<br>0 - Control | 0                                                    | 98                                 | 3.9                                                                  | 4.4                                                                   | 4.4                                                           | 200                                                                            | 12                                                                            |
| Concentration<br>1           | 100                                                  | 93                                 | 110                                                                  | 108                                                                   | 109                                                           | 9                                                                              | 2                                                                             |
| Concentration<br>2           | 220                                                  | 70                                 | 250                                                                  | 220                                                                   | 235                                                           | 7                                                                              | 13                                                                            |
| Concentration<br>3           | 484                                                  | 33                                 | 500                                                                  | 470                                                                   | 485                                                           | 0                                                                              | 6                                                                             |
| Concentration<br>4           | 1,065                                                | 0                                  | 1,070                                                                | 1,090                                                                 | 1,080                                                         | 1                                                                              | 2                                                                             |
| Concentration<br>5           | 2,343                                                | 0                                  | 2,300                                                                | 2,300                                                                 | 2,300                                                         | 2                                                                              | 0                                                                             |
| Concentration<br>6           | 5,154                                                | 0                                  | nm                                                                   | nm                                                                    | -                                                             | -                                                                              | -                                                                             |
| Concentration<br>7           | 11,000                                               | 0                                  | nm                                                                   | nm                                                                    | -                                                             | -                                                                              | -                                                                             |

Table 3-5:Nominal and measured zinc concentrations at the start ( $T_0$ ) and end ( $T_{48}$ ) of the Clutha RiverDaphnia survival toxicity test.Measured by Hill Labs, nm = not measured. Percentage differences calculatedfor nominal and mean measured concentrations, and initial and final measured test concentrations. Shadedcells indicate concentrations used in statistical analyses.

| Treatment                    | Nominal<br>concentration<br>(µg/L Zn <sup>2+</sup> ) | Mean<br>48-hour<br>survival<br>(%) | Measured T <sub>0</sub><br>concentration<br>(µg/L Zn <sup>2+</sup> ) | Measured T <sub>48</sub><br>concentration<br>(µg/L Zn <sup>2+</sup> ) | Mean<br>measured<br>concentration<br>(µg/L Zn <sup>2+</sup> ) | Difference<br>between nominal<br>and mean<br>measured<br>concentrations<br>(%) | Difference<br>between T <sub>0</sub> and<br>T <sub>48</sub> measured<br>concentrations<br>(%) |
|------------------------------|------------------------------------------------------|------------------------------------|----------------------------------------------------------------------|-----------------------------------------------------------------------|---------------------------------------------------------------|--------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------|
| Concentration<br>0 - Control | 0                                                    | 98                                 | 2.7                                                                  | 3.0                                                                   | 2.85                                                          | 200                                                                            | 11                                                                                            |
| Concentration<br>1           | 45                                                   | 100                                | nm                                                                   | nm                                                                    | -                                                             | -                                                                              | -                                                                                             |
| Concentration<br>2           | 100                                                  | 100                                | 106                                                                  | 132                                                                   | 119                                                           | 17                                                                             | 22                                                                                            |
| Concentration<br>3           | 220                                                  | 87                                 | 230                                                                  | 220                                                                   | 225                                                           | 4                                                                              | 4                                                                                             |
| Concentration<br>4           | 484                                                  | 53                                 | 520                                                                  | 490                                                                   | 505                                                           | 4                                                                              | 6                                                                                             |
| Concentration<br>5           | 1,065                                                | 13                                 | 1,120                                                                | 1,040                                                                 | 1,080                                                         | 3                                                                              | 7                                                                                             |

| Treatment          | Nominal<br>concentration<br>(µg/L Zn <sup>2+</sup> ) | Mean<br>48-hour<br>survival<br>(%) | Measured T <sub>0</sub><br>concentration<br>(µg/L Zn <sup>2+</sup> ) | Measured T <sub>48</sub><br>concentration<br>(µg/L Zn <sup>2+</sup> ) | Mean<br>measured<br>concentration<br>(µg/L Zn <sup>2+</sup> ) | Difference<br>between nominal<br>and mean<br>measured<br>concentrations<br>(%) | Difference<br>between T <sub>0</sub> and<br>T <sub>48</sub> measured<br>concentrations<br>(%) |
|--------------------|------------------------------------------------------|------------------------------------|----------------------------------------------------------------------|-----------------------------------------------------------------------|---------------------------------------------------------------|--------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------|
| Concentration<br>6 | 2,343                                                | 0                                  | 2,500                                                                | 2,300                                                                 | 2,400                                                         | 2                                                                              | 8                                                                                             |
| Concentration<br>7 | 5,154                                                | 0                                  | nm                                                                   | nm                                                                    | -                                                             | -                                                                              | -                                                                                             |

Table 3-6:Nominal and measured zinc concentrations at the start ( $T_0$ ) and end ( $T_{48}$ ) of the Waihou RiverDaphnia survival toxicity test.Measured by Hill Labs, nm = not measured. Percentage differences calculatedfor nominal and mean measured concentrations, and initial and final measured test concentrations. Shadedcells indicate concentrations used in statistical analyses.

| Treatment                    | Nominal<br>concentration<br>(μg/L Zn <sup>2+</sup> ) | Mean<br>48-hour<br>survival<br>(%) | Measured T <sub>0</sub><br>concentration<br>(µg/L Zn <sup>2+</sup> ) | Measured T <sub>48</sub><br>concentration<br>(µg/L Zn <sup>2+</sup> ) | Mean<br>measured<br>concentration<br>(μg/L Zn <sup>2+</sup> ) | Difference<br>between nominal<br>and mean<br>measured<br>concentrations<br>(%) | Difference<br>between T <sub>0</sub> and<br>T <sub>48</sub> measured<br>concentrations<br>(%) |
|------------------------------|------------------------------------------------------|------------------------------------|----------------------------------------------------------------------|-----------------------------------------------------------------------|---------------------------------------------------------------|--------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------|
| Concentration<br>0 - Control | 0                                                    | 96                                 | 3.1                                                                  | 3.4                                                                   | 3.25                                                          | 200                                                                            | 9                                                                                             |
| Concentration<br>1           | 100                                                  | 93                                 | 109                                                                  | 123                                                                   | 116                                                           | 12                                                                             | 12                                                                                            |
| Concentration<br>2           | 220                                                  | 77                                 | 240                                                                  | 220                                                                   | 230                                                           | 2                                                                              | 9                                                                                             |
| Concentration<br>3           | 484                                                  | 40                                 | 520                                                                  | 480                                                                   | 500                                                           | 0                                                                              | 8                                                                                             |
| Concentration<br>4           | 1,065                                                | 0                                  | 1,130                                                                | 1,090                                                                 | 1,110                                                         | 3                                                                              | 4                                                                                             |
| Concentration<br>5           | 2,343                                                | 0                                  | 2,500                                                                | 2,400                                                                 | 2,450                                                         | 2                                                                              | 4                                                                                             |
| Concentration<br>6           | 5,154                                                | 0                                  | nm                                                                   | nm                                                                    | -                                                             | -                                                                              | -                                                                                             |

The 48 h *D. thomsoni* survival tests showed progressive concentration-response relationships, where *Daphnia* survival decreased with increasing zinc concentrations for all natural water samples.

For the Mahurangi Stream natural water sample spiked with zinc, no statistically significant negative effects on *Daphnia* survival were observed at concentrations up to 240 mg/L Zn<sup>2+</sup> after 48 hours when compared to the negative control. However, exposure to 490 mg/L Zn<sup>2+</sup> resulted in a statistically significant reduction in survival by 10% relative to the control. Complete mortality (100%) was observed at the highest concentration tested (2,350 mg/L Zn<sup>2+</sup>). The acute toxicity test for *Daphnia* resulted in an EC<sub>10</sub> of 511 µg/L Zn<sup>2+</sup>, with a 95% confidence interval of 459-551 µg/L Zn<sup>2+</sup> and an EC<sub>50</sub> of 826 µg/L Zn<sup>2+</sup>, with a 95% confidence interval of 782-873 µg/L Zn<sup>2+</sup> (Figure 3-1, Table 3-7 and Appendix F).



Figure 3-1: Survival of *D. thomsoni* (compared to control) versus measured zinc concentrations for Mahurangi Stream natural water sample. 3P Log-Logistic fitted.

For the Hoteo natural water sample spiked with zinc, no statistically significant negative effects on *Daphnia* survival were observed at concentrations up to 235 mg/L Zn<sup>2+</sup> after 48 hours when compared to the negative control. However, exposure to 505 mg/L Zn<sup>2+</sup> resulted in a statistically significant reduction in survival by 30% relative to the control. Complete mortality (100%) was observed at the highest concentration tested (2,400 mg/L Zn<sup>2+</sup>). The acute toxicity test for *Daphnia* resulted in an EC<sub>10</sub> of 374 µg/L Zn<sup>2+</sup>, with a 95% confidence interval of 279-442 µg/L Zn<sup>2+</sup> and an EC<sub>50</sub> of 751 µg/L Zn<sup>2+</sup>, with a 95% confidence interval of 661-853 µg/L Zn<sup>2+</sup> (Figure 3-2, Table 3-7 and Appendix G).



Figure 3-2: Survival of *D. thomsoni* (compared to control) versus measured zinc concentrations for Hoteo River natural water sample. 3P Log-Logistic fitted.

For the pH adjusted Okutua Creek natural water sample spiked with zinc, no statistically significant negative effects on *Daphnia* survival were observed at concentrations up to 109 mg/L Zn<sup>2+</sup> after 48 hours when compared to the negative control. However, exposure to 235 mg/L Zn<sup>2+</sup> resulted in a statistically significant reduction in survival by 29% relative to the control. Complete mortality (100%) was observed at the second highest concentration tested (1,080 mg/L Zn<sup>2+</sup>).

The acute toxicity test for *Daphnia* resulted in an EC<sub>10</sub> of 162  $\mu$ g/L Zn<sup>2+</sup>, with a 95% confidence interval of 78-208  $\mu$ g/L Zn<sup>2+</sup> and an EC<sub>50</sub> of 343  $\mu$ g/L Zn<sup>2+</sup>, with a 95% confidence interval of 282-416  $\mu$ g/L Zn<sup>2+</sup> (Figure 3-3, Table 3-7 and Appendix H).



**Figure 3-3:** Survival of *D. thomsoni* (compared to control) versus measured zinc concentrations for pH adjusted Okutua Creek natural water sample. 3P Log-Logistic fitted.

For the Clutha natural water sample spiked with zinc, no statistically significant negative effects on *Daphnia* survival were observed at concentrations up to 225 mg/L Zn<sup>2+</sup> after 48 hours when compared to the negative control. However, exposure to 505 mg/L Zn<sup>2+</sup> resulted in a statistically significant reduction in survival by 46% relative to the control. Complete mortality (100%) was observed at the highest concentration tested (2,400 mg/L Zn<sup>2+</sup>). The acute toxicity test for *Daphnia* resulted in an EC<sub>10</sub> of 243 µg/L Zn<sup>2+</sup>, with a 95% confidence interval of 124-311 µg/L Zn<sup>2+</sup> and an EC<sub>50</sub> of 526 µg/L Zn<sup>2+</sup>, with a 95% confidence interval of 432-641 µg/L Zn<sup>2+</sup> (Figure 3-4, Table 3-7 and Appendix I).



Figure 3-4: Survival of *D. thomsoni* (compared to control) versus measured zinc concentrations for Clutha River natural water sample. 3P Log-Logistic fitted.

For the Waihou natural water sample spiked with zinc, no statistically significant negative effects on *Daphnia* survival were observed at concentrations up to 116 mg/L Zn<sup>2+</sup> after 48 hours when compared to the negative control. However, exposure to 230 mg/L Zn<sup>2+</sup> resulted in a statistically significant reduction in survival by 20% relative to the control. Complete mortality (100%) was observed at the second highest concentration tested (1,110 mg/L Zn<sup>2+</sup>). The acute toxicity test for *Daphnia* resulted in an EC<sub>10</sub> of 204 µg/L Zn<sup>2+</sup>, with a 95% confidence interval of 121-252 µg/L Zn<sup>2+</sup> and an EC<sub>50</sub> of 404 µg/L Zn<sup>2+</sup>, with a 95% confidence interval of 344-474 µg/L Zn<sup>2+</sup> (Figure 3-5, Table 3-7 and Appendix J).



Figure 3-5: Survival of *D. thomsoni* (compared to control) versus measured zinc concentrations for Waihou River natural water sample. 3P Log-Logistic fitted.

| Notural water       | EC <sub>10</sub> <sup>a</sup>  | EC <sub>50</sub> <sup>a</sup>  | NOEC <sup>b</sup>     | LOEC <sup>c</sup>        | TEC <sup>d</sup>      |
|---------------------|--------------------------------|--------------------------------|-----------------------|--------------------------|-----------------------|
| Natural Water       | (95% CL) μg/L Zn <sup>2+</sup> | (95% CL) μg/L Zn <sup>2+</sup> | µg/L Zn <sup>2+</sup> | μ <mark>g/L Zn</mark> ²+ | µg/L Zn <sup>2+</sup> |
| Mahurangi           | 511 (459-551)                  | 826 (782-873)                  | 240                   | 490                      | 343                   |
| Hoteo               | 374 (279-442)                  | 751 (661-853)                  | 235                   | 505                      | 345                   |
| Okutua <sup>e</sup> | 162 (78-208)                   | 343 (282-416)                  | 109                   | 235                      | 160                   |
| Clutha              | 243 (124-311)                  | 526 (432-641)                  | 225                   | 505                      | 337                   |
| Waihou              | 204 (121-252)                  | 404 (344-474)                  | 116                   | 230                      | 163                   |

Table 3-7: Toxicity statistics as statistically derived by CETIS<sup>TM</sup> ( $\mu$ g/L zinc) for *D. thomsoni* 48-hour survival in each natural water tested. Values in parentheses are the EC<sub>50</sub> value 95% confidence intervals.

<sup>a</sup> EC<sub>x</sub>: The statistically determined test Concentration causing a X% Effect on the endpoint after the specified exposure period. <sup>b</sup> NOEC: The highest tested Concentration causing No Observed Effect relative to the controls. <sup>c</sup> LOEC: The Lowest tested Concentration causing an Observed Effect relative to the controls. <sup>d</sup> TEC: Threshold Effect Concentration, the geometric mean of NOEC and LOEC. <sup>e</sup> As pH adjusted for testing.

#### 3.2.3 Copper tests

Copper concentrations in most test samples analysed by Hill Labs (Appendix C and Appendix D) were within 18% of the target (nominal) concentrations. However, for 'Concentration 4' using Okutua Creek natural water, there was a 28% discrepancy between the nominal (10.6  $\mu$ g/L Cu<sup>2+</sup>) and the mean measured (14  $\mu$ g/L Cu<sup>2+</sup>) concentration.

Copper levels measured at the start of the exposure period ( $T_0$ ) and at the end ( $T_{48}$ ) generally showed a decrease. For the Mahurangi, Hoteo, Okutua, and Clutha test solutions, copper concentrations at the beginning ( $T_0$ ) were within 18% of the levels at the end ( $T_{48}$ ). However, the Waihou test solutions exhibited greater variability, with differences up to 32%, indicating a significant loss of copper during the test period (Table 3-8 to Table 3-12).

The mean measured concentrations were used for statistical analysis.

Table 3-8:Nominal and measured copper concentrations at the start (T<sub>0</sub>) and end (T<sub>48</sub>) of the MahurangiStream Daphnia survival toxicity test.Measured by Hill Labs, nm = not measured. Percentage differencescalculated for nominal and mean measured concentrations, and initial and final measured test concentrations.Shaded cells indicate concentrations used in statistical analyses.

| Treatment                    | Nominal<br>concentration<br>(µg/L Cu <sup>2+</sup> ) | Mean<br>48-hour<br>survival<br>(%) | Measured T <sub>0</sub><br>concentration<br>(µg/L Cu <sup>2+</sup> ) | Measured T <sub>48</sub><br>concentration<br>(µg/L Cu <sup>2+</sup> ) | Mean<br>measured<br>concentration<br>(μg/L Cu <sup>2+</sup> ) | Difference<br>between nominal<br>and mean<br>measured<br>concentrations<br>(%) | Difference<br>between T <sub>0</sub> and<br>T <sub>48</sub> measured<br>concentrations<br>(%) |
|------------------------------|------------------------------------------------------|------------------------------------|----------------------------------------------------------------------|-----------------------------------------------------------------------|---------------------------------------------------------------|--------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------|
| Concentration<br>0 - Control | 0                                                    | 100                                | <0.5 ª                                                               | <0.5 °                                                                | <0.5 °                                                        | 0                                                                              | 0                                                                                             |
| Concentration<br>1           | 1                                                    | 100                                | nm                                                                   | nm                                                                    | -                                                             | -                                                                              | -                                                                                             |
| Concentration<br>2           | 2.2                                                  | 100                                | nm                                                                   | nm                                                                    | -                                                             | -                                                                              | -                                                                                             |
| Concentration<br>3           | 4.8                                                  | 100                                | nm                                                                   | nm                                                                    | -                                                             | -                                                                              | -                                                                                             |
| Concentration<br>4           | 10.6                                                 | 100                                | nm                                                                   | nm                                                                    | -                                                             | -                                                                              | -                                                                                             |
| Concentration<br>5           | 23.4                                                 | 100                                | 25                                                                   | 21                                                                    | 23                                                            | 2                                                                              | 17                                                                                            |

| Treatment          | Nominal<br>concentration<br>(µg/L Cu <sup>2+</sup> ) | Mean<br>48-hour<br>survival<br>(%) | Measured T <sub>0</sub><br>concentration<br>(µg/L Cu <sup>2+</sup> ) | Measured T <sub>48</sub><br>concentration<br>(µg/L Cu <sup>2+</sup> ) | Mean<br>measured<br>concentration<br>(µg/L Cu <sup>2+</sup> ) | Difference<br>between nominal<br>and mean<br>measured<br>concentrations<br>(%) | Difference<br>between T <sub>0</sub> and<br>T <sub>48</sub> measured<br>concentrations<br>(%) |
|--------------------|------------------------------------------------------|------------------------------------|----------------------------------------------------------------------|-----------------------------------------------------------------------|---------------------------------------------------------------|--------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------|
| Concentration<br>6 | 51.5                                                 | 100                                | 52                                                                   | 50                                                                    | 51                                                            | 1                                                                              | 4                                                                                             |
| Concentration<br>7 | 154.5                                                | 70                                 | 156                                                                  | 155                                                                   | 155.5                                                         | 1                                                                              | 1                                                                                             |
| Concentration<br>8 | 463.5                                                | 0                                  | 470                                                                  | 430                                                                   | 450                                                           | 3                                                                              | 9                                                                                             |
| Concentration<br>9 | 1390.5                                               | 0                                  | 1440                                                                 | 1200                                                                  | 1320                                                          | 5                                                                              | 18                                                                                            |

<sup>a</sup> Less than detection limit.

Table 3-9:Nominal and measured copper concentrations at the start ( $T_0$ ) and end ( $T_{48}$ ) of the Hoteo RiverDaphnia survival toxicity test.Measured by Hill Labs, nm = not measured. Percentage differences calculatedfor nominal and mean measured concentrations, and initial and final measured test concentrations. Shadedcells indicate concentrations used in statistical analyses.

| Treatment                    | Nominal<br>concentration<br>(µg/L Cu <sup>2+</sup> ) | Mean<br>48-hour<br>survival<br>(%) | Measured T <sub>0</sub><br>concentration<br>(µg/L Cu <sup>2+</sup> ) | Measured T <sub>48</sub><br>concentration<br>(µg/L Cu <sup>2+</sup> ) | Mean<br>measured<br>concentration<br>(µg/L Cu <sup>2+</sup> ) | Difference<br>between nominal<br>and mean<br>measured<br>concentrations<br>(%) | Difference<br>between $T_0$ and<br>$T_{48}$ measured<br>concentrations<br>(%) |
|------------------------------|------------------------------------------------------|------------------------------------|----------------------------------------------------------------------|-----------------------------------------------------------------------|---------------------------------------------------------------|--------------------------------------------------------------------------------|-------------------------------------------------------------------------------|
| Concentration<br>0 - Control | 0                                                    | 100                                | 1.1                                                                  | 1                                                                     | 1.05                                                          | 200                                                                            | 10                                                                            |
| Concentration<br>1           | 1                                                    | 100                                | nm                                                                   | nm                                                                    | -                                                             | -                                                                              | -                                                                             |
| Concentration<br>2           | 2.2                                                  | 100                                | nm                                                                   | nm                                                                    | -                                                             | -                                                                              | -                                                                             |
| Concentration<br>3           | 4.8                                                  | 100                                | nm                                                                   | nm                                                                    | -                                                             | -                                                                              | -                                                                             |
| Concentration<br>4           | 10.6                                                 | 100                                | nm                                                                   | nm                                                                    | -                                                             | -                                                                              | -                                                                             |
| Concentration<br>5           | 23.4                                                 | 100                                | 24                                                                   | 25                                                                    | 24.5                                                          | 5                                                                              | 4                                                                             |
| Concentration<br>6           | 51.5                                                 | 100                                | 53                                                                   | 53                                                                    | 53                                                            | 3                                                                              | 0                                                                             |
| Concentration<br>7           | 154.5                                                | 100                                | 149                                                                  | 153                                                                   | 151                                                           | 2                                                                              | 3                                                                             |
| Concentration<br>8           | 463.5                                                | 33                                 | 470                                                                  | 470                                                                   | 470                                                           | 1                                                                              | 0                                                                             |
| Concentration<br>9           | 1390.5                                               | 0                                  | 1420                                                                 | 1220                                                                  | 1320                                                          | 5                                                                              | 15                                                                            |

Table 3-10:Nominal and measured copper concentrations at the start ( $T_0$ ) and end ( $T_{48}$ ) of the OkutuaCreek Daphnia survival toxicity test.Measured by Hill Labs, nm = not measured. Percentage differencescalculated for nominal and mean measured concentrations, and initial and final measured test concentrations.Shaded cells indicate concentrations used in statistical analyses.

| Treatment                    | Nominal<br>concentration<br>(μg/L Cu <sup>2+</sup> ) | Mean<br>48-hour<br>survival<br>(%) | Measured T <sub>0</sub><br>concentration<br>(µg/L Cu <sup>2+</sup> ) | Measured T <sub>48</sub><br>concentration<br>(µg/L Cu <sup>2+</sup> ) | Mean<br>measured<br>concentration<br>(µg/L Cu <sup>2+</sup> ) | Difference<br>between nominal<br>and mean<br>measured<br>concentrations<br>(%) | Difference<br>between $T_0$ and<br>$T_{48}$ measured<br>concentrations<br>(%) |
|------------------------------|------------------------------------------------------|------------------------------------|----------------------------------------------------------------------|-----------------------------------------------------------------------|---------------------------------------------------------------|--------------------------------------------------------------------------------|-------------------------------------------------------------------------------|
| Concentration<br>0 - Control | 0                                                    | 98                                 | 1.3                                                                  | 1.3                                                                   | 1.3                                                           | 200                                                                            | 0                                                                             |
| Concentration<br>1           | 1                                                    | 100                                | nm                                                                   | nm                                                                    | -                                                             | -                                                                              | -                                                                             |
| Concentration<br>2           | 2.2                                                  | 100                                | nm                                                                   | nm                                                                    | -                                                             | -                                                                              | -                                                                             |
| Concentration<br>3           | 4.8                                                  | 97                                 | nm                                                                   | nm                                                                    | -                                                             | -                                                                              | -                                                                             |
| Concentration<br>4           | 10.6                                                 | 100                                | 14.3                                                                 | 13.7                                                                  | 14                                                            | 28                                                                             | 4                                                                             |
| Concentration<br>5           | 23.4                                                 | 100                                | 28                                                                   | 28                                                                    | 28                                                            | 18                                                                             | 0                                                                             |
| Concentration<br>6           | 51.5                                                 | 97                                 | 60                                                                   | 58                                                                    | 59                                                            | 14                                                                             | 3                                                                             |
| Concentration<br>7           | 113.4                                                | 13                                 | 136                                                                  | 136                                                                   | 136                                                           | 18                                                                             | 0                                                                             |
| Concentration<br>8           | 249                                                  | 0                                  | 280                                                                  | 280                                                                   | 280                                                           | 12                                                                             | 0                                                                             |

Table 3-11:Nominal and measured copper concentrations at the start ( $T_0$ ) and end ( $T_{48}$ ) of the Clutha RiverDaphnia survival toxicity test.Measured by Hill Labs, nm = not measured. Percentage differences calculatedfor nominal and mean measured concentrations, and initial and final measured test concentrations. Shadedcells indicate concentrations used in statistical analyses.

| Treatment                    | Nominal<br>concentration<br>(µg/L Cu <sup>2+</sup> ) | Mean<br>48-hour<br>survival<br>(%) | Measured T <sub>0</sub><br>concentration<br>(µg/L Cu <sup>2+</sup> ) | Measured T <sub>48</sub><br>concentration<br>(µg/L Cu <sup>2+</sup> ) | Mean<br>measured<br>concentration<br>(µg/L Cu <sup>2+</sup> ) | Difference<br>between nominal<br>and mean<br>measured<br>concentrations<br>(%) | Difference<br>between $T_0$ and<br>$T_{48}$ measured<br>concentrations<br>(%) |
|------------------------------|------------------------------------------------------|------------------------------------|----------------------------------------------------------------------|-----------------------------------------------------------------------|---------------------------------------------------------------|--------------------------------------------------------------------------------|-------------------------------------------------------------------------------|
| Concentration<br>0 - Control | 0                                                    | 98                                 | <0.5 ª                                                               | <0.5 °                                                                | <0.5 ª                                                        | 0                                                                              | 0                                                                             |
| Concentration<br>1           | 1                                                    | 100                                | nm                                                                   | nm                                                                    | -                                                             | -                                                                              | -                                                                             |
| Concentration<br>2           | 2.2                                                  | 97                                 | 2.4                                                                  | 2.0                                                                   | 2.2                                                           | 0                                                                              | 18                                                                            |
| Concentration<br>3           | 4.8                                                  | 100                                | 4.7                                                                  | 4.1                                                                   | 4.4                                                           | 9                                                                              | 14                                                                            |
| Concentration<br>4           | 10.6                                                 | 100                                | 10.2                                                                 | 10.3                                                                  | 10.25                                                         | 3                                                                              | 1                                                                             |

| Treatment          | Nominal<br>concentration<br>(µg/L Cu <sup>2+</sup> ) | Mean<br>48-hour<br>survival<br>(%) | Measured T <sub>0</sub><br>concentration<br>(µg/L Cu <sup>2+</sup> ) | Measured T <sub>48</sub><br>concentration<br>(µg/L Cu <sup>2+</sup> ) | Mean<br>measured<br>concentration<br>(μg/L Cu <sup>2+</sup> ) | Difference<br>between nominal<br>and mean<br>measured<br>concentrations<br>(%) | Difference<br>between $T_0$ and<br>$T_{48}$ measured<br>concentrations<br>(%) |
|--------------------|------------------------------------------------------|------------------------------------|----------------------------------------------------------------------|-----------------------------------------------------------------------|---------------------------------------------------------------|--------------------------------------------------------------------------------|-------------------------------------------------------------------------------|
| Concentration<br>5 | 23.4                                                 | 87                                 | 23                                                                   | 22                                                                    | 22.5                                                          | 4                                                                              | 4                                                                             |
| Concentration<br>6 | 51.5                                                 | 7                                  | 54                                                                   | 47                                                                    | 50.5                                                          | 2                                                                              | 14                                                                            |

<sup>a</sup> Less than detection limit.

Table 3-12:Nominal and measured copper concentrations at the start ( $T_0$ ) and end ( $T_{48}$ ) of the WaihouRiver Daphnia survival toxicity test.Measured by Hill Labs, nm = not measured. Percentage differencescalculated for nominal and mean measured concentrations, and initial and final measured test concentrations.Shaded cells indicate concentrations used in statistical analyses.

| Treatment                    | Nominal<br>concentration<br>(μg/L Cu <sup>2+</sup> ) | Mean<br>48-hour<br>survival<br>(%) | Measured T <sub>0</sub><br>concentration<br>(μg/L Cu <sup>2+</sup> ) | Measured T <sub>48</sub><br>concentration<br>(µg/L Cu <sup>2+</sup> ) | Mean<br>measured<br>concentration<br>(µg/L Cu <sup>2+</sup> ) | Difference<br>between nominal<br>and mean<br>measured<br>concentrations<br>(%) | Difference<br>between $T_0$ and<br>$T_{48}$ measured<br>concentrations<br>(%) |
|------------------------------|------------------------------------------------------|------------------------------------|----------------------------------------------------------------------|-----------------------------------------------------------------------|---------------------------------------------------------------|--------------------------------------------------------------------------------|-------------------------------------------------------------------------------|
| Concentration<br>0 - Control | 0                                                    | 96                                 | 0.9                                                                  | 0.7                                                                   | 0.8                                                           | 200                                                                            | 25                                                                            |
| Concentration<br>1           | 1                                                    | 100                                | nm                                                                   | nm                                                                    | -                                                             | -                                                                              | -                                                                             |
| Concentration<br>2           | 2.2                                                  | 100                                | nm                                                                   | nm                                                                    | -                                                             | -                                                                              | -                                                                             |
| Concentration<br>3           | 4.8                                                  | 100                                | nm                                                                   | nm                                                                    | -                                                             | -                                                                              | -                                                                             |
| Concentration<br>4           | 10.6                                                 | 97                                 | 11.3                                                                 | 8.2                                                                   | 9.75                                                          | 8                                                                              | 32                                                                            |
| Concentration<br>5           | 23.4                                                 | 83                                 | 23                                                                   | 19.1                                                                  | 21.05                                                         | 11                                                                             | 19                                                                            |
| Concentration<br>6           | 51.5                                                 | 40                                 | 53                                                                   | 43                                                                    | 48                                                            | 7                                                                              | 21                                                                            |
| Concentration<br>7           | 113                                                  | 0                                  | 102                                                                  | 92                                                                    | 97                                                            | 15                                                                             | 10                                                                            |
| Concentration<br>8           | 249                                                  | 0                                  | 230                                                                  | 191                                                                   | 210.5                                                         | 17                                                                             | 19                                                                            |

The 48 h *Daphnia thomsoni* survival tests showed progressive concentration-response relationships, where *Daphnia* survival decreased with increasing copper concentrations for all natural water samples.

For the Mahurangi Stream natural water sample spiked with copper, no statistically significant negative effects on *Daphnia* survival were observed at concentrations up to 51 mg/L Cu<sup>2+</sup> after 48 hours when compared to the negative control. However, exposure to 156 mg/L Cu<sup>2+</sup> resulted in a statistically significant reduction in survival by 30% relative to the control. Complete mortality (100%) was observed at the second highest concentration tested (450 mg/L Cu<sup>2+</sup>). The acute toxicity test for

Daphnia resulted in an EC<sub>15</sub> of 89  $\mu$ g/L Cu<sup>2+</sup>, with a 95% confidence interval of 65-150  $\mu$ g/L Cu<sup>2+</sup> and an EC<sub>50</sub> of 211  $\mu$ g/L Cu<sup>2+</sup>, with a 95% confidence interval of 159-255  $\mu$ g/L Cu<sup>2+</sup> (Figure 3-6, Table 3-13 and Appendix F).



Figure 3-6: Survival of *D. thomsoni* (compared to control) versus measured copper concentrations for Mahurangi Stream natural water sample. Linear interpolation.

For the Hoteo natural water sample spiked with copper, no statistically significant negative effects on *Daphnia* survival were observed at concentrations up to 151 mg/L Cu<sup>2+</sup> after 48 hours when compared to the negative control. However, exposure to 470 mg/L Cu<sup>2+</sup> resulted in a statistically significant reduction in survival by 97% relative to the control. Complete mortality (100%) was observed at the highest concentration tested (1,320 mg/L Cu<sup>2+</sup>). The acute toxicity test for *Daphnia* resulted in an EC<sub>15</sub> of 180 µg/L Cu<sup>2+</sup>, with a 95% confidence interval of 178-183 µg/L Cu<sup>2+</sup> and an EC<sub>50</sub> of 272 µg/L Cu<sup>2+</sup>, with a 95% confidence interval of 261-284 µg/L Cu<sup>2+</sup> (Figure 3-7, Table 3-13 and Appendix G).



Figure 3-7: Survival of *D. thomsoni* (compared to control) versus measured copper concentrations for Hoteo River natural water sample. Linear interpolation.

For the pH adjusted Okutua Creek natural water sample spiked with copper, no statistically significant negative effects on *Daphnia* survival were observed at concentrations up to 59 mg/L Cu<sup>2+</sup> after 48 hours when compared to the negative control. However, exposure to 136 mg/L Cu<sup>2+</sup> resulted in a statistically significant reduction in survival by 86% relative to the control. Complete mortality (100%) was observed at the highest concentration tested (280 mg/L Cu<sup>2+</sup>). The acute toxicity test for *Daphnia* resulted in an EC<sub>10</sub> of 74 µg/L Cu<sup>2+</sup>, with a upper 95% confidence limit of 93 µg/L Cu<sup>2+</sup> and an EC<sub>50</sub> of 103 µg/L Cu<sup>2+</sup>, with a 95% confidence interval of 78-136 µg/L Cu<sup>2+</sup> (Figure 3-8, Table 3-13 and Appendix H).





For the Clutha natural water sample spiked with copper, no statistically significant negative effects on Daphnia survival were observed at concentrations up to 22.5 mg/L Cu<sup>2+</sup> after 48 hours when compared to the negative control. However, exposure at the highest tested concentration, 50.5 mg/L Cu<sup>2+</sup> resulted in a statistically significant reduction in survival by 93% relative to the control. The acute toxicity test for Daphnia resulted in an EC10 of 22  $\mu$ g/L Cu2+, with a upper 95% confidence limit of 26  $\mu$ g/L Cu2+ and an EC50 of 32  $\mu$ g/L Cu2+, with a 95% confidence interval of 26-39  $\mu$ g/L Cu2+ (Figure 3-9, Table 3-13 and Appendix I).



Figure 3-9: Survival of *D. thomsoni* (compared to control) versus measured copper concentrations for Clutha River natural water sample. 3P Log-Logistic fitted.

For the Waihou natural water sample spiked with copper, no statistically significant negative effects on *Daphnia* survival were observed at concentrations up to 21.1 mg/L Cu<sup>2+</sup> after 48 hours when compared to the negative control. However, exposure to 48 mg/L Cu<sup>2+</sup> resulted in a statistically significant reduction in survival by 58% relative to the control. Complete mortality (100%) was observed at the second highest concentration tested (97 mg/L Cu<sup>2+</sup>). The acute toxicity test for *Daphnia* resulted in an EC<sub>10</sub> of 23 µg/L Cu<sup>2+</sup>, with a upper 95% confidence limit of 30 µg/L Cu<sup>2+</sup> and an EC<sub>50</sub> of 41 µg/L Cu<sup>2+</sup>, with a 95% confidence interval of 33-51 µg/L Cu<sup>2+</sup> (Figure 3-10, Table 3-13 and Appendix J).



Figure 3-10: Survival of *D. thomsoni* (compared to control) versus measured copper concentrations for Waihou River natural water sample. 3P Log-Logistic fitted.

# Table 3-13: Toxicity statistics as statistically derived by CETIS<sup>TM</sup> ( $\mu$ g/L copper) for *D. thomsoni* 48-hour survival in each natural water tested. Values in parentheses are the EC<sub>50</sub> value 95% confidence intervals.

| Natural water       | EC <sub>10</sub> ª<br>(95% CL) μg/L Cu <sup>2+</sup> | EC <sub>50</sub> ª<br>(95% CL) μg/L Cu <sup>2+</sup> | NOEC <sup>b</sup><br>μg/L Cu <sup>2+</sup> | LOEC <sup>c</sup><br>µg/L Cu <sup>2+</sup> | TEC <sup>d</sup><br>μg/L Cu <sup>2+</sup> |
|---------------------|------------------------------------------------------|------------------------------------------------------|--------------------------------------------|--------------------------------------------|-------------------------------------------|
| Mahurangi           | 89 (65-150) <sup>f</sup>                             | 211 (159-255)                                        | 51.0                                       | 156                                        | 89.2                                      |
| Hoteo               | 180 (178-183) <sup>f</sup>                           | 272 (261-284)                                        | 151                                        | 470                                        | 266                                       |
| Okutua <sup>e</sup> | 74 (n/a-93)                                          | 103 (78-136)                                         | 59.0                                       | 136                                        | 89.6                                      |
| Clutha              | 22 (n/a-26)                                          | 32 (26-39)                                           | 22.5                                       | 50.5                                       | 33.7                                      |
| Waihou              | 23 (n/a-30)                                          | 41 (33-51)                                           | 21.1                                       | 48.0                                       | 31.8                                      |

<sup>a</sup> EC<sub>x</sub>: The statistically determined test Concentration causing a X% Effect on the endpoint after the specified exposure period. <sup>b</sup> NOEC: The highest tested Concentration causing No Observed Effect relative to the controls. <sup>c</sup> LOEC: The Lowest tested Concentration causing an Observed Effect relative to the controls. <sup>d</sup> TEC: Threshold Effect Concentration, the geometric mean of NOEC and LOEC. <sup>e</sup> As pH adjusted for testing. <sup>f</sup> EC<sub>15</sub> value as EC<sub>10</sub> not available with the linear interpolation analysis used.

## 4 Summary

The five natural waters collected covered a range of pH, hardness and DOC concentrations that are found in most waters around New Zealand. The pH of the waters tested covered only a narrow range -6.0 to 7.6 - as the sample with low pH (Okutua Creek) needed to be adjusted to minimise pH-derived toxicity.

The survival of *D. thomsoni* was affected by zinc at concentrations of 230  $\mu$ g/L and higher, with EC<sub>50</sub> values ranging from 343 to 826  $\mu$ g/L in acute 48-hour tests, depending on the water chemistry. Zinc exhibited the highest toxicity in water with low pH, low hardness, and higher DOC, while the lowest toxicity occurred in water with the highest pH and hardness. For copper, survival decreased at concentrations of 48  $\mu$ g/L and above, with EC<sub>50</sub> values ranging from 32 to 272  $\mu$ g/L. Copper toxicity was highest in water with low DOC, while the lowest toxicity was observed in waters with environmentally moderate pH and hardness (Table 4-1).

# Table 4-1:Summary of the natural water sample characteristics and toxicity statistics for *D. thomsoni*exposed to zinc and copper in 48-hour survival test.

|                  | рН                | Hardness<br>mg/L<br>CaCO <sub>3</sub> | DOC  | Zinc                                                    |                                                         | Copper                                                  |                                                         |
|------------------|-------------------|---------------------------------------|------|---------------------------------------------------------|---------------------------------------------------------|---------------------------------------------------------|---------------------------------------------------------|
| Natural<br>water |                   |                                       | mg/L | EC <sub>10</sub> ª<br>(95% CL) μg/L<br>Zn <sup>2+</sup> | EC <sub>50</sub> ª<br>(95% CL) μg/L<br>Zn <sup>2+</sup> | EC <sub>10</sub> ª<br>(95% CL) μg/L<br>Cu <sup>2+</sup> | EC <sub>50</sub> ª<br>(95% CL) μg/L<br>Cu <sup>2+</sup> |
| Mahurangi        | 7.58              | 73.5                                  | 2.18 | 511 (459-551)                                           | 826 (782-873)                                           | 89 (65-150) <sup>c</sup>                                | 211 (159-255)                                           |
| Hoteo            | 7.49              | 58.1                                  | 3.73 | 374 (279-442)                                           | 751 (661-853)                                           | 180 (178-183) <sup>c</sup>                              | 272 (261-284)                                           |
| Okutua           | 6.03 <sup>b</sup> | 2.74                                  | 11.9 | 162 (78-208)                                            | 343 (282-416)                                           | 74 (n/a-93)                                             | 103 (78-136)                                            |
| Clutha           | 7.17              | 33.7                                  | 0.38 | 243 (124-311)                                           | 526 (432-641)                                           | 22 (n/a-26)                                             | 32 (26-39)                                              |
| Waihou           | 7.26              | 15.7                                  | <0.3 | 204 (121-252)                                           | 404 (344-474)                                           | 23 (n/a-30)                                             | 41 (33-51)                                              |

<sup>a</sup> EC<sub>x</sub>: The statistically determined test Concentration causing a X% Effect on the endpoint after the specified exposure period. <sup>b</sup> As pH adjusted for testing. <sup>c</sup> EC<sub>15</sub> value as EC<sub>10</sub> not available with the linear interpolation analysis used.

These data, along with other available published and unpublished acute toxicity data (Appendix M), can be used to develop acute water quality guidelines for zinc and copper, incorporating the influence of toxicity-modifying factors.

# 5 Acknowledgements

The author would like to thank the NIWA field staff involved in the sample collection, as follows: Pete Pattinson and Christian Hyde (Auckland), John Porteous (Greymouth/ West Coast) and Duncan Macpherson (Alexandra). The author also thanks Amelia Shepherd and Vageesha Neththikumara for assistance in laboratory work for the *Daphnia* tests.

# 6 Glossary of abbreviations and terms

| Acute toxicity                      | A lethal or adverse sub-lethal effect that occurs after exposure to a chemical for<br>a short period relative to the organism's life span. Refer to Warne et al. (Warne<br>et al. 2018) for examples of acute exposures.                                                                   |
|-------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| ANZECC                              | Australian and New Zealand Environment and Conservation Council                                                                                                                                                                                                                            |
| ANZG                                | Australia and New Zealand Government, publishers of water quality guidelines for fresh and marine waters used in New Zealand                                                                                                                                                               |
| Cu                                  | Copper                                                                                                                                                                                                                                                                                     |
| Default<br>guideline value<br>(DGV) | A guideline value recommended for generic application to all Australian and<br>New Zealand fresh or marine waterbodies in the absence of a more specific<br>guideline value (for example site-specific) in the Australian and New Zealand<br>Guidelines for Fresh and Marine Water Quality |
| DOC                                 | Dissolved organic carbon – operational measurement of DOM using a carbon analyser                                                                                                                                                                                                          |
| DOM                                 | Dissolved organic matter – generic terminology for all forms of organic material in a filtered water sample                                                                                                                                                                                |
| EC <sub>50</sub>                    | The toxicant concentration that is expected to cause one or more specified effects in 50% of a group of organisms or a 50% effect under specified conditions                                                                                                                               |
| ECx                                 | The toxicant concentration that is expected to cause one or more specified effects in x% of a group of organisms or a x% effect under specified conditions                                                                                                                                 |
| Endpoint                            | Measured attainment response, typically applied to ecotoxicity or management goals                                                                                                                                                                                                         |
| LOEC                                | Lowest Observed Effect Concentration; the lowest concentration of a material used in a toxicity test that has a statistically significant adverse effect on the exposed population of test organisms as compared with the controls.                                                        |
| NOEC                                | No Observed Effect Concentration, the highest concentration of a material used<br>in a toxicity test that has no statistically significant adverse effect on the<br>exposed population of test organisms as compared with the controls.                                                    |
| NRWQN                               | National River Water Quality Network, a network of monitoring sites run by NIWA on major rivers in New Zealand sampled monthly for water quality analyses                                                                                                                                  |
| Species                             | A group of organisms that resemble each other to a greater degree than<br>members of other groups and that form a reproductively isolated group that<br>will not normally breed with members of another group. (Chemical species are<br>differing compounds of an element)                 |
| Toxicity                            | The inherent potential or capacity of a material to cause adverse effects in a living organism.                                                                                                                                                                                            |
| Toxicity test                       | The means by which the toxicity of a chemical or other test material is determined. A toxicity test is used to measure the degree of response produced by exposure to a concentration of chemical.                                                                                         |
| US EPA                              | United States Environmental Protection Agency                                                                                                                                                                                                                                              |
| Zn                                  | Zinc                                                                                                                                                                                                                                                                                       |
#### 7 References

- ANZECC (2000) Australian and New Zealand Guidelines for Fresh and Marine Water Quality. Australian and New Zealand Environment and Conservation Council & Agriculture and Resource Management Council of Australia and New Zealand. Canberra.
- ANZG (2018) Australian and New Zealand Guidelines for Fresh and Marine Water Quality. Australian and New Zealand Governments and Australian state and territory governments, Canberra ACT, Australia. Available at <u>www.waterquality.gov.au/anz-</u> <u>guidelines</u>
- Burns, C.W., Duggan, I.C., Banks, J.C., Hogg, I.D. (2017) A new, subalpine species of *Daphnia* (Cladocera, Anomopoda) in the *D. carinata* species complex, in the South Island, New Zealand. *Hydrobiologia*, 798: 151-169.
- Gadd, J., Albert, A., Mohsin, M. Thompson, K. Bell, S. (2022) Bioavailability of zinc to an alga and a native daphnid in New Zealand natural waters, *NIWA Client Report* 2021356AK
   Prepared for Commonwealth Scientific and Industrial Research Organisation (CSIRO), Australia. January 2022: 52
- NIWA (2022) Cladocera Culture Maintenance *Daphnia magna* and *Daphnia thomsoni*, Ecotoxicology Standard Operating Procedure 11.0. Version 6.0. April 2022. Prepared for Internal Use Only, National Institute of Water and Atmospheric Research Ltd. (NIWA) Ecotoxicology Laboratory, Hamilton, New Zealand.
- NIWA (2022b) Cladocera Acute Toxicity Test, Ecotoxicology Standard Operating Procedure 10.0. Version 3.0. March 2022. Prepared for Internal Use Only, National Institute of Water and Atmospheric Research Ltd. (NIWA) Ecotoxicology Laboratory, Hamilton, New Zealand.
- OECD (2004) OECD/OCDE 202: *Daphnia* sp., Acute Immobilisation Test. OECD Guideline for testing of chemicals. April 2004. Organization for Economic Co-operation and Development: 12.
- OECD (2019). Guidance document on aqueous-phase aquatic toxicity testing of difficult test chemicals. OECD Environment, Health and Safety Publications Series on Testing and Assessment No. 23 (second edition), OECD Publishing, Paris.
- Ouwerkerk, K. (2017) The effect of dissolved organic carbon (DOC) on the acute toxicity of copper and zinc for different freshwater species. Internship report AEW70424 for study undertaken at NIWA, Hamilton Ecotoxicology Laboratory. Aquatic Ecology and Water Quality Management Group, Department of Environmental Sciences, Wageningen University, Wageningen, The Netherlands: 33
- Tidepool (2001-2022) CETIS -Comprehensive Environmental Toxicity Information System. CETIS Users Guide v2.1.3 Tidepool Scientific Software, MacKinleyville, Ca.: 305.

Warne, M.S., Batley, G.E., van Dam, R.A., Chapman, J.C., Fox, D.R., Hickey, C.W., Stauber, J.L. (2018) Revised method for deriving Australian and New Zealand water quality guideline values for toxicants - update of 2015 version. Prepared for the Australian and New Zealand Guidelines for Fresh and Marine Water Quality. Australian and New Zealand Governments and Australian state and territory governments. August 2015 - updated October 2018. Canberra.

## Appendix A Hill Labs results - Natural water characterisation



R J Hill Laboratories Limited 28 Duke Street Frankton 3204 Private Bag 3205 Hamilton 3240 New Zealand **6 0508 HILL LAB** (44 555 22)
 **6** +64 7 858 2000
 ☑ mail@hill-labs.co.nz
 ⓓ www.hill-labs.co.nz

#### Page 1 of 2

| Client:<br>Contact:                                             | NIWA Corporate<br>K Thompson<br>C/- NIWA Corporate<br>PO Box 11115<br>Hillcrest<br>Hamilton 3251 | Lab No:<br>Date Received:<br>Date Reported:<br>Quote No:<br>Order No:<br>Client Reference:<br>Submitted By: |                    |                        | 3569077<br>03-May-20<br>09-May-20<br>130803<br>U333268<br>Requisition<br>K Thomps | SUPv1<br>124<br>124<br>n 138984<br>on |
|-----------------------------------------------------------------|--------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------|--------------------|------------------------|-----------------------------------------------------------------------------------|---------------------------------------|
| Sample Ty                                                       | /pe: Aqueous                                                                                     |                                                                                                             |                    |                        |                                                                                   |                                       |
|                                                                 | Sample Name:                                                                                     | Clutha 13-Feb-2024                                                                                          | Waihou 30-Apr-2024 | Okutua                 | 07-Feb-2024                                                                       | Redwoods<br>07-Feb-2024               |
| Lab Number:                                                     |                                                                                                  | 3569077.1                                                                                                   | 3569077.2          | 3569077.3              |                                                                                   | 3569077.4                             |
| Total Hardne                                                    | ess g/m³ as CaCO <sub>3</sub>                                                                    | 33.7 ± 2.0                                                                                                  | 15.66 ± 0.73       | 2.74 ± 0.17 73.5 ± 3.4 |                                                                                   | 73.5 ± 3.4                            |
| Dissolved Ca                                                    | alcium g/m <sup>3</sup>                                                                          | 12.27 ± 0.77                                                                                                | 3.25 ± 0.21        | 0.48                   | 3 ± 0.045                                                                         | 16.1 ± 1.1                            |
| Dissolved Ma                                                    | agnesium g/m³                                                                                    | 0.737 ± 0.052                                                                                               | 1.83 ± 0.13        | 0.37                   | 2 ± 0.029                                                                         | 8.09 ± 0.55                           |
| Dissolved No<br>(DNPOC)                                         | on-Purgeable Organic Carbon g/m <sup>3</sup>                                                     | 0.38 ± 0.14                                                                                                 | < 0.3 ± 0.14       | 11.9 ± 2.4 2.18 :      |                                                                                   | 2.18 ± 0.46                           |
|                                                                 | Sample Name:                                                                                     |                                                                                                             | Hoteo 07-          | Feb-2024               |                                                                                   |                                       |
|                                                                 | Lab Number:                                                                                      |                                                                                                             | 3569               | 077.5                  |                                                                                   |                                       |
| Total Hardness g/m <sup>3</sup> as CaCO <sub>3</sub> 58.1 ± 2.7 |                                                                                                  |                                                                                                             |                    |                        |                                                                                   |                                       |
| Dissolved Ca                                                    | alcium g/m <sup>3</sup>                                                                          | 3 13.87 ± 0.87                                                                                              |                    |                        |                                                                                   |                                       |
| Dissolved Ma                                                    | agnesium g/m <sup>3</sup>                                                                        | 3 5.70 ± 0.39                                                                                               |                    |                        |                                                                                   |                                       |
| Dissolved No<br>(DNPOC)                                         | on-Purgeable Organic Carbon g/m <sup>3</sup>                                                     |                                                                                                             | 3.73 :             | ± 0.76                 |                                                                                   |                                       |

The reported uncertainty is an expanded uncertainty with a level of confidence of approximately 95 percent (i.e. two standard deviations, calculated using a coverage factor of 2). Reported uncertainties are calculated from the performance of typical matrices, and do not include variation due to sampling.

For further information on uncertainty of measurement at Hill Laboratories, refer to the technical note on our website: www.hill-laboratories.com/files/Intro\_To\_UOM.pdf, or contact the laboratory.

#### **Summary of Methods**

The following table(s) gives a brief description of the methods used to conduct the analyses for this job. The detection limits given below are those attainable in a relatively simple matrix. Detection limits may be higher for individual samples should insufficient sample be available, or if the matrix requires that dilutions be performed during analysis. A detection limit range indicates the lowest and highest detection limits in the associated suite of analytes. A full listing of compounds and detection limits are available from the laboratory upon request. Unless otherwise indicated, analyses were performed at Hill Labs, 28 Duke Street, Frankton, Hamilton 3204.

| Sample Type: Aqueous                              |                                                                                                                                                           |                               |           |
|---------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------|-----------|
| Test                                              | Method Description                                                                                                                                        | Default Detection Limit       | Sample No |
| Total Hardness                                    | Calculation from Calcium and Magnesium. APHA 2340 B :<br>Online Edition.                                                                                  | 1.0 g/m³ as CaCO <sub>3</sub> | 1-5       |
| Filtration for dissolved metals analysis          | Sample filtration through 0.45µm membrane filter and<br>preservation with nitric acid. APHA 3030 B : Online Edition.                                      | -                             | 1-5       |
| Dissolved Calcium                                 | Filtered sample, ICP-MS, trace level. APHA 3125 B : Online<br>Edition.                                                                                    | 0.05 g/m <sup>3</sup>         | 1-5       |
| Dissolved Magnesium                               | Filtered sample, ICP-MS, trace level. APHA 3125 B : Online Edition.                                                                                       | 0.02 g/m <sup>3</sup>         | 1-5       |
| Dissolved Non-Purgeable Organic<br>Carbon (DNPOC) | Acidification, purging to remove inorganic C, super-critical<br>persulphate oxidation at 375°C, IR detection. APHA 5310 C<br>(modified) : Online Edition. | 0.3 g/m <sup>3</sup>          | 1-5       |



This Laboratory is accredited by International Accreditation New Zealand (IANZ), which represents New Zealand in the International Laboratory Accreditation Cooperation (ILAC). Through the ILAC Mutual Recognition Arrangement (ILAC-MRA) this accreditation is internationally recognised. The tests reported herein have been performed in accordance with the terms of accreditation, with the exception of tests marked \* or any comments and interpretations, which are not accredited. These samples were collected by yourselves (or your agent) and analysed as received at the laboratory.

Testing was completed between 06-May-2024 and 09-May-2024. For completion dates of individual analyses please contact the laboratory.

Samples are held at the laboratory after reporting for a length of time based on the stability of the samples and analytes being tested (considering any preservation used), and the storage space available. Once the storage period is completed, the samples are discarded unless otherwise agreed with the customer. Extended storage times may incur additional charges.

This certificate of analysis must not be reproduced, except in full, without the written consent of the signatory.

J

Ara Heron BSc (Tech) Client Services Manager - Environmental

Lab No: 3569077-SUPv1

Hill Labs

# Appendix B Hill Labs results – Zinc



| R J Hill Laboratories Limited |
|-------------------------------|
| 28 Duke Street Frankton 3204  |
| Private Bag 3205              |
| Hamilton 3240 New Zealand     |

**6 0508 HILL LAB** (44 555 22)
 ★ +64 7 858 2000
 ✓ mail@hill-labs.co.nz
 ↔ www.hill-labs.co.nz

Page 1 of 2

| Client:<br>Contact:             | NIWA Corporate<br>K Thompson<br>C/- NIWA Corporate | Lab No: 3578828<br>Date Received: 13-May-20<br>Date Reported: 16-May-20 |                                                 |                     | SUPv1<br>)24<br>)24          |                                                |
|---------------------------------|----------------------------------------------------|-------------------------------------------------------------------------|-------------------------------------------------|---------------------|------------------------------|------------------------------------------------|
|                                 | PO Box 11115                                       |                                                                         | Quote No: 130803                                |                     |                              |                                                |
|                                 | Hillcrest                                          |                                                                         | Order No:                                       |                     | U333504                      |                                                |
|                                 | Hamilton 3251                                      |                                                                         | Client Refe                                     | erence:             |                              |                                                |
|                                 | Submitted Bv: K Thomp                              |                                                                         |                                                 |                     | son                          |                                                |
| Sample T                        | vne. Vaneous                                       |                                                                         |                                                 | <u> </u>            | · ·                          |                                                |
| oumpie 13                       | Sample Name:                                       | Clutha 100ug/L T0                                                       | Clutha 220ug/L T0                               | Clutha              | 484ug/L T0                   | Clutha 1056ug/L T0                             |
|                                 | Sample Name.                                       | 09-May-2024 1:00 pm                                                     | 09-May-2024 1:00 pm                             | 09-May-2            | 024 1:00 pm                  | 09-May-2024 1:00 pm                            |
|                                 | Lab Number:                                        | 3578828.1                                                               | 3578828.2                                       | 357                 | 8828.3                       | 3578828.4                                      |
| Dissolved Zir                   | nc g/m <sup>3</sup>                                | 0.106 ± 0.010                                                           | 0.233 ± 0.022                                   | 0.51                | 7 ± 0.049                    | 1.12 ± 0.11                                    |
|                                 | Sample Name:                                       | Clutha 2343ug/L T0                                                      | Clutha 100ug/L T48                              | Clutha 2            | 20ug/L T48                   | Clutha 484ug/L T48                             |
|                                 | Lab Numbari                                        | 2579929 5                                                               | 2570020 c                                       | 09-1vlay-2          | 024 1:00 pm                  | 09-May-2024 1:00 pm                            |
| Dissolved Zir                   | Lab Nulliber.                                      | 2 47 + 0 23                                                             | 0 132 + 0 013                                   | 0.219               | 0020.7<br>0+0.021            | 0.487 + 0.046                                  |
| Dissolved Zil                   | g/m                                                | 2.47 1 0.20                                                             | 0.102 1 0.010                                   | 0.21                | 5 1 0.021                    | 0.407 1 0.040                                  |
|                                 | Sample Name:                                       | Clutha 1056ug/L T48                                                     | Clutha 2343ug/L T48                             | Waihou              | 100ug/L T0                   | Waihou 220ug/L T0                              |
|                                 | Lab Numbor                                         | 2579929 0                                                               | 2578929 10                                      | 09-1viay-2          | 024 1.00 pm                  | 2579929 12                                     |
| Dissolved Zir                   | nc g/m <sup>3</sup>                                | 1.043 ± 0.097                                                           | 2.31 ± 0.22                                     | 0.109               | 9 ± 0.011                    | 0.236 ± 0.022                                  |
|                                 | <b>.</b>                                           |                                                                         |                                                 |                     |                              |                                                |
|                                 | Sample Name:                                       | 09-May-2024 1:00 pm                                                     | Walhou 1056ug/L 10<br>09-May-2024 1:00 pm       | Walhou              | 2343ug/L 10                  | Walhou 100ug/L 148<br>09-May-2024 1:00 pm      |
|                                 | Lab Number:                                        | 3578828.13                                                              | 3578828.14                                      | 357                 | 8828.15                      | 3578828.16                                     |
| Dissolved Zinc g/m <sup>3</sup> |                                                    | 0.518 ± 0.049                                                           | 1.13 ± 0.11                                     | 2.40                | 6 ± 0.23                     | 0.123 ± 0.012                                  |
|                                 | Sample Name                                        | Waihou 220ug/L T48                                                      | Waihou 484ug/L T48                              | Waihou 1            | 056ua/L T48                  | Waihou 2343ug/L T48                            |
|                                 | Campie Hame.                                       | 09-May-2024 1:00 pm                                                     | 09-May-2024 1:00 pm                             | 09-May-2            | 024 1:00 pm                  | 09-May-2024 1:00 pm                            |
|                                 | Lab Number:                                        | 3578828.17                                                              | 3578828.18                                      | 357                 | 8828.19                      | 3578828.20                                     |
| Dissolved Zir                   | nc g/m <sup>3</sup>                                | 0.223 ± 0.021                                                           | 0.482 ± 0.045                                   | 1.09                | 9 ± 0.11                     | 2.36 ± 0.22                                    |
|                                 | Sample Name:                                       | Redwoods 100ug/L T0<br>10-May-2024 1:00 pm                              | Redwoods 220ug/L T0<br>10-May-2024 1:00 pm      | Redwood<br>10-May-2 | s 484ug/L T0<br>:024 1:00 pm | Redwoods 1056ug/L<br>T0 10-May-2024<br>1:00 pm |
|                                 | Lab Number:                                        | 3578828.21                                                              | 3578828.22                                      | 357                 | 8828.23                      | 3578828.24                                     |
| Dissolved Zir                   | nc g/m <sup>3</sup>                                | 0.1032 ± 0.0097                                                         | 0.232 ± 0.022                                   | 0.49                | 1 ± 0.046                    | 1.08 ± 0.11                                    |
|                                 | Sample Name:                                       | Redwoods 2343ug/L                                                       | Redwoods 100ug/L                                | Redwoo              | ds 220ug/L                   | Redwoods 484ug/L                               |
|                                 |                                                    | T0 10-May-2024                                                          | T48 10-May-2024                                 | T48 10              | -May-2024                    | T48 10-May-2024                                |
|                                 | Lab Number:                                        | 3578828.25                                                              | 3578828.26                                      | 357                 | 8828 27                      | 3578828.28                                     |
| Dissolved Zir                   | nc g/m <sup>3</sup>                                | 2.38 ± 0.23                                                             | 0.457 ± 0.043                                   | 0.254               | 1 ± 0.024                    | 0.487 ± 0.046                                  |
|                                 | <b>3</b>                                           |                                                                         |                                                 |                     |                              |                                                |
|                                 | Sample Name:                                       | T48 10-May-2024<br>1:00 pm                                              | Redwoods 2343ug/L<br>T48 10-May-2024<br>1:00 pm | Hoteo<br>10-May-2   | 100ug/L T0<br>2024 1:00 pm   | Hoteo 220ug/L 10<br>10-May-2024 1:00 pm        |
|                                 | Lab Number:                                        | 3578828.29                                                              | 3578828.30                                      | 357                 | 8828.31                      | 3578828.32                                     |
| Dissolved Zir                   | nc g/m <sup>3</sup>                                | 1.034 ± 0.097                                                           | 2.30 ± 0.22                                     | 0.104               | 7 ± 0.0098                   | 0.229 ± 0.022                                  |
|                                 | Sample Name:                                       | Hoteo 484ug/L T0<br>10-May-2024 1:00 pm                                 | Hoteo 1056ug/L T0<br>10-May-2024 1:00 pm        | Hoteo 2<br>10-May-2 | 343ug/L T0<br>024 1:00 pm    | Hoteo 100ug/L T48<br>10-May-2024 1:00 pm       |
|                                 | Lab Number:                                        | 3578828.33                                                              | 3578828.34                                      | 357                 | 8828.35                      | 3578828.36                                     |
| Dissolved Zir                   | nc g/m <sup>3</sup>                                | 0.519 ± 0.049                                                           | 1.08 ± 0.11                                     | 2.44                | 1 ± 0.23                     | 0.513 ± 0.048                                  |



This Laboratory is accredited by International Accreditation New Zealand (IANZ), which represents New Zealand in the International Laboratory Accreditation Cooperation (ILAC). Through the ILAC Mutual Recognition Arrangement (ILAC-MRA) this accreditation is internationally recognised. The tests reported herein have been performed in accordance with the terms of accreditation, with the exception of tests marked \* or any comments and interpretations, which are not accredited.

| Sample Type: Aqueous            |                                          |                                          |                                           |                                           |  |  |
|---------------------------------|------------------------------------------|------------------------------------------|-------------------------------------------|-------------------------------------------|--|--|
| Sample Name:                    | Hoteo 220ug/L T48<br>10-May-2024 1:00 pm | Hoteo 484ug/L T48<br>10-May-2024 1:00 pm | Hoteo 1056ug/L T48<br>10-May-2024 1:00 pm | Hoteo 2343ug/L T48<br>10-May-2024 1:00 pm |  |  |
| Lab Number:                     | 3578828.37                               | 3578828.38                               | 3578828.39                                | 3578828.40                                |  |  |
| Dissolved Zinc g/m <sup>3</sup> | 0.244 ± 0.023                            | 0.486 ± 0.046                            | 1.026 ± 0.096                             | 2.36 ± 0.22                               |  |  |

The reported uncertainty is an expanded uncertainty with a level of confidence of approximately 95 percent (i.e. two standard deviations, calculated using a coverage factor of 2). Reported uncertainties are calculated from the performance of typical matrices, and do not include variation due to sampling.

For further information on uncertainty of measurement at Hill Laboratories, refer to the technical note on our website: www.hill-laboratories.com/files/Intro\_To\_UOM.pdf, or contact the laboratory.

#### **Summary of Methods**

The following table(s) gives a brief description of the methods used to conduct the analyses for this job. The detection limits given below are those attainable in a relatively simple matrix. Detection limits may be higher for individual samples should insufficient sample be available, or if the matrix requires that dilutions be performed during analysis. A detection limit range indicates the lowest and highest detection limits in the associated suite of analytes. A full listing of compounds and detection limits are available from the laboratory upon request. Unless otherwise indicates the dilutions are available from the laboratory upon request.

| Sample Type: Aqueous                     |                                                                                                                      |                         |           |  |  |  |
|------------------------------------------|----------------------------------------------------------------------------------------------------------------------|-------------------------|-----------|--|--|--|
| Test                                     | Method Description                                                                                                   | Default Detection Limit | Sample No |  |  |  |
| Filtration for dissolved metals analysis | Sample filtration through 0.45µm membrane filter and<br>preservation with nitric acid. APHA 3030 B : Online Edition. | -                       | 1-40      |  |  |  |
| Dissolved Zinc                           | Filtered sample, ICP-MS, trace level. APHA 3125 B : Online Edition.                                                  | 0.0010 g/m <sup>3</sup> | 1-40      |  |  |  |

These samples were collected by yourselves (or your agent) and analysed as received at the laboratory.

Testing was completed between 14-May-2024 and 16-May-2024. For completion dates of individual analyses please contact the laboratory.

Samples are held at the laboratory after reporting for a length of time based on the stability of the samples and analytes being tested (considering any preservation used), and the storage space available. Once the storage period is completed, the samples are discarded unless otherwise agreed with the customer. Extended storage times may incur additional charges.

This certificate of analysis must not be reproduced, except in full, without the written consent of the signatory.

Ara Heron BSc (Tech) Client Services Manager - Environmental

Lab No: 3578828-SUPv1

Hill Labs

# Appendix C Hill Labs results - Copper



R J Hill Laboratories Limited 28 Duke Street Frankton 3204 Private Bag 3205 Hamilton 3240 New Zealand **6 0508 HILL LAB** (44 555 22)
 ★ +64 7 858 2000
 ☑ mail@hill-labs.co.nz
 ☑ www.hill-labs.co.nz

#### **Certificate of Analysis** Page 1 of 2 NIWA Corporate 3575453 Client: Lab No: SUPv1 09-May-2024 Contact: K Thompson Date Received: C/- NIWA Corporate Date Reported: 14-May-2024 PO Box 11115 130803 Quote No: Hillcrest Order No: U333436 Hamilton 3251 **Client Reference:** HYR24201 Cu Submitted By: K Thompson Sample Type: Aqueous Sample Name: Waihou Control T0 Waihou Control T48 Waihou Cu 10.6 T0 Waihou Cu 10.6 T48 Lab Number: 3575453.1 3575453 2 3575453.3 3575453 4 Dissolved Copper g/m<sup>3</sup> $0.00092 \pm 0.00035$ 0.00068 ± 0.00034 0.0113 ± 0.0011 0.00818 ± 0.00082 Dissolved Zind 0.00311 ± 0.00073 0.00338 ± 0.00074 g/m<sup>3</sup> Waihou Cu 23.4 T0 Waihou Cu 23.4 T48 Waihou Cu 51.5 T0 Waihou Cu 51.5 T48 Sample Name: Lab Number: 3575453.5 3575453.6 3575453.7 3575453.8 Dissolved Copper g/m<sup>3</sup> 0.0234 ± 0.0022 0.0191 ± 0.0018 $0.0533 \pm 0.0049$ 0.0431 ± 0.0040 Waihou Cu 113 T0 Waihou Cu 113 T48 Waihou Cu 249 T0 Waihou Cu 249 T48 Sample Name: 3575453.12 Lab Number: 3575453.9 3575453.10 3575453.11 Dissolved Copper g/m<sup>3</sup> $0.1016 \pm 0.0093$ $0.0918 \pm 0.0084$ $0.229 \pm 0.021$ $0.191 \pm 0.018$ Sample Name: Redwoods Control T0 Redwoods Control T48 Redwoods Cu 23.4 T0 Redwoods Cu 23.4 T48 Lab Number: 3575453.13 3575453.14 3575453.15 3575453.16 < 0.0005 ± 0.00034 < 0.0005 ± 0.00034 0.0249 ± 0.0023 0.0211 ± 0.0020 Dissolved Copper g/m<sup>3</sup> Dissolved Zinc g/m<sup>3</sup> 0.00330 ± 0.00073 0.00314 ± 0.00073 Redwoods Cu 51.5 Redwoods Cu 154.5 Redwoods Cu 51.5 T0 Redwoods Cu 154.5 Sample Name: T48 т0 T48 3575453.17 3575453.18 3575453.19 3575453.20 Lab Number: Dissolved Copper $0.0525 \pm 0.0048$ $0.0501 \pm 0.0046$ 0.156 ± 0.015 $0.155 \pm 0.015$ g/m<sup>3</sup> Sample Name: Redwoods Cu 463.5 Redwoods Cu 463.5 Redwoods Cu 1390.5 Redwoods Cu 1390.5 TO T48 то T48 3575453.22 Lab Number: 3575453.21 3575453.23 3575453.24 Dissolved Copper g/m<sup>3</sup> $0.466 \pm 0.043$ $0.429 \pm 0.040$ $1.44 \pm 0.14$ $1.20 \pm 0.11$ Sample Name: Hoteo Control T0 Hoteo Control T48 Hoteo Cu 23 4 T0 Hoteo Cu 23 4 T48 3575453.28 3575453.25 3575453.27 Lab Number: 3575453.26 Dissolved Copper 0.00105 ± 0.00035 0.00098 ± 0.00035 $0.0240 \pm 0.0023$ $0.0251 \pm 0.0024$ g/m Dissolved Zinc g/m<sup>3</sup> 0.00418 ± 0.00077 $0.00453 \pm 0.00079$ -Sample Name: Hoteo Cu 51.5 T0 Hoteo Cu 51.5 T48 Hoteo Cu 154.5 T0 Hoteo Cu 154.5 T48 3575453.31 3575453.32 Lab Number: 3575453.29 3575453.30 Dissolved Copper 0.0529 ± 0.0049 0.0527 ± 0.0049 0.149 ± 0.014 0.153 ± 0.014 g/m<sup>3</sup> Hoteo Cu 463.5 T0 Hoteo Cu 463.5 T48 Hoteo Cu 1390.5 T0 Hoteo Cu 1390.5 T48 Sample Name: Lab Number: 3575453.33 3575453.34 3575453.35 3575453.36 0.471 ± 0.043 Dissolved Copper 0.465 ± 0.043 $1.42 \pm 0.13$ $1.22 \pm 0.12$ g/m<sup>3</sup> Clutha Control T0 Clutha Control T48 Clutha Cu 2.2 T0 Clutha Cu 2.2 T48 Sample Name: 3575453.37 3575453.38 3575453.39 3575453.40 Lab Number: g/m<sup>3</sup> Dissolved Copper $< 0.0005 \pm 0.00034$ $< 0.0005 \pm 0.00034$ 0.00235 ± 0.00040 $0.00203 \pm 0.00038$



Dissolved Zinc

This Laboratory is accredited by International Accreditation New Zealand (IANZ), which represents New Zealand in the International Laboratory Accreditation Cooperation (ILAC). Through the ILAC Mutual Recognition Arrangement (ILAC-MRA) this accreditation is internationally recognised. The tests reported herein have been performed in accordance with the terms of accreditation, with the exception of tests marked \* or any comments and interpretations, which are not accredited.

0.00299 ± 0.00072

g/m<sup>3</sup>

0.00271 ± 0.00071

| Sample Type: Aqueous |              |                   |                    |                   |                    |  |
|----------------------|--------------|-------------------|--------------------|-------------------|--------------------|--|
|                      | Sample Name: | Clutha Cu 4.8 T0  | Clutha Cu 4.8 T48  | Clutha Cu 10.6 T0 | Clutha Cu 10.6 T48 |  |
|                      | Lab Number:  | 3575453.41        | 3575453.42         | 3575453.43        | 3575453.44         |  |
| Dissolved Copper     | g/m³         | 0.00470 ± 0.00055 | 0.00413 ± 0.00051  | 0.01020 ± 0.00099 | 0.01029 ± 0.0010   |  |
|                      | Sample Name: | Clutha Cu 23.4 T0 | Clutha Cu 23.4 T48 | Clutha Cu 51.5 T0 | Clutha Cu 51.5 T48 |  |
|                      | Lab Number:  | 3575453.45        | 3575453.46         | 3575453.47        | 3575453.48         |  |
| Dissolved Copper     | g/m³         | 0.0228 ± 0.0021   | 0.0221 ± 0.0021    | 0.0541 ± 0.0050   | 0.0474 ± 0.0044    |  |

The reported uncertainty is an expanded uncertainty with a level of confidence of approximately 95 percent (i.e. two standard deviations, calculated using a coverage factor of 2). Reported uncertainties are calculated from the performance of typical matrices, and do not include variation due to sampling.

For further information on uncertainty of measurement at Hill Laboratories, refer to the technical note on our website: www.hill-laboratories.com/files/Intro\_To\_UOM.pdf, or contact the laboratory.

#### **Summary of Methods**

The following table(s) gives a brief description of the methods used to conduct the analyses for this job. The detection limits given below are those attainable in a relatively simple matrix. Detection limits may be higher for individual samples should insufficient sample be available, or if the matrix requires that dilutions be performed during analysis. A detection limit range indicates the lowest and highest detection limits in the associated suite of analytes. A full listing of compounds and detection limits are available from the laboratory upon request. Unless otherwise indicates the indicates the indicates the same analyses were performed at Hill Labs, 28 Duke Street, Frankton, Hamilton 3204.

| Sample Type: Aqueous |                                                                     |                         |                                |  |  |  |
|----------------------|---------------------------------------------------------------------|-------------------------|--------------------------------|--|--|--|
| Test                 | Method Description                                                  | Default Detection Limit | Sample No                      |  |  |  |
| Dissolved Copper     | Filtered sample, ICP-MS, trace level. APHA 3125 B : Online Edition. | 0.0005 g/m <sup>3</sup> | 1-48                           |  |  |  |
| Dissolved Zinc       | Filtered sample, ICP-MS, trace level. APHA 3125 B : Online Edition. | 0.0010 g/m <sup>3</sup> | 1-2, 13-14,<br>25-26,<br>37-38 |  |  |  |

These samples were collected by yourselves (or your agent) and analysed as received at the laboratory.

Testing was completed between 13-May-2024 and 14-May-2024. For completion dates of individual analyses please contact the laboratory.

Samples are held at the laboratory after reporting for a length of time based on the stability of the samples and analytes being tested (considering any preservation used), and the storage space available. Once the storage period is completed, the samples are discarded unless otherwise agreed with the customer. Extended storage times may incur additional charges.

This certificate of analysis must not be reproduced, except in full, without the written consent of the signatory.

Ara Heron BSc (Tech) Client Services Manager - Environmental

## Appendix D Hill Labs results – Okutua, zinc and copper



| R J Hill Laboratories Limited |
|-------------------------------|
| 28 Duke Street Frankton 3204  |
| Private Bag 3205              |
| Hamilton 3240 New Zealand     |

**6 0508 HILL LAB** (44 555 22)
 ★ +64 7 858 2000
 ✓ mail@hill-labs.co.nz
 ₩ www.hill-labs.co.nz

| Certi        | ficate of Analy                   | sis               |                     |           |              | Page 1 of 2         |
|--------------|-----------------------------------|-------------------|---------------------|-----------|--------------|---------------------|
| Client:      | NIWA Corporate                    |                   | Lab No:             |           | 3599299      | SUPv2               |
| Contact:     | K Thompson                        |                   | Date Received:      |           | 05-Jun-20    | 24                  |
|              | C/- NIWA Corporate Date Reported: |                   | rted:               | 21-Jun-20 | 24 (Amended) |                     |
|              | PO Box 11115                      |                   | Quote No:           |           | 130803       |                     |
|              | Hillcrest                         |                   | Order No:           |           | U334528      |                     |
|              | Hamilton 3251                     |                   | Client Refe         | erence:   | Okutua       |                     |
|              |                                   |                   | Submitted           | By:       | K Thomps     | son                 |
| Sample Ty    | ype: Aqueous                      |                   |                     |           |              |                     |
|              | Sample Name:                      | Okutua Control To | Okutua Control Tend | Okutua    | Cu 10.6 To   | Okutua Cu 10.6 Tend |
|              | Lab Number:                       | 3599299.1         | 3599299.2           | 359       | 99299.3      | 3599299.4           |
| Dissolved Co | opper g/m <sup>3</sup>            | -                 | 0.00126 ± 0.00035   |           | -            | -                   |
| Total Copper | r g/m³                            | 0.00130 ± 0.00038 | -                   | 0.014     | 3 ± 0.0015   | 0.0137 ± 0.0015     |
| Dissolved Zi | nc g/m³                           | -                 | 0.00441 ± 0.00078   |           | -            | -                   |
| Total Zinc   | g/m <sup>3</sup>                  | 0.00390 ± 0.00080 | -                   |           | -            | -                   |
|              | Sample Name:                      | Okutua Cu 23.4 To | Okutua Cu 23.4 Tend | Okutua    | Cu 51.5 To   | Okutua Cu 51.5 Tend |
|              | Lab Number:                       | 3599299.5         | 3599299.6           | 359       | 99299.7      | 3599299.8           |
| Dissolved Co | opper g/m <sup>3</sup>            | -                 | 0.0283 ± 0.0026     | 0.060     | 1 ± 0.0055   | 0.0578 ± 0.0053     |
| Total Copper | r g/m³                            | 0.0284 ± 0.0029   | -                   |           | -            | -                   |
|              | Sample Name:                      | Okutua Cu 113 To  | Okutua Cu 113 Tend  | Okutua    | a Cu 249 To  | Okutua Cu 249 Tend  |
|              | Lab Number:                       | 3599299.9         | 3599299.10          | 359       | 9299.11      | 3599299.12          |
| Dissolved Co | opper g/m <sup>3</sup>            | -                 | -                   |           | -            | 0.284 ± 0.026       |
| Total Copper | r g/m <sup>3</sup>                | 0.136 ± 0.014     | 0.136 ± 0.014       | 0.28      | 3 ± 0.029    | -                   |
|              | Sample Name:                      | Okutua Zn 100 To  | Okutua Zn 100 Tend  | Okutua    | a Zn 220 To  | Okutua Zn 220 Tend  |
|              | Lab Number:                       | 3599299.13        | 3599299.14          | 359       | 9299.15      | 3599299.16          |
| Dissolved Zi | nc g/m³                           | -                 | 0.108 ± 0.011       |           | -            | 0.220 ± 0.021       |
| Total Zinc   | g/m <sup>3</sup>                  | 0.1099 ± 0.0089   | -                   | 0.25      | 2 ± 0.021    | -                   |
|              | Sample Name:                      | Okutua Zn 484 To  | Okutua Zn 484 Tend  | Okutua    | Zn 1065 To   | Okutua Zn 1065 Tend |
|              | Lab Number:                       | 3599299.17        | 3599299.18          | 359       | 9299.19      | 3599299.20          |
| Dissolved Zi | nc g/m³                           | 0.495 ± 0.047     | 0.468 ± 0.044       | 1.0       | 7 ± 0.10     | 1.09 ± 0.11         |
|              | Sample Name:                      | Okutua Z          | n 2343 To           |           | Okutua Zn    | 2343 Tend           |
|              | Lab Number:                       | 35992             | 299.21              |           | 35992        | 299.22              |
| Total Copper | r g/m³                            | 0.00137 :         | ± 0.00038           |           | 0.00137 :    | ± 0.00038           |
| Total Zinc   | g/m³                              | 2.34 :            | ± 0.19              |           | 2.31 :       | ± 0.19              |

The reported uncertainty is an expanded uncertainty with a level of confidence of approximately 95 percent (i.e. two standard deviations, calculated using a coverage factor of 2). Reported uncertainties are calculated from the performance of typical matrices, and do not include variation due to sampling.

For further information on uncertainty of measurement at Hill Laboratories, refer to the technical note on our website: www.hill-laboratories.com/files/Intro\_To\_UOM.pdf, or contact the laboratory.

#### **Analyst's Comments**

Amended Report: This certificate of analysis replaces report '3599299-SUPv1' issued on 19-Jun-2024 at 3:42 pm. Reason for amendment: Zinc results are now reported for the last two samples [sample registration error].



This Laboratory is accredited by International Accreditation New Zealand (IANZ), which represents New Zealand in the International Laboratory Accreditation Cooperation (ILAC). Through the ILAC Mutual Recognision Arrangement (ILAC-MRA) this accreditation is internationally recognised. The tests reported herein have been performed in accrediations, which are not accredited, with the terms of accredited.

#### **Summary of Methods**

The following table(s) gives a brief description of the methods used to conduct the analyses for this job. The detection limits given below are those attainable in a relatively simple matrix. Detection limits may be higher for individual samples should insufficient sample be available, or if the matrix requires that dilutions be performed during analysis. A detection limit range indicates the lowest and highest detection limits in the associated suite of analytes. A full listing of compounds and detection limits are available from the laboratory upon request. Unless otherwise indicated, analyses were performed at Hill Labs, 28 Duke Street, Frankton, Hamilton 3204.

| Sample Type: Aqueous |                                                                                          |                          |                        |
|----------------------|------------------------------------------------------------------------------------------|--------------------------|------------------------|
| Test                 | Method Description                                                                       | Default Detection Limit  | Sample No              |
| Total Digestion      | Nitric acid digestion. APHA 3030 E (modified) : Online Edition.                          | -                        | 1, 3-5, 9-11,          |
|                      |                                                                                          |                          | 13, 15,                |
|                      |                                                                                          |                          | 21-22                  |
| Dissolved Copper     | Filtered sample, ICP-MS, trace level. APHA 3125 B : Online Edition.                      | 0.0005 g/m <sup>3</sup>  | 2, 6-8, 12             |
| Total Copper         | Nitric acid digestion, ICP-MS, trace level. APHA 3125 B : Online Edition / US EPA 200.8. | 0.00053 g/m <sup>3</sup> | 1, 3-5, 9-11,<br>21-22 |
| Dissolved Zinc       | Filtered sample, ICP-MS, trace level. APHA 3125 B : Online Edition.                      | 0.0010 g/m <sup>3</sup>  | 2, 14, 16-20           |
| Total Zinc           | Nitric acid digestion, ICP-MS, trace level. APHA 3125 B : Online Edition / US EPA 200.8. | 0.0011 g/m <sup>3</sup>  | 1, 13, 15,<br>21-22    |

These samples were collected by yourselves (or your agent) and analysed as received at the laboratory.

Testing was completed between 10-Jun-2024 and 21-Jun-2024. For completion dates of individual analyses please contact the laboratory.

Samples are held at the laboratory after reporting for a length of time based on the stability of the samples and analytes being tested (considering any preservation used), and the storage space available. Once the storage period is completed, the samples are discarded unless otherwise agreed with the customer. Extended storage times may incur additional charges.

This certificate of analysis must not be reproduced, except in full, without the written consent of the signatory.

1

Ara Heron BSc (Tech) Client Services Manager - Environmental

Lab No: 3599299-SUPv2

Hill Labs

# Appendix E Toxicity tests raw data

## Zinc

| Acute D. the          | omson     | <i>i</i> results  |               |               |                                         |
|-----------------------|-----------|-------------------|---------------|---------------|-----------------------------------------|
| Natural water Nominal |           |                   |               |               |                                         |
| Zinc µg/L             | Replicate | # Daphnia exposed | 24 h Survival | 48 h Survival | Comment                                 |
| Mahurangi Control 0   | 1         | 10                | 10            | 10            | Sent to hill labs with coppers          |
| Mahurangi Control 0   | 2         | 10                | 10            | 10            |                                         |
| Mahurangi Control 0   | 3         | 10                | 10            | 10            |                                         |
| Mahurangi Control 0   | 4         | 10                | 10            | 10            |                                         |
| Mahurangi Control 0   | 5         | 10                | 10            | 10            |                                         |
| Mahurangi 100         | 1         | 10                | 10            | 10            | Sent to hill labs for analysis T0 & T48 |
|                       | 2         | 10                | 10            | 10            |                                         |
|                       | 3         | 10                | 10            | 10            |                                         |
| Mahurangi 220         | 1         | 10                | 10            | 10            | Sent to hill labs for analysis T0 & T48 |
|                       | 2         | 10                | 10            | 10            |                                         |
|                       | 3         | 10                | 10            | 10            |                                         |
| Mahurangi 484         | 1         | 10                | 9             | 9             | Sent to hill labs for analysis T0 & T48 |
|                       | 2         | 10                | 10            | 9             |                                         |
|                       | 3         | 10                | 10            | 9             |                                         |
| Mahurangi 1065        | 1         | 10                | 7             | 2             | Sent to hill labs for analysis TO & T48 |
|                       | 2         | 10                | 7             | 4             |                                         |
|                       | 3         | 10                | 6             | 2             |                                         |
| Mahurangi 2343        | 1         | 10                | 5             | 0             | Sent to hill labs for analysis TO & T48 |
|                       | 2         | 10                | 4             | 0             |                                         |
|                       | 2         | 10                | 4             | 0             |                                         |
| Mahurangi 5154        | 1         | 10                | 4             | 0             | Not sent to Hill Jahs                   |
|                       | 2         | 10                | 0             | 0             |                                         |
|                       | 2         | 10                | 0             | 0             |                                         |
| Mahurangi 11000       | 5         | 10                | 0             | 0             | Natsoatta Lilliaha                      |
| wanurangi 11000       | 1         | 10                | 0             | 0             |                                         |
|                       | 2         | 10                | 0             | 0             |                                         |
| Natural water Nominal | 5         | 10                | 0             | 0             |                                         |
| Zinc ug/L             | Replicate | # Daphnia exposed | 24 h Survival | 48 h Survival | Comment                                 |
|                       | 1         | 10                | 10            | 10            | Sent to hills with conners              |
| Hoteo Control 0       | 2         | 10                | 10            | 10            | Sent to mis with coppers                |
| Hoteo Control 0       | 2         | 10                | 10            | 10            |                                         |
| Hoteo Control 0       | 3         | 10                | 10            | 10            |                                         |
| Hoteo Control 0       | 4         | 10                | 10            | 10            |                                         |
| Hoteo 100             | 1         | 10                | 10            | 10            | Sont to hill labs for analysis TO & T48 |
|                       | 2         | 10                | 10            | 10            |                                         |
|                       | 2         | 10                | 10            | 10            |                                         |
| Listen 220            | 3         | 10                | 10            | 10            | Cont to hill lobe for anolysis TO 9 T49 |
| Hoteo 220             | 1         | 10                | 10            | 10            | Sent to hill labs for analysis 10 & 148 |
|                       | 2         | 10                | 10            | 10            |                                         |
|                       | 3         | 10                | 10            | 10            |                                         |
| Hoteo 484             | 1         | 10                | 9             | 6             | Sent to hill labs for analysis 10 & 148 |
|                       | 2         | 10                | 10            | 7             |                                         |
|                       | 3         | 10                | 10            | 8             |                                         |
| Hoteo 1065            | 1         | 10                | 8             | 2             | Sent to hill labs for analysis T0 & T48 |
|                       | 2         | 10                | 7             | 3             |                                         |
|                       | 3         | 10                | 9             | 5             |                                         |
| Hoteo 2343            | 1         | 10                | 6             | 0             | Sent to hill labs for analysis T0 & T48 |
|                       | 2         | 10                | 8             | 0             |                                         |
|                       | 3         | 10                | 6             | 0             |                                         |
| Hoteo 5154            | 1         | 10                | 0             | 0             | Not sent to Hill labs                   |
|                       | 2         | 10                | 0             | 0             |                                         |
|                       | 3         | 10                | 0             | 0             |                                         |
| Hoteo 11000           | 1         | 10                | 0             | 0             | Not sent to Hill labs                   |
|                       | 2         | 10                | 0             | 0             |                                         |
|                       | 3         | 10                | 0             | 0             |                                         |

| Natural water Nominal                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                           |                                                                                                                                   |                                                                                                                                                                                                                                                                                                                  |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Zinc µg/L                                                                                                                                                                                                                      | Replicate                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | # Daphnia exposed                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 24 h Survival                                                             | 48 h Survival                                                                                                                     | Comment                                                                                                                                                                                                                                                                                                          |
| Okutua Control 0                                                                                                                                                                                                               | 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 10                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 10                                                                        | 10                                                                                                                                | Sent to hill labs for analysis T0 & T48                                                                                                                                                                                                                                                                          |
| Okutua Control 0                                                                                                                                                                                                               | 2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 10                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 10                                                                        | 10                                                                                                                                |                                                                                                                                                                                                                                                                                                                  |
| Okutua Control 0                                                                                                                                                                                                               | 3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 10                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 10                                                                        | 10                                                                                                                                |                                                                                                                                                                                                                                                                                                                  |
| Okutua Control 0                                                                                                                                                                                                               | 4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 10                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 10                                                                        | 10                                                                                                                                |                                                                                                                                                                                                                                                                                                                  |
| Okutua Control 0                                                                                                                                                                                                               | 5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 10                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 10                                                                        | 9                                                                                                                                 |                                                                                                                                                                                                                                                                                                                  |
| Okutua 100                                                                                                                                                                                                                     | 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 10                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 10                                                                        | 10                                                                                                                                | Sent to hill labs for analysis T0 & T48                                                                                                                                                                                                                                                                          |
|                                                                                                                                                                                                                                | 2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 10                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 10                                                                        | 8                                                                                                                                 |                                                                                                                                                                                                                                                                                                                  |
|                                                                                                                                                                                                                                | 3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 10                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 10                                                                        | 10                                                                                                                                |                                                                                                                                                                                                                                                                                                                  |
| Okutua 220                                                                                                                                                                                                                     | 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 10                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 10                                                                        | 6                                                                                                                                 | Sent to hill labs for analysis T0 & T48                                                                                                                                                                                                                                                                          |
|                                                                                                                                                                                                                                | 2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 10                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 10                                                                        | 6                                                                                                                                 |                                                                                                                                                                                                                                                                                                                  |
|                                                                                                                                                                                                                                | 3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 10                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 10                                                                        | 9                                                                                                                                 |                                                                                                                                                                                                                                                                                                                  |
| Okutua 484                                                                                                                                                                                                                     | 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 10                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 9                                                                         | 1                                                                                                                                 | Sent to hill labs for analysis TO & T/8                                                                                                                                                                                                                                                                          |
|                                                                                                                                                                                                                                | 2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 10                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 10                                                                        | 3                                                                                                                                 |                                                                                                                                                                                                                                                                                                                  |
|                                                                                                                                                                                                                                | 2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 10                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 10                                                                        | 2                                                                                                                                 |                                                                                                                                                                                                                                                                                                                  |
| Okutua 1065                                                                                                                                                                                                                    | 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 10                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 9                                                                         | 3                                                                                                                                 | Sont to hill lobe for analysis TO & TAP                                                                                                                                                                                                                                                                          |
|                                                                                                                                                                                                                                | 2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 10                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 0                                                                         | 0                                                                                                                                 |                                                                                                                                                                                                                                                                                                                  |
|                                                                                                                                                                                                                                | 2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 10                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 0                                                                         | 0                                                                                                                                 |                                                                                                                                                                                                                                                                                                                  |
| 01 1 2242                                                                                                                                                                                                                      | 3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 10                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 0                                                                         | 0                                                                                                                                 |                                                                                                                                                                                                                                                                                                                  |
| Okutua 2343                                                                                                                                                                                                                    | 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 10                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 0                                                                         | 0                                                                                                                                 | Sent to hill labs for analysis 10 & 148                                                                                                                                                                                                                                                                          |
|                                                                                                                                                                                                                                | 2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 10                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 0                                                                         | 0                                                                                                                                 |                                                                                                                                                                                                                                                                                                                  |
|                                                                                                                                                                                                                                | 3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 10                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 0                                                                         | 0                                                                                                                                 |                                                                                                                                                                                                                                                                                                                  |
| Okutua 5154                                                                                                                                                                                                                    | 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 10                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 0                                                                         | 0                                                                                                                                 | Not sent to Hill labs                                                                                                                                                                                                                                                                                            |
|                                                                                                                                                                                                                                | 2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 10                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 0                                                                         | 0                                                                                                                                 |                                                                                                                                                                                                                                                                                                                  |
|                                                                                                                                                                                                                                | 3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 10                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 0                                                                         | 0                                                                                                                                 |                                                                                                                                                                                                                                                                                                                  |
| Okutua 11000                                                                                                                                                                                                                   | 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 10                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 0                                                                         | 0                                                                                                                                 | Not sent to Hill labs                                                                                                                                                                                                                                                                                            |
|                                                                                                                                                                                                                                | 2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 10                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 0                                                                         | 0                                                                                                                                 |                                                                                                                                                                                                                                                                                                                  |
|                                                                                                                                                                                                                                | 3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 10                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 0                                                                         | 0                                                                                                                                 |                                                                                                                                                                                                                                                                                                                  |
| Notural water Naminal                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                           |                                                                                                                                   |                                                                                                                                                                                                                                                                                                                  |
|                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | " D                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                           |                                                                                                                                   |                                                                                                                                                                                                                                                                                                                  |
|                                                                                                                                                                                                                                | Replicate                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | # Daphnia exposed                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 24 h Survival                                                             | 48 h Survival                                                                                                                     | Comment                                                                                                                                                                                                                                                                                                          |
| Zinc µg/L<br>Clutha Control 0                                                                                                                                                                                                  | Replicate                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | # Daphnia exposed                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | <b>24 h Survival</b><br>10                                                | 48 h Survival                                                                                                                     | Comment<br>Sent to hill labs with coppers                                                                                                                                                                                                                                                                        |
| Zinc μg/L           Clutha Control 0           Clutha Control 0                                                                                                                                                                | Replicate                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | # Daphnia exposed<br>10<br>10                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 24 h Survival<br>10<br>10                                                 | <b>48 h Survival</b><br>10<br>10                                                                                                  | Comment<br>Sent to hill labs with coppers                                                                                                                                                                                                                                                                        |
| Zinc µg/L<br>Clutha Control 0<br>Clutha Control 0<br>Clutha Control 0<br>Clutha Control 0                                                                                                                                      | Replicate123                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | # Daphnia exposed<br>10<br>10<br>10<br>10                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | <b>24 h Survival</b><br>10<br>10<br>10                                    | <b>48 h Survival</b><br>10<br>10<br>10                                                                                            | Comment<br>Sent to hill labs with coppers                                                                                                                                                                                                                                                                        |
| Zinc µg/L<br>Clutha Control 0<br>Clutha Control 0<br>Clutha Control 0<br>Clutha Control 0<br>Clutha Control 0                                                                                                                  | Replicate 1 2 3 4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | # Daphnia exposed<br>10<br>10<br>10<br>10<br>10<br>10                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 24 h Survival<br>10<br>10<br>10<br>10                                     | <b>48 h Survival</b><br>10<br>10<br>10<br>9                                                                                       | Comment<br>Sent to hill labs with coppers                                                                                                                                                                                                                                                                        |
| Zinc µg/L<br>Clutha Control 0<br>Clutha Control 0<br>Clutha Control 0<br>Clutha Control 0<br>Clutha Control 0<br>Clutha Control 0                                                                                              | Replicate           1           2           3           4           5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | # Daphnia exposed<br>10<br>10<br>10<br>10<br>10<br>10<br>10                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 24 h Survival<br>10<br>10<br>10<br>10<br>10<br>10                         | <b>48 h Survival</b><br>10<br>10<br>10<br>9<br>10                                                                                 | Comment<br>Sent to hill labs with coppers                                                                                                                                                                                                                                                                        |
| Zinc µg/L<br>Clutha Control 0<br>Clutha Control 0<br>Clutha Control 0<br>Clutha Control 0<br>Clutha Control 0<br>Clutha Control 0<br>Clutha 45                                                                                 | Replicate           1           2           3           4           5           1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | # Daphnia exposed<br>10<br>10<br>10<br>10<br>10<br>10<br>10<br>10<br>10                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 24 h Survival<br>10<br>10<br>10<br>10<br>10<br>10<br>10<br>10             | <b>48 h Survival</b><br>10<br>10<br>10<br>9<br>10<br>10                                                                           | Comment<br>Sent to hill labs with coppers<br>Not sent to Hill labs                                                                                                                                                                                                                                               |
| Zinc µg/L<br>Clutha Control 0<br>Clutha Control 0<br>Clutha Control 0<br>Clutha Control 0<br>Clutha Control 0<br>Clutha Control 0<br>Clutha 45                                                                                 | Replicate           1           2           3           4           5           1           2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | # Daphnia exposed<br>10<br>10<br>10<br>10<br>10<br>10<br>10<br>10<br>10<br>10                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 24 h Survival<br>10<br>10<br>10<br>10<br>10<br>10<br>10<br>10<br>10<br>10 | <b>48 h Survival</b><br>10<br>10<br>9<br>10<br>10<br>10                                                                           | Comment<br>Sent to hill labs with coppers<br>Not sent to Hill labs                                                                                                                                                                                                                                               |
| Zinc µg/L<br>Clutha Control 0<br>Clutha Control 0<br>Clutha Control 0<br>Clutha Control 0<br>Clutha Control 0<br>Clutha Control 0<br>Clutha 45                                                                                 | Replicate           1           2           3           4           5           1           2           3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | # Daphnia exposed<br>10<br>10<br>10<br>10<br>10<br>10<br>10<br>10<br>10<br>10                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 24 h Survival<br>10<br>10<br>10<br>10<br>10<br>10<br>10<br>10<br>10<br>10 | <b>48 h Survival</b><br>10<br>10<br>9<br>10<br>10<br>10<br>10<br>10                                                               | Comment<br>Sent to hill labs with coppers<br>Not sent to Hill labs                                                                                                                                                                                                                                               |
| Zinc µg/L       Clutha Control 0       Clutha 45       Clutha 100                                                                  | Replicate           1           2           3           4           5           1           2           3           4           5           1           2           3           1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | # Daphnia exposed           10           10           10           10           10           10           10           10           10           10           10           10           10           10           10           10           10           10           10           10           10           10           10                                                                                                                                                                                                                                                                                                                         | 24 h Survival<br>10<br>10<br>10<br>10<br>10<br>10<br>10<br>10<br>10<br>10 | 48 h Survival<br>10<br>10<br>10<br>9<br>10<br>10<br>10<br>10<br>10<br>10<br>10                                                    | Comment<br>Sent to hill labs with coppers<br>Not sent to Hill labs<br>Sent to hill labs for analysis T0 & T48                                                                                                                                                                                                    |
| Zinc µg/L       Clutha Control 0       Clutha 45       Clutha 100                                                                  | Replicate           1           2           3           4           5           1           2           3           1           2           3           1           2           3           1           2                                                                                                                                                                                                                                                                                                                                                                                                                                                             | # Daphnia exposed<br>10<br>10<br>10<br>10<br>10<br>10<br>10<br>10<br>10<br>10                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 24 h Survival<br>10<br>10<br>10<br>10<br>10<br>10<br>10<br>10<br>10<br>10 | 48 h Survival<br>10<br>10<br>10<br>9<br>10<br>10<br>10<br>10<br>10<br>10<br>10<br>10<br>10<br>10                                  | Comment<br>Sent to hill labs with coppers<br>Not sent to Hill labs<br>Sent to hill labs for analysis T0 & T48                                                                                                                                                                                                    |
| Zinc µg/L       Clutha Control 0       Clutha 45       Clutha 100                                                                  | Replicate           1           2           3           4           5           1           2           3           1           2           3           1           2           3           1           2           3           3                                                                                                                                                                                                                                                                                                                                                                                                                                     | # Daphnia exposed<br>10<br>10<br>10<br>10<br>10<br>10<br>10<br>10<br>10<br>10                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 24 h Survival<br>10<br>10<br>10<br>10<br>10<br>10<br>10<br>10<br>10<br>10 | 48 h Survival<br>10<br>10<br>10<br>9<br>10<br>10<br>10<br>10<br>10<br>10<br>10<br>10<br>10<br>10                                  | Comment<br>Sent to hill labs with coppers<br>Not sent to Hill labs<br>Sent to hill labs for analysis T0 & T48                                                                                                                                                                                                    |
| Zinc µg/L       Clutha Control 0       Clutha 45       Clutha 100       Clutha 220                                                 | Replicate           1           2           3           4           5           1           2           3           1           2           3           1           2           3           1           2           3           1           2           3           1                                                                                                                                                                                                                                                                                                                                                                                                 | # Daphnia exposed<br>10<br>10<br>10<br>10<br>10<br>10<br>10<br>10<br>10<br>10                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 24 h Survival<br>10<br>10<br>10<br>10<br>10<br>10<br>10<br>10<br>10<br>10 | 48 h Survival<br>10<br>10<br>10<br>9<br>10<br>10<br>10<br>10<br>10<br>10<br>10<br>10<br>10<br>9<br>9                              | Comment<br>Sent to hill labs with coppers<br>Not sent to Hill labs<br>Sent to hill labs for analysis T0 & T48<br>Sent to hill labs for analysis T0 & T48                                                                                                                                                         |
| Zinc µg/L       Clutha Control 0       Clutha 100       Clutha 220                                                                 | Replicate           1           2           3           4           5           1           2           3           1           2           3           1           2           3           1           2           3           1           2           3           1           2           3           1           2                                                                                                                                                                                                                                                                                                                                                 | # Daphnia exposed<br>10<br>10<br>10<br>10<br>10<br>10<br>10<br>10<br>10<br>10                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 24 h Survival<br>10<br>10<br>10<br>10<br>10<br>10<br>10<br>10<br>10<br>10 | 48 h Survival<br>10<br>10<br>10<br>9<br>10<br>10<br>10<br>10<br>10<br>10<br>10<br>10<br>9<br>9<br>9<br>9<br>9<br>9                | Comment Sent to hill labs with coppers Not sent to Hill labs Sent to hill labs for analysis T0 & T48 Sent to hill labs for analysis T0 & T48                                                                                                                                                                     |
| Zinc µg/L       Clutha Control 0       Clutha Control 0       Clutha Control 0       Clutha Control 0       Clutha 45       Clutha 100       Clutha 220                                                                        | Replicate           1           2           3           4           5           1           2           3           1           2           3           1           2           3           1           2           3           1           2           3           1           2           3           1           2           3                                                                                                                                                                                                                                                                                                                                     | # Daphnia exposed<br>10<br>10<br>10<br>10<br>10<br>10<br>10<br>10<br>10<br>10                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 24 h Survival<br>10<br>10<br>10<br>10<br>10<br>10<br>10<br>10<br>10<br>10 | 48 h Survival<br>10<br>10<br>10<br>9<br>10<br>10<br>10<br>10<br>10<br>10<br>10<br>10<br>9<br>9<br>9<br>8                          | Comment Sent to hill labs with coppers Not sent to Hill labs Sent to hill labs for analysis T0 & T48 Sent to hill labs for analysis T0 & T48                                                                                                                                                                     |
| Zinc µg/L       Clutha Control 0       Clutha Control 0       Clutha Control 0       Clutha Control 0       Clutha 100       Clutha 220       Clutha 484                                                                       | Replicate           1           2           3           4           5           1           2           3           1           2           3           1           2           3           1           2           3           1           2           3           1           2           3           1           2           3           1                                                                                                                                                                                                                                                                                                                         | # Daphnia exposed           10           10           10           10           10           10           10           10           10           10           10           10           10           10           10           10           10           10           10           10           10           10           10           10           10           10           10           10                                                                                                                                                                                                                                                        | 24 h Survival<br>10<br>10<br>10<br>10<br>10<br>10<br>10<br>10<br>10<br>10 | 48 h Survival<br>10<br>10<br>10<br>9<br>10<br>10<br>10<br>10<br>10<br>10<br>10<br>10<br>9<br>9<br>9<br>8<br>6                     | Comment Sent to hill labs with coppers Not sent to Hill labs Sent to hill labs for analysis T0 & T48 Sent to hill labs for analysis T0 & T48                                                                                                                                                                     |
| Zinc µg/L       Clutha Control 0       Clutha Control 0       Clutha Control 0       Clutha Control 0       Clutha 45       Clutha 100       Clutha 220       Clutha 484                                                       | Replicate           1           2           3           4           5           1           2           3           1           2           3           1           2           3           1           2           3           1           2           3           1           2           3           1           2           3           1           2           3                                                                                                                                                                                                                                                                                                 | # Daphnia exposed<br>10<br>10<br>10<br>10<br>10<br>10<br>10<br>10<br>10<br>10                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 24 h Survival<br>10<br>10<br>10<br>10<br>10<br>10<br>10<br>10<br>10<br>10 | 48 h Survival<br>10<br>10<br>10<br>9<br>10<br>10<br>10<br>10<br>10<br>10<br>10<br>10<br>9<br>9<br>8<br>6<br>6                     | Comment Sent to hill labs with coppers Not sent to Hill labs Sent to hill labs for analysis T0 & T48 Sent to hill labs for analysis T0 & T48                                                                                                                                                                     |
| Zinc µg/L       Clutha Control 0       Clutha Control 0       Clutha Control 0       Clutha Control 0       Clutha 45       Clutha 100       Clutha 220       Clutha 484                                                       | Replicate           1           2           3           4           5           1           2           3           1           2           3           1           2           3           1           2           3           1           2           3           1           2           3           1           2           3           1           2           3           3           1           2           3           1           2           3                                                                                                                                                                                                             | # Daphnia exposed<br>10<br>10<br>10<br>10<br>10<br>10<br>10<br>10<br>10<br>10                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 24 h Survival<br>10<br>10<br>10<br>10<br>10<br>10<br>10<br>10<br>10<br>10 | 48 h Survival<br>10<br>10<br>10<br>9<br>10<br>10<br>10<br>10<br>10<br>10<br>10<br>10<br>9<br>9<br>8<br>6<br>6<br>4                | Comment Sent to hill labs with coppers Not sent to Hill labs Sent to hill labs for analysis T0 & T48 Sent to hill labs for analysis T0 & T48 Sent to hill labs for analysis T0 & T48                                                                                                                             |
| Zinc µg/L       Clutha Control 0       Clutha Control 0       Clutha Control 0       Clutha Control 0       Clutha 100       Clutha 220       Clutha 484       Clutha 1056                                                     | Replicate           1           2           3           4           5           1           2           3           1           2           3           1           2           3           1           2           3           1           2           3           1           2           3           1           2           3           1           2           3           1           2           3           1           2           3           1           2           3           1                                                                                                                                                                         | # Daphnia exposed<br>10<br>10<br>10<br>10<br>10<br>10<br>10<br>10<br>10<br>10                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 24 h Survival<br>10<br>10<br>10<br>10<br>10<br>10<br>10<br>10<br>10<br>10 | 48 h Survival<br>10<br>10<br>10<br>9<br>10<br>10<br>10<br>10<br>10<br>10<br>10<br>10<br>9<br>9<br>8<br>6<br>6<br>6<br>4<br>0      | Comment Sent to hill labs with coppers Not sent to Hill labs Sent to hill labs for analysis T0 & T48 Sent to hill labs for analysis T0 & T48 Sent to hill labs for analysis T0 & T48 Sent to hill labs for analysis T0 & T48                                                                                     |
| Zinc µg/L       Clutha Control 0       Clutha Control 0       Clutha Control 0       Clutha Control 0       Clutha 100       Clutha 220       Clutha 484       Clutha 1056                                                     | Replicate           1           2           3           4           5           1           2           3           1           2           3           1           2           3           1           2           3           1           2           3           1           2           3           1           2           3           1           2           3           1           2           3           1           2           3           1           2           3           1           2                                                                                                                                                             | # Daphnia exposed           10           10           10           10           10           10           10           10           10           10           10           10           10           10           10           10           10           10           10           10           10           10           10           10           10           10           10           10           10           10           10           10           10           10           10           10           10           10           10           10           10           10           10           10                                        | 24 h Survival<br>10<br>10<br>10<br>10<br>10<br>10<br>10<br>10<br>10<br>10 | 48 h Survival<br>10<br>10<br>10<br>9<br>10<br>10<br>10<br>10<br>10<br>10<br>10<br>10<br>9<br>9<br>8<br>6<br>6<br>6<br>4<br>0<br>1 | Comment Sent to hill labs with coppers Not sent to Hill labs Sent to hill labs for analysis T0 & T48 Sent to hill labs for analysis T0 & T48 Sent to hill labs for analysis T0 & T48 Sent to hill labs for analysis T0 & T48                                                                                     |
| Zinc µg/L       Clutha Control 0       Clutha Control 0       Clutha Control 0       Clutha Control 0       Clutha 100       Clutha 220       Clutha 484       Clutha 1056                                                     | Replicate           1           2           3           4           5           1           2           3           1           2           3           1           2           3           1           2           3           1           2           3           1           2           3           1           2           3           1           2           3           1           2           3           1           2           3           1           2           3           1           2           3           1           2           3           1           2           3                                                                         | # Daphnia exposed<br>10<br>10<br>10<br>10<br>10<br>10<br>10<br>10<br>10<br>10                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 24 h Survival<br>10<br>10<br>10<br>10<br>10<br>10<br>10<br>10<br>10<br>10 | 48 h Survival<br>10<br>10<br>10<br>10<br>10<br>10<br>10<br>10<br>10<br>10                                                         | Comment Sent to hill labs with coppers Not sent to Hill labs Sent to hill labs for analysis T0 & T48 Sent to hill labs for analysis T0 & T48 Sent to hill labs for analysis T0 & T48 Sent to hill labs for analysis T0 & T48                                                                                     |
| Zinc µg/L       Clutha Control 0       Clutha Control 0       Clutha Control 0       Clutha Control 0       Clutha 45       Clutha 100       Clutha 220       Clutha 484       Clutha 1056       Clutha 2343                   | Replicate           1           2           3           4           5           1           2           3           1           2           3           1           2           3           1           2           3           1           2           3           1           2           3           1           2           3           1           2           3           1           2           3           1           2           3           1           2           3           1           2           3           1           2           3           1                                                                                                 | # Daphnia exposed<br>10<br>10<br>10<br>10<br>10<br>10<br>10<br>10<br>10<br>10                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 24 h Survival<br>10<br>10<br>10<br>10<br>10<br>10<br>10<br>10<br>10<br>10 | 48 h Survival<br>10<br>10<br>10<br>9<br>10<br>10<br>10<br>10<br>10<br>10<br>10<br>10<br>10<br>10                                  | Comment Sent to hill labs with coppers Not sent to Hill labs Sent to hill labs for analysis T0 & T48 Sent to hill labs for analysis T0 & T48 Sent to hill labs for analysis T0 & T48 Sent to hill labs for analysis T0 & T48 Sent to hill labs for analysis T0 & T48 Sent to hill labs for analysis T0 & T48     |
| Zinc µg/L       Clutha Control 0       Clutha Control 0       Clutha Control 0       Clutha Control 0       Clutha 45       Clutha 100       Clutha 220       Clutha 484       Clutha 1056       Clutha 2343                   | Replicate           1           2           3           4           5           1           2           3           1           2           3           1           2           3           1           2           3           1           2           3           1           2           3           1           2           3           1           2           3           1           2           3           1           2           3           1           2           3           1           2           3           1           2                                                                                                                         | # Daphnia exposed<br>10<br>10<br>10<br>10<br>10<br>10<br>10<br>10<br>10<br>10                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 24 h Survival<br>10<br>10<br>10<br>10<br>10<br>10<br>10<br>10<br>10<br>10 | 48 h Survival<br>10<br>10<br>10<br>9<br>10<br>10<br>10<br>10<br>10<br>10<br>10<br>10<br>10<br>10                                  | Comment Sent to hill labs with coppers Not sent to Hill labs Sent to hill labs for analysis T0 & T48 Sent to hill labs for analysis T0 & T48 Sent to hill labs for analysis T0 & T48 Sent to hill labs for analysis T0 & T48 Sent to hill labs for analysis T0 & T48 Sent to hill labs for analysis T0 & T48     |
| Zinc µg/L       Clutha Control 0       Clutha 100       Clutha 220       Clutha 484       Clutha 1056       Clutha 2343            | Replicate           1           2           3           4           5           1           2           3           1           2           3           1           2           3           1           2           3           1           2           3           1           2           3           1           2           3           1           2           3           1           2           3           1           2           3           1           2           3           1           2           3           1           2           3           1           2           3           1           2           3                                     | # Daphnia exposed<br>10<br>10<br>10<br>10<br>10<br>10<br>10<br>10<br>10<br>10                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 24 h Survival<br>10<br>10<br>10<br>10<br>10<br>10<br>10<br>10<br>10<br>10 | 48 h Survival<br>10<br>10<br>10<br>9<br>10<br>10<br>10<br>10<br>10<br>10<br>10<br>10<br>10<br>10                                  | Comment Sent to hill labs with coppers Not sent to Hill labs Sent to hill labs for analysis T0 & T48 Sent to hill labs for analysis T0 & T48 Sent to hill labs for analysis T0 & T48 Sent to hill labs for analysis T0 & T48 Sent to hill labs for analysis T0 & T48                                             |
| Zinc µg/L       Clutha Control 0       Clutha 100       Clutha 220       Clutha 1056       Clutha 2343       Clutha 5154           | Replicate           1           2           3           4           5           1           2           3           1           2           3           1           2           3           1           2           3           1           2           3           1           2           3           1           2           3           1           2           3           1           2           3           1           2           3           1           2           3           1           2           3           1           2           3           1                                                                                                 | # Daphnia exposed<br>10<br>10<br>10<br>10<br>10<br>10<br>10<br>10<br>10<br>10                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 24 h Survival<br>10<br>10<br>10<br>10<br>10<br>10<br>10<br>10<br>10<br>10 | 48 h Survival<br>10<br>10<br>10<br>9<br>10<br>10<br>10<br>10<br>10<br>10<br>10<br>10<br>10<br>10                                  | Comment Sent to hill labs with coppers Not sent to Hill labs Sent to hill labs for analysis T0 & T48 Sent to hill labs for analysis T0 & T48 Sent to hill labs for analysis T0 & T48 Sent to hill labs for analysis T0 & T48 Sent to hill labs for analysis T0 & T48 Not sent to Hill labs for analysis T0 & T48 |
| Zinc µg/L       Clutha Control 0       Clutha Control 0       Clutha Control 0       Clutha Control 0       Clutha 45       Clutha 100       Clutha 220       Clutha 484       Clutha 1056       Clutha 2343       Clutha 5154 | Replicate           1           2           3           4           5           1           2           3           1           2           3           1           2           3           1           2           3           1           2           3           1           2           3           1           2           3           1           2           3           1           2           3           1           2           3           1           2           3           1           2           3           1           2           3           1           2           3           1           2           3           1           2           3 | # Daphnia exposed           10           10           10           10           10           10           10           10           10           10           10           10           10           10           10           10           10           10           10           10           10           10           10           10           10           10           10           10           10           10           10           10           10           10           10           10           10           10           10           10           10           10           10           10           10           10           10 | 24 h Survival<br>10<br>10<br>10<br>10<br>10<br>10<br>10<br>10<br>10<br>10 | 48 h Survival<br>10<br>10<br>10<br>9<br>10<br>10<br>10<br>10<br>10<br>10<br>10<br>10<br>10<br>10                                  | Comment Sent to hill labs with coppers Not sent to Hill labs Sent to hill labs for analysis T0 & T48 Sent to hill labs for analysis T0 & T48 Sent to hill labs for analysis T0 & T48 Sent to hill labs for analysis T0 & T48 Sent to hill labs for analysis T0 & T48 Not sent to Hill labs                       |
| Zinc µg/L       Clutha Control 0       Clutha Control 0       Clutha Control 0       Clutha Control 0       Clutha 45       Clutha 100       Clutha 220       Clutha 484       Clutha 1056       Clutha 2343       Clutha 5154 | Replicate           1           2           3           4           5           1           2           3           1           2           3           1           2           3           1           2           3           1           2           3           1           2           3           1           2           3           1           2           3           1           2           3           1           2           3           1           2           3           1           2           3           1           2           3           1           2           3           1           2           3           1           2           3 | # Daphnia exposed<br>10<br>10<br>10<br>10<br>10<br>10<br>10<br>10<br>10<br>10                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 24 h Survival 10 10 10 10 10 10 10 10 10 10 10 10 10                      | 48 h Survival<br>10<br>10<br>10<br>9<br>10<br>10<br>10<br>10<br>10<br>10<br>10<br>10<br>10<br>10                                  | Comment Sent to hill labs with coppers Not sent to Hill labs Sent to hill labs for analysis T0 & T48 Sent to hill labs for analysis T0 & T48 Sent to hill labs for analysis T0 & T48 Sent to hill labs for analysis T0 & T48 Sent to hill labs for analysis T0 & T48 Not sent to Hill labs                       |

| Natural water Nominal |           |                   |               |               |                                         |
|-----------------------|-----------|-------------------|---------------|---------------|-----------------------------------------|
| Zinc µg/L             | Replicate | # Daphnia exposed | 24 h Survival | 48 h Survival | Comment                                 |
| Waihou Control 0      | 1         | 10                | 10            | 10            | Sent to hill labs with coppers          |
| Waihou Control 0      | 2         | 10                | 10            | 9             |                                         |
| Waihou Control 0      | 3         | 10                | 10            | 10            |                                         |
| Waihou Control 0      | 4         | 10                | 10            | 9             |                                         |
| Waihou Control 0      | 5         | 10                | 10            | 10            |                                         |
| Waihou 100            | 1         | 10                | 10            | 9             | Sent to hill labs for analysis T0 & T48 |
|                       | 2         | 10                | 10            | 10            |                                         |
|                       | 3         | 10                | 10            | 9             |                                         |
| Waihou 220            | 1         | 10                | 9             | 9             | Sent to hill labs for analysis T0 & T48 |
|                       | 2         | 10                | 9             | 7             |                                         |
|                       | 3         | 10                | 9             | 7             |                                         |
| Waihou 484            | 1         | 10                | 9             | 5             | Sent to hill labs for analysis T0 & T48 |
|                       | 2         | 10                | 10            | 4             |                                         |
|                       | 3         | 10                | 9             | 3             |                                         |
| Waihou 1065           | 1         | 10                | 8             | 0             | Sent to hill labs for analysis T0 & T48 |
|                       | 2         | 10                | 5             | 0             |                                         |
|                       | 3         | 10                | 5             | 0             |                                         |
| Waihou 2343           | 1         | 10                | 2             | 0             | Sent to hill labs for analysis T0 & T48 |
|                       | 2         | 10                | 0             | 0             |                                         |
|                       | 3         | 10                | 0             | 0             |                                         |
| Waihou 5145           | 1         | 10                | 0             | 0             | Not sent to Hill labs                   |
|                       | 2         | 10                | 0             | 0             |                                         |
|                       | 3         | 10                | 0             | 0             |                                         |

# Copper

# Acute D. thomsoni results

| Natural water Nominal                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                               |                                                                           |                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------|---------------------------------------------------------------------------|----------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Copper µg/L                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | Replicate                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | # Daphnia exposed                                                             | 24 h Survival                                                             | 48 h Survival                                                                    | Comment                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| Mahurangi Control 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 10                                                                            | 10                                                                        | 10                                                                               | Sent to Hill labs for analysis T0 and T48                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| Mahurangi Control 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 10                                                                            | 10                                                                        | 10                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| Mahurangi Control 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 10                                                                            | 10                                                                        | 10                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| Mahurangi Control 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 10                                                                            | 10                                                                        | 10                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| Mahurangi Control 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 10                                                                            | 10                                                                        | 10                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| Mahurangi 1.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 10                                                                            | 10                                                                        | 10                                                                               | Not sent to Hill labs                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| Mahurangi 1.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 10                                                                            | 10                                                                        | 10                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| Mahurangi 1.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 10                                                                            | 10                                                                        | 10                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| Mahurangi 2.2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 10                                                                            | 10                                                                        | 10                                                                               | Not sent to Hill labs                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| Mahurangi 2.2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 10                                                                            | 10                                                                        | 10                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| Mahurangi 2.2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 10                                                                            | 10                                                                        | 10                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| Mahurangi 4.8                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 10                                                                            | 10                                                                        | 10                                                                               | Not sent to Hill labs                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| Mahurangi 4.8                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 10                                                                            | 10                                                                        | 10                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| Mahurangi 4.8                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 10                                                                            | 10                                                                        | 10                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| Mahurangi 10.6                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 10                                                                            | 10                                                                        | 10                                                                               | Not sent to Hill labs                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| Mahurangi 10.6                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 10                                                                            | 10                                                                        | 10                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| Mahurangi 10.6                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 10                                                                            | 10                                                                        | 10                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| Mahurangi 23.4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 10                                                                            | 10                                                                        | 10                                                                               | Sent to Hill labs for analysis T0 and T48                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| Mahurangi 23.4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 10                                                                            | 10                                                                        | 10                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| Mahurangi 23.4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 10                                                                            | 10                                                                        | 10                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| Mahurangi 51.5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 10                                                                            | 10                                                                        | 10                                                                               | Sent to Hill labs for analysis T0 and T48                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| Mahurangi 51.5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 10                                                                            | 10                                                                        | 10                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| Mahurangi 51.5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 10                                                                            | 10                                                                        | 10                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| Mahurangi 154.5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 10                                                                            | 10                                                                        | 8                                                                                | Sent to Hill labs for analysis T0 and T48                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| Mahurangi 154.5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 10                                                                            | 7                                                                         | 6                                                                                | ,                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| Mahurangi 154.5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 10                                                                            | 8                                                                         | 7                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| Mahurangi 463.5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 10                                                                            | 0                                                                         | 0                                                                                | Sent to Hill labs for analysis T0 and T48                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| Mahurangi 463.5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 10                                                                            | 0                                                                         | 0                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| Mahurangi 463.5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 10                                                                            | 0                                                                         | 0                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| Mahurangi 1390.5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 10                                                                            | 0                                                                         | 0                                                                                | Sent to Hill labs for analysis T0 and T48                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| Mahurangi 1390.5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 10                                                                            | 0                                                                         | 0                                                                                | ,,,,,,                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| Mahurangi 1390.5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 10                                                                            | 0                                                                         | 0                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                               | -                                                                         | -                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| Natural water Nominal                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                               |                                                                           |                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| Natural water Nominal<br>Copper µg/L                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | Replicate                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | # Daphnia exposed                                                             | 24 h Survival                                                             | 48 h Survival                                                                    | Comment                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| Natural water Nominal<br>Copper µg/L<br>Hoteo Control 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | Replicate                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | # Daphnia exposed                                                             | 24 h Survival                                                             | 48 h Survival                                                                    | Comment<br>Sent to Hill labs for analysis TO and T48                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| Natural water Nominal<br>Copper μg/L<br>Hoteo Control 0<br>Hoteo Control 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | Replicate                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | # Daphnia exposed<br>10<br>10                                                 | <b>24 h Survival</b><br>10<br>10                                          | <b>48 h Survival</b><br>10<br>10                                                 | <b>Comment</b><br>Sent to Hill labs for analysis TO and T48                                                                                                                                                                                                                                                                                                                                                                                                                               |
| Natural water Nominal<br>Copper µg/L<br>Hoteo Control 0<br>Hoteo Control 0<br>Hoteo Control 0                                                                                                                                                                                                                                                                                                                                                                                                                                                         | Replicate 1 2 3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | # Daphnia exposed<br>10<br>10<br>10                                           | <b>24 h Survival</b><br>10<br>10<br>10                                    | <b>48 h Survival</b><br>10<br>10<br>10                                           | Comment<br>Sent to Hill labs for analysis T0 and T48                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| Natural water Nominal<br>Copper µg/L<br>Hoteo Control 0<br>Hoteo Control 0<br>Hoteo Control 0<br>Hoteo Control 0                                                                                                                                                                                                                                                                                                                                                                                                                                      | Replicate 1 2 3 4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | # Daphnia exposed<br>10<br>10<br>10<br>10<br>10                               | 24 h Survival<br>10<br>10<br>10<br>10                                     | <b>48 h Survival</b><br>10<br>10<br>10<br>10                                     | Comment<br>Sent to Hill labs for analysis T0 and T48                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| Natural water Nominal<br>Copper µg/L<br>Hoteo Control 0<br>Hoteo Control 0<br>Hoteo Control 0<br>Hoteo Control 0<br>Hoteo Control 0                                                                                                                                                                                                                                                                                                                                                                                                                   | Replicate           1           2           3           4           5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | # Daphnia exposed<br>10<br>10<br>10<br>10<br>10<br>10                         | <b>24 h Survival</b><br>10<br>10<br>10<br>10<br>10                        | <b>48 h Survival</b><br>10<br>10<br>10<br>10<br>10                               | Comment<br>Sent to Hill labs for analysis T0 and T48                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| Natural water Nominal<br>Copper µg/L<br>Hoteo Control 0<br>Hoteo Control 0<br>Hoteo Control 0<br>Hoteo Control 0<br>Hoteo Control 0<br>Hoteo 1.0                                                                                                                                                                                                                                                                                                                                                                                                      | Replicate           1           2           3           4           5           1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | # Daphnia exposed<br>10<br>10<br>10<br>10<br>10<br>10<br>10                   | 24 h Survival<br>10<br>10<br>10<br>10<br>10<br>10                         | <b>48 h Survival</b><br>10<br>10<br>10<br>10<br>10<br>10                         | Comment<br>Sent to Hill labs for analysis T0 and T48<br>Not sent to Hill labs                                                                                                                                                                                                                                                                                                                                                                                                             |
| Natural water Nominal<br>Copper µg/L<br>Hoteo Control 0<br>Hoteo Control 0<br>Hoteo Control 0<br>Hoteo Control 0<br>Hoteo Control 0<br>Hoteo 1.0<br>Hoteo 1.0                                                                                                                                                                                                                                                                                                                                                                                         | Replicate           1           2           3           4           5           1           2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | # Daphnia exposed<br>10<br>10<br>10<br>10<br>10<br>10<br>10<br>10<br>10       | 24 h Survival<br>10<br>10<br>10<br>10<br>10<br>10<br>10<br>10<br>10       | <b>48 h Survival</b><br>10<br>10<br>10<br>10<br>10<br>10<br>10                   | Comment<br>Sent to Hill labs for analysis TO and T48<br>Not sent to Hill labs                                                                                                                                                                                                                                                                                                                                                                                                             |
| Natural water Nominal<br>Copper µg/L<br>Hoteo Control 0<br>Hoteo Control 0<br>Hoteo Control 0<br>Hoteo Control 0<br>Hoteo Control 0<br>Hoteo 1.0<br>Hoteo 1.0<br>Hoteo 1.0                                                                                                                                                                                                                                                                                                                                                                            | Replicate           1           2           3           4           5           1           2           3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | # Daphnia exposed<br>10<br>10<br>10<br>10<br>10<br>10<br>10<br>10<br>10<br>10 | 24 h Survival<br>10<br>10<br>10<br>10<br>10<br>10<br>10<br>10<br>10<br>10 | <b>48 h Survival</b><br>10<br>10<br>10<br>10<br>10<br>10<br>10<br>10<br>10<br>10 | Comment<br>Sent to Hill labs for analysis TO and T48<br>Not sent to Hill labs                                                                                                                                                                                                                                                                                                                                                                                                             |
| Natural water Nominal<br>Copper µg/L<br>Hoteo Control 0<br>Hoteo Control 0<br>Hoteo Control 0<br>Hoteo Control 0<br>Hoteo Control 0<br>Hoteo 1.0<br>Hoteo 1.0<br>Hoteo 2.2                                                                                                                                                                                                                                                                                                                                                                            | Replicate           1           2           3           4           5           1           2           3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | # Daphnia exposed<br>10<br>10<br>10<br>10<br>10<br>10<br>10<br>10<br>10<br>10 | 24 h Survival<br>10<br>10<br>10<br>10<br>10<br>10<br>10<br>10<br>10<br>10 | <b>48 h Survival</b><br>10<br>10<br>10<br>10<br>10<br>10<br>10<br>10<br>10<br>10 | Comment<br>Sent to Hill labs for analysis TO and T48<br>Not sent to Hill labs<br>Not sent to Hill labs                                                                                                                                                                                                                                                                                                                                                                                    |
| Natural water Nominal<br>Copper µg/L<br>Hoteo Control 0<br>Hoteo Control 0<br>Hoteo Control 0<br>Hoteo Control 0<br>Hoteo Control 0<br>Hoteo 1.0<br>Hoteo 1.0<br>Hoteo 1.0<br>Hoteo 2.2<br>Hoteo 2.2                                                                                                                                                                                                                                                                                                                                                  | Replicate           1           2           3           4           5           1           2           3           4           5           1           2           3           1           2           3           1           2           3           1           2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | # Daphnia exposed<br>10<br>10<br>10<br>10<br>10<br>10<br>10<br>10<br>10<br>10 | 24 h Survival<br>10<br>10<br>10<br>10<br>10<br>10<br>10<br>10<br>10<br>10 | 48 h Survival<br>10<br>10<br>10<br>10<br>10<br>10<br>10<br>10<br>10<br>10        | Comment<br>Sent to Hill labs for analysis TO and T48<br>Not sent to Hill labs<br>Not sent to Hill labs                                                                                                                                                                                                                                                                                                                                                                                    |
| Natural water Nominal<br>Copper µg/L<br>Hoteo Control 0<br>Hoteo Control 0<br>Hoteo Control 0<br>Hoteo Control 0<br>Hoteo Control 0<br>Hoteo 1.0<br>Hoteo 1.0<br>Hoteo 1.0<br>Hoteo 2.2<br>Hoteo 2.2<br>Hoteo 2.2                                                                                                                                                                                                                                                                                                                                     | Replicate 1 2 3 4 5 1 2 3 4 5 1 2 3 1 2 3 1 2 3 3 3 1 2 3 3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | # Daphnia exposed<br>10<br>10<br>10<br>10<br>10<br>10<br>10<br>10<br>10<br>10 | 24 h Survival<br>10<br>10<br>10<br>10<br>10<br>10<br>10<br>10<br>10<br>10 | 48 h Survival<br>10<br>10<br>10<br>10<br>10<br>10<br>10<br>10<br>10<br>10        | Comment<br>Sent to Hill labs for analysis TO and T48<br>Not sent to Hill labs<br>Not sent to Hill labs                                                                                                                                                                                                                                                                                                                                                                                    |
| Natural water Nominal<br>Copper µg/L<br>Hoteo Control 0<br>Hoteo Control 0<br>Hoteo Control 0<br>Hoteo Control 0<br>Hoteo 1.0<br>Hoteo 1.0<br>Hoteo 1.0<br>Hoteo 2.2<br>Hoteo 2.2<br>Hoteo 2.2<br>Hoteo 4.8                                                                                                                                                                                                                                                                                                                                           | Replicate           1           2           3           4           5           1           2           3           1           2           3           1           2           3           1           2           3           1           2           3           1           2           3           1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | # Daphnia exposed<br>10<br>10<br>10<br>10<br>10<br>10<br>10<br>10<br>10<br>10 | 24 h Survival<br>10<br>10<br>10<br>10<br>10<br>10<br>10<br>10<br>10<br>10 | 48 h Survival<br>10<br>10<br>10<br>10<br>10<br>10<br>10<br>10<br>10<br>10        | Comment<br>Sent to Hill labs for analysis T0 and T48<br>Not sent to Hill labs<br>Not sent to Hill labs<br>Not sent to Hill labs                                                                                                                                                                                                                                                                                                                                                           |
| Natural water Nominal<br>Copper µg/L<br>Hoteo Control 0<br>Hoteo Control 0<br>Hoteo Control 0<br>Hoteo Control 0<br>Hoteo Control 0<br>Hoteo 1.0<br>Hoteo 1.0<br>Hoteo 1.0<br>Hoteo 2.2<br>Hoteo 2.2<br>Hoteo 2.2<br>Hoteo 4.8<br>Hoteo 4.8                                                                                                                                                                                                                                                                                                           | Replicate           1           2           3           4           5           1           2           3           1           2           3           1           2           3           1           2           3           1           2           3           1           2           3           1           2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | # Daphnia exposed<br>10<br>10<br>10<br>10<br>10<br>10<br>10<br>10<br>10<br>10 | 24 h Survival<br>10<br>10<br>10<br>10<br>10<br>10<br>10<br>10<br>10<br>10 | <b>48 h Survival</b><br>10<br>10<br>10<br>10<br>10<br>10<br>10<br>10<br>10<br>10 | Comment<br>Sent to Hill labs for analysis T0 and T48<br>Not sent to Hill labs<br>Not sent to Hill labs<br>Not sent to Hill labs                                                                                                                                                                                                                                                                                                                                                           |
| Natural water Nominal<br>Copper µg/L<br>Hoteo Control 0<br>Hoteo Control 0<br>Hoteo Control 0<br>Hoteo Control 0<br>Hoteo Control 0<br>Hoteo 1.0<br>Hoteo 1.0<br>Hoteo 1.0<br>Hoteo 2.2<br>Hoteo 2.2<br>Hoteo 2.2<br>Hoteo 4.8<br>Hoteo 4.8                                                                                                                                                                                                                                                                                                           | Replicate           1           2           3           4           5           1           2           3           1           2           3           1           2           3           1           2           3           1           2           3           1           2           3           1           2           3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | # Daphnia exposed<br>10<br>10<br>10<br>10<br>10<br>10<br>10<br>10<br>10<br>10 | 24 h Survival<br>10<br>10<br>10<br>10<br>10<br>10<br>10<br>10<br>10<br>10 | <b>48 h Survival</b><br>10<br>10<br>10<br>10<br>10<br>10<br>10<br>10<br>10<br>10 | Comment<br>Sent to Hill labs for analysis T0 and T48<br>Not sent to Hill labs<br>Not sent to Hill labs<br>Not sent to Hill labs                                                                                                                                                                                                                                                                                                                                                           |
| Natural water Nominal<br>Copper µg/L<br>Hoteo Control 0<br>Hoteo Control 0<br>Hoteo Control 0<br>Hoteo Control 0<br>Hoteo Control 0<br>Hoteo 1.0<br>Hoteo 1.0<br>Hoteo 1.0<br>Hoteo 2.2<br>Hoteo 2.2<br>Hoteo 2.2<br>Hoteo 4.8<br>Hoteo 4.8<br>Hoteo 4.8<br>Hoteo 1.0                                                                                                                                                                                                                                                                                 | Replicate           1           2           3           4           5           1           2           3           1           2           3           1           2           3           1           2           3           1           2           3           1           2           3           1           2           3           1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | # Daphnia exposed<br>10<br>10<br>10<br>10<br>10<br>10<br>10<br>10<br>10<br>10 | 24 h Survival<br>10<br>10<br>10<br>10<br>10<br>10<br>10<br>10<br>10<br>10 | 48 h Survival<br>10<br>10<br>10<br>10<br>10<br>10<br>10<br>10<br>10<br>10        | Comment Sent to Hill labs for analysis T0 and T48 Not sent to Hill labs                                                                                                                                                                                                                                                                                                                           |
| Natural water Nominal<br>Copper µg/L<br>Hoteo Control 0<br>Hoteo Control 0<br>Hoteo Control 0<br>Hoteo Control 0<br>Hoteo Control 0<br>Hoteo 1.0<br>Hoteo 1.0<br>Hoteo 1.0<br>Hoteo 2.2<br>Hoteo 2.2<br>Hoteo 2.2<br>Hoteo 4.8<br>Hoteo 4.8<br>Hoteo 4.8<br>Hoteo 4.8<br>Hoteo 10.6                                                                                                                                                                                                                                                                   | Replicate           1           2           3           4           5           1           2           3           1           2           3           1           2           3           1           2           3           1           2           3           1           2           3           1           2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | # Daphnia exposed<br>10<br>10<br>10<br>10<br>10<br>10<br>10<br>10<br>10<br>10 | 24 h Survival<br>10<br>10<br>10<br>10<br>10<br>10<br>10<br>10<br>10<br>10 | 48 h Survival<br>10<br>10<br>10<br>10<br>10<br>10<br>10<br>10<br>10<br>10        | Comment Sent to Hill labs for analysis T0 and T48 Not sent to Hill labs                                                                                                                                                                                                                                                                                                                           |
| Natural water Nominal<br>Copper µg/L<br>Hoteo Control 0<br>Hoteo Control 0<br>Hoteo Control 0<br>Hoteo Control 0<br>Hoteo Control 0<br>Hoteo 1.0<br>Hoteo 1.0<br>Hoteo 1.0<br>Hoteo 2.2<br>Hoteo 2.2<br>Hoteo 2.2<br>Hoteo 2.2<br>Hoteo 4.8<br>Hoteo 4.8<br>Hoteo 4.8<br>Hoteo 10.6<br>Hoteo 10.6                                                                                                                                                                                                                                                     | Replicate           1           2           3           4           5           1           2           3           1           2           3           1           2           3           1           2           3           1           2           3           1           2           3           1           2           3           1           2           3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | # Daphnia exposed<br>10<br>10<br>10<br>10<br>10<br>10<br>10<br>10<br>10<br>10 | 24 h Survival<br>10<br>10<br>10<br>10<br>10<br>10<br>10<br>10<br>10<br>10 | 48 h Survival<br>10<br>10<br>10<br>10<br>10<br>10<br>10<br>10<br>10<br>10        | Comment Sent to Hill labs for analysis T0 and T48 Not sent to Hill labs                                                                                                                                                                                                                                                                                                                           |
| Natural water Nominal<br>Copper µg/L<br>Hoteo Control 0<br>Hoteo Control 0<br>Hoteo Control 0<br>Hoteo Control 0<br>Hoteo 1.0<br>Hoteo 1.0<br>Hoteo 1.0<br>Hoteo 2.2<br>Hoteo 2.2<br>Hoteo 2.2<br>Hoteo 4.8<br>Hoteo 4.8<br>Hoteo 4.8<br>Hoteo 4.8<br>Hoteo 10.6<br>Hoteo 10.6<br>Hoteo 23.4                                                                                                                                                                                                                                                          | Replicate           1           2           3           4           5           1           2           3           1           2           3           1           2           3           1           2           3           1           2           3           1           2           3           1           2           3           1           2           3           1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | # Daphnia exposed<br>10<br>10<br>10<br>10<br>10<br>10<br>10<br>10<br>10<br>10 | 24 h Survival<br>10<br>10<br>10<br>10<br>10<br>10<br>10<br>10<br>10<br>10 | 48 h Survival<br>10<br>10<br>10<br>10<br>10<br>10<br>10<br>10<br>10<br>10        | Comment Sent to Hill labs for analysis T0 and T48 Not sent to Hill labs Not sent to Hill labs Not sent to Hill labs Sent to Hill labs Sent to Hill labs                                                                                                                                                                                                                                                                                                                                   |
| Natural water Nominal<br>Copper µg/L<br>Hoteo Control 0<br>Hoteo Control 0<br>Hoteo Control 0<br>Hoteo Control 0<br>Hoteo 1.0<br>Hoteo 1.0<br>Hoteo 1.0<br>Hoteo 2.2<br>Hoteo 2.2<br>Hoteo 2.2<br>Hoteo 4.8<br>Hoteo 4.8<br>Hoteo 4.8<br>Hoteo 4.8<br>Hoteo 10.6<br>Hoteo 10.6<br>Hoteo 23.4<br>Hoteo 23.4                                                                                                                                                                                                                                            | Replicate           1           2           3           4           5           1           2           3           1           2           3           1           2           3           1           2           3           1           2           3           1           2           3           1           2           3           1           2           3           1           2           3           1           2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | # Daphnia exposed<br>10<br>10<br>10<br>10<br>10<br>10<br>10<br>10<br>10<br>10 | 24 h Survival<br>10<br>10<br>10<br>10<br>10<br>10<br>10<br>10<br>10<br>10 | 48 h Survival<br>10<br>10<br>10<br>10<br>10<br>10<br>10<br>10<br>10<br>10        | Comment Sent to Hill labs for analysis T0 and T48 Not sent to Hill labs Sent to Hill labs                                                                                                                                                                                                                                                                                                                               |
| Natural water Nominal<br>Copper µg/L<br>Hoteo Control 0<br>Hoteo Control 0<br>Hoteo Control 0<br>Hoteo Control 0<br>Hoteo 1.0<br>Hoteo 1.0<br>Hoteo 1.0<br>Hoteo 2.2<br>Hoteo 2.2<br>Hoteo 2.2<br>Hoteo 2.2<br>Hoteo 4.8<br>Hoteo 4.8<br>Hoteo 4.8<br>Hoteo 4.8<br>Hoteo 10.6<br>Hoteo 23.4<br>Hoteo 23.4                                                                                                                                                                                                                                             | Replicate           1           2           3           4           5           1           2           3           1           2           3           1           2           3           1           2           3           1           2           3           1           2           3           1           2           3           1           2           3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | # Daphnia exposed<br>10<br>10<br>10<br>10<br>10<br>10<br>10<br>10<br>10<br>10 | 24 h Survival<br>10<br>10<br>10<br>10<br>10<br>10<br>10<br>10<br>10<br>10 | 48 h Survival<br>10<br>10<br>10<br>10<br>10<br>10<br>10<br>10<br>10<br>10        | Comment Sent to Hill labs for analysis T0 and T48 Not sent to Hill labs Not sent to Hill labs Not sent to Hill labs Sent to Hill labs Sent to Hill labs                                                                                                                                                                                                                                                                                                                                   |
| Natural water Nominal<br>Copper µg/L<br>Hoteo Control 0<br>Hoteo Control 0<br>Hoteo Control 0<br>Hoteo Control 0<br>Hoteo Control 0<br>Hoteo 1.0<br>Hoteo 1.0<br>Hoteo 1.0<br>Hoteo 2.2<br>Hoteo 2.2<br>Hoteo 2.2<br>Hoteo 2.2<br>Hoteo 4.8<br>Hoteo 4.8<br>Hoteo 4.8<br>Hoteo 4.8<br>Hoteo 10.6<br>Hoteo 10.6<br>Hoteo 23.4<br>Hoteo 23.4<br>Hoteo 23.4<br>Hoteo 23.4<br>Hoteo 23.4                                                                                                                                                                  | Replicate           1           2           3           4           5           1           2           3           1           2           3           1           2           3           1           2           3           1           2           3           1           2           3           1           2           3           1           2           3           1           2           3           1           2           3           1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | # Daphnia exposed<br>10<br>10<br>10<br>10<br>10<br>10<br>10<br>10<br>10<br>10 | 24 h Survival<br>10<br>10<br>10<br>10<br>10<br>10<br>10<br>10<br>10<br>10 | 48 h Survival<br>10<br>10<br>10<br>10<br>10<br>10<br>10<br>10<br>10<br>10        | Comment Sent to Hill labs for analysis T0 and T48 Not sent to Hill labs Not sent to Hill labs Not sent to Hill labs Sent to Hill labs for analysis T0 and T48 Sent to Hill labs for analysis T0 and T48                                                                                                                                                                                                                                                                                   |
| Natural water Nominal<br>Copper µg/L<br>Hoteo Control 0<br>Hoteo Control 0<br>Hoteo Control 0<br>Hoteo Control 0<br>Hoteo Control 0<br>Hoteo 1.0<br>Hoteo 1.0<br>Hoteo 1.0<br>Hoteo 2.2<br>Hoteo 2.2<br>Hoteo 2.2<br>Hoteo 2.2<br>Hoteo 4.8<br>Hoteo 4.8<br>Hoteo 4.8<br>Hoteo 4.8<br>Hoteo 4.8<br>Hoteo 10.6<br>Hoteo 10.6<br>Hoteo 23.4<br>Hoteo 23.4<br>Hoteo 23.4<br>Hoteo 23.4<br>Hoteo 23.4<br>Hoteo 51.5                                                                                                                                       | Replicate           1           2           3           4           5           1           2           3           1           2           3           1           2           3           1           2           3           1           2           3           1           2           3           1           2           3           1           2           3           1           2           3           1           2           3           1           2           3           1           2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | # Daphnia exposed<br>10<br>10<br>10<br>10<br>10<br>10<br>10<br>10<br>10<br>10 | 24 h Survival<br>10<br>10<br>10<br>10<br>10<br>10<br>10<br>10<br>10<br>10 | 48 h Survival 10 10 10 10 10 10 10 10 10 10 10 10 10                             | Comment Sent to Hill labs for analysis T0 and T48 Not sent to Hill labs Not sent to Hill labs Not sent to Hill labs Sent to Hill labs Sent to Hill labs for analysis T0 and T48 Sent to Hill labs for analysis T0 and T48                                                                                                                                                                                                                                                                 |
| Natural water Nominal<br>Copper µg/L<br>Hoteo Control 0<br>Hoteo Control 0<br>Hoteo Control 0<br>Hoteo Control 0<br>Hoteo Control 0<br>Hoteo 1.0<br>Hoteo 1.0<br>Hoteo 1.0<br>Hoteo 2.2<br>Hoteo 2.2<br>Hoteo 2.2<br>Hoteo 4.8<br>Hoteo 4.8<br>Hoteo 4.8<br>Hoteo 4.8<br>Hoteo 4.8<br>Hoteo 4.8<br>Hoteo 10.6<br>Hoteo 10.6<br>Hoteo 23.4<br>Hoteo 23.4<br>Hoteo 23.4<br>Hoteo 51.5<br>Hoteo 51.5                                                                                                                                                     | Replicate           1           2           3           4           5           1           2           3           1           2           3           1           2           3           1           2           3           1           2           3           1           2           3           1           2           3           1           2           3           1           2           3           1           2           3           1           2           3           1           2           3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | # Daphnia exposed<br>10<br>10<br>10<br>10<br>10<br>10<br>10<br>10<br>10<br>10 | 24 h Survival<br>10<br>10<br>10<br>10<br>10<br>10<br>10<br>10<br>10<br>10 | 48 h Survival<br>10<br>10<br>10<br>10<br>10<br>10<br>10<br>10<br>10<br>10        | Comment Sent to Hill labs for analysis T0 and T48 Not sent to Hill labs Not sent to Hill labs Not sent to Hill labs Sent to Hill labs Sent to Hill labs for analysis T0 and T48 Sent to Hill labs for analysis T0 and T48                                                                                                                                                                                                                                                                 |
| Natural water Nominal<br>Copper µg/L<br>Hoteo Control 0<br>Hoteo Control 0<br>Hoteo Control 0<br>Hoteo Control 0<br>Hoteo Control 0<br>Hoteo 1.0<br>Hoteo 1.0<br>Hoteo 1.0<br>Hoteo 2.2<br>Hoteo 2.2<br>Hoteo 2.2<br>Hoteo 4.8<br>Hoteo 4.8<br>Hoteo 4.8<br>Hoteo 4.8<br>Hoteo 4.8<br>Hoteo 4.8<br>Hoteo 4.8<br>Hoteo 2.2<br>Hoteo 5.5<br>Hoteo 51.5<br>Hoteo 51.5           | Replicate           1           2           3           4           5           1           2           3           1           2           3           1           2           3           1           2           3           1           2           3           1           2           3           1           2           3           1           2           3           1           2           3           1           2           3           1           2           3           1           2           3           1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | # Daphnia exposed<br>10<br>10<br>10<br>10<br>10<br>10<br>10<br>10<br>10<br>10 | 24 h Survival<br>10<br>10<br>10<br>10<br>10<br>10<br>10<br>10<br>10<br>10 | 48 h Survival<br>10<br>10<br>10<br>10<br>10<br>10<br>10<br>10<br>10<br>10        | Comment Sent to Hill labs for analysis T0 and T48 Not sent to Hill labs Not sent to Hill labs Not sent to Hill labs Sent to Hill labs for analysis T0 and T48 Sent to Hill labs for analysis T0 and T48 Sent to Hill labs for analysis T0 and T48                                                                                                                                                                                                                                         |
| Natural water Nominal<br>Copper µg/L<br>Hoteo Control 0<br>Hoteo Control 0<br>Hoteo Control 0<br>Hoteo Control 0<br>Hoteo 1.0<br>Hoteo 1.0<br>Hoteo 1.0<br>Hoteo 2.2<br>Hoteo 2.2<br>Hoteo 2.2<br>Hoteo 2.2<br>Hoteo 4.8<br>Hoteo 4.8<br>Hoteo 4.8<br>Hoteo 4.8<br>Hoteo 10.6<br>Hoteo 10.6<br>Hoteo 10.6<br>Hoteo 23.4<br>Hoteo 23.4<br>Hoteo 23.4<br>Hoteo 51.5<br>Hoteo 51.5<br>Hoteo 51.5<br>Hoteo 51.5<br>Hoteo 51.5<br>Hoteo 51.5                                                                                                               | Replicate         1         2         3         4         5         1         2         3         1         2         3         1         2         3         1         2         3         1         2         3         1         2         3         1         2         3         1         2         3         1         2         3         1         2         3         1         2         3         1         2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | # Daphnia exposed<br>10<br>10<br>10<br>10<br>10<br>10<br>10<br>10<br>10<br>10 | 24 h Survival<br>10<br>10<br>10<br>10<br>10<br>10<br>10<br>10<br>10<br>10 | 48 h Survival<br>10<br>10<br>10<br>10<br>10<br>10<br>10<br>10<br>10<br>10        | Comment Sent to Hill labs for analysis T0 and T48 Not sent to Hill labs Not sent to Hill labs Not sent to Hill labs Sent to Hill labs for analysis T0 and T48 Sent to Hill labs for analysis T0 and T48 Sent to Hill labs for analysis T0 and T48                                                                                                                                                                                                                                         |
| Natural water Nominal<br>Copper µg/L<br>Hoteo Control 0<br>Hoteo Control 0<br>Hoteo Control 0<br>Hoteo Control 0<br>Hoteo 1.0<br>Hoteo 1.0<br>Hoteo 1.0<br>Hoteo 2.2<br>Hoteo 2.2<br>Hoteo 2.2<br>Hoteo 2.2<br>Hoteo 4.8<br>Hoteo 4.8<br>Hoteo 4.8<br>Hoteo 4.8<br>Hoteo 4.8<br>Hoteo 10.6<br>Hoteo 10.6<br>Hoteo 10.6<br>Hoteo 10.6<br>Hoteo 23.4<br>Hoteo 23.4<br>Hoteo 23.4<br>Hoteo 51.5<br>Hoteo 51.5<br>Hoteo 51.5<br>Hoteo 154.5<br>Hoteo 154.5                                                                                                | Replicate         1         2         3         4         5         1         2         3         1         2         3         1         2         3         1         2         3         1         2         3         1         2         3         1         2         3         1         2         3         1         2         3         1         2         3         1         2         3         1         2         3         1         2         3          1         2         3          1          2         3          1          2          3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | # Daphnia exposed<br>10<br>10<br>10<br>10<br>10<br>10<br>10<br>10<br>10<br>10 | 24 h Survival<br>10<br>10<br>10<br>10<br>10<br>10<br>10<br>10<br>10<br>10 | 48 h Survival<br>10<br>10<br>10<br>10<br>10<br>10<br>10<br>10<br>10<br>10        | Comment Sent to Hill labs for analysis T0 and T48 Not sent to Hill labs Not sent to Hill labs Not sent to Hill labs Sent to Hill labs for analysis T0 and T48 Sent to Hill labs for analysis T0 and T48 Sent to Hill labs for analysis T0 and T48                                                                                                                                                                                                                                         |
| Natural water Nominal<br>Copper µg/L<br>Hoteo Control 0<br>Hoteo Control 0<br>Hoteo Control 0<br>Hoteo Control 0<br>Hoteo Control 0<br>Hoteo 1.0<br>Hoteo 1.0<br>Hoteo 1.0<br>Hoteo 2.2<br>Hoteo 2.2<br>Hoteo 2.2<br>Hoteo 2.2<br>Hoteo 4.8<br>Hoteo 4.8<br>Hoteo 4.8<br>Hoteo 4.8<br>Hoteo 4.8<br>Hoteo 10.6<br>Hoteo 10.6<br>Hoteo 23.4<br>Hoteo 23.4<br>Hoteo 23.4<br>Hoteo 23.4<br>Hoteo 23.4<br>Hoteo 51.5<br>Hoteo 51.5<br>Hoteo 51.5<br>Hoteo 154.5<br>Hoteo 154.5<br>Hoteo 154.5<br>Hoteo 154.5                                               | Replicate           1           2           3           4           5           1           2           3           1           2           3           1           2           3           1           2           3           1           2           3           1           2           3           1           2           3           1           2           3           1           2           3           1           2           3           1           2           3           1           2           3           1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | # Daphnia exposed<br>10<br>10<br>10<br>10<br>10<br>10<br>10<br>10<br>10<br>10 | 24 h Survival<br>10<br>10<br>10<br>10<br>10<br>10<br>10<br>10<br>10<br>10 | 48 h Survival<br>10<br>10<br>10<br>10<br>10<br>10<br>10<br>10<br>10<br>10        | Comment Sent to Hill labs for analysis T0 and T48 Not sent to Hill labs Not sent to Hill labs Not sent to Hill labs Sent to Hill labs for analysis T0 and T48 Sent to Hill labs for analysis T0 and T48 Sent to Hill labs for analysis T0 and T48 Sent to Hill labs for analysis T0 and T48                                                                                                                                                                                               |
| Natural water Nominal<br>Copper µg/L<br>Hoteo Control 0<br>Hoteo Control 0<br>Hoteo Control 0<br>Hoteo Control 0<br>Hoteo Control 0<br>Hoteo 1.0<br>Hoteo 1.0<br>Hoteo 1.0<br>Hoteo 2.2<br>Hoteo 2.2<br>Hoteo 2.2<br>Hoteo 2.2<br>Hoteo 4.8<br>Hoteo 4.8<br>Hoteo 4.8<br>Hoteo 4.8<br>Hoteo 4.8<br>Hoteo 10.6<br>Hoteo 10.6<br>Hoteo 23.4<br>Hoteo 23.4<br>Hoteo 23.4<br>Hoteo 23.4<br>Hoteo 23.4<br>Hoteo 23.4<br>Hoteo 23.4<br>Hoteo 23.4<br>Hoteo 51.5<br>Hoteo 51.5<br>Hoteo 51.5<br>Hoteo 154.5<br>Hoteo 154.5<br>Hoteo 154.5<br>Hoteo 463.5     | Replicate         1         2         3         4         5         1         2         3         1         2         3         1         2         3         1         2         3         1         2         3         1         2         3         1         2         3         1         2         3         1         2         3         1         2         3         1         2         3         1         2         3         1         2         3         1         2         3         1         2         3         1         2          3          1          2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | # Daphnia exposed<br>10<br>10<br>10<br>10<br>10<br>10<br>10<br>10<br>10<br>10 | 24 h Survival<br>10<br>10<br>10<br>10<br>10<br>10<br>10<br>10<br>10<br>10 | 48 h Survival 10 10 10 10 10 10 10 10 10 10 10 10 10                             | Comment Sent to Hill labs for analysis T0 and T48 Not sent to Hill labs Not sent to Hill labs Not sent to Hill labs Sent to Hill labs for analysis T0 and T48 Sent to Hill labs for analysis T0 and T48 Sent to Hill labs for analysis T0 and T48 Sent to Hill labs for analysis T0 and T48 Sent to Hill labs for analysis T0 and T48                                                                                                                                                     |
| Natural water Nominal<br>Copper µg/L<br>Hoteo Control 0<br>Hoteo Control 0<br>Hoteo Control 0<br>Hoteo Control 0<br>Hoteo Control 0<br>Hoteo 1.0<br>Hoteo 1.0<br>Hoteo 1.0<br>Hoteo 2.2<br>Hoteo 2.2<br>Hoteo 2.2<br>Hoteo 2.2<br>Hoteo 4.8<br>Hoteo 4.8<br>Hoteo 4.8<br>Hoteo 4.8<br>Hoteo 4.8<br>Hoteo 10.6<br>Hoteo 10.6<br>Hoteo 23.4<br>Hoteo 23.4<br>Hoteo 23.4<br>Hoteo 23.4<br>Hoteo 23.4<br>Hoteo 51.5<br>Hoteo 51.5<br>Hoteo 51.5<br>Hoteo 154.5<br>Hoteo 154.5<br>Hoteo 154.5<br>Hoteo 463.5<br>Hoteo 463.5<br>Hoteo 463.5                 | Replicate         1         2         3         4         5         1         2         3         1         2         3         1         2         3         1         2         3         1         2         3         1         2         3         1         2         3         1         2         3         1         2         3         1         2         3         1         2         3         1         2         3         1         2         3         1         2         3         1         2         3         1         2         3          1          2 </td <td># Daphnia exposed<br/>10<br/>10<br/>10<br/>10<br/>10<br/>10<br/>10<br/>10<br/>10<br/>10</td> <td>24 h Survival<br/>10<br/>10<br/>10<br/>10<br/>10<br/>10<br/>10<br/>10<br/>10<br/>10</td> <td>48 h Survival<br/>10<br/>10<br/>10<br/>10<br/>10<br/>10<br/>10<br/>10<br/>10<br/>10</td> <td>Comment Sent to Hill labs for analysis T0 and T48 Not sent to Hill labs Not sent to Hill labs Not sent to Hill labs Sent to Hill labs for analysis T0 and T48 Sent to Hill labs for analysis T0 and T48 Sent to Hill labs for analysis T0 and T48 Sent to Hill labs for analysis T0 and T48 Sent to Hill labs for analysis T0 and T48</td> | # Daphnia exposed<br>10<br>10<br>10<br>10<br>10<br>10<br>10<br>10<br>10<br>10 | 24 h Survival<br>10<br>10<br>10<br>10<br>10<br>10<br>10<br>10<br>10<br>10 | 48 h Survival<br>10<br>10<br>10<br>10<br>10<br>10<br>10<br>10<br>10<br>10        | Comment Sent to Hill labs for analysis T0 and T48 Not sent to Hill labs Not sent to Hill labs Not sent to Hill labs Sent to Hill labs for analysis T0 and T48 Sent to Hill labs for analysis T0 and T48 Sent to Hill labs for analysis T0 and T48 Sent to Hill labs for analysis T0 and T48 Sent to Hill labs for analysis T0 and T48                                                                                                                                                     |
| Natural water Nominal<br>Copper µg/L<br>Hoteo Control 0<br>Hoteo Control 0<br>Hoteo Control 0<br>Hoteo Control 0<br>Hoteo Control 0<br>Hoteo 1.0<br>Hoteo 1.0<br>Hoteo 1.0<br>Hoteo 2.2<br>Hoteo 2.2<br>Hoteo 2.2<br>Hoteo 2.2<br>Hoteo 4.8<br>Hoteo 4.8<br>Hoteo 4.8<br>Hoteo 4.8<br>Hoteo 4.8<br>Hoteo 10.6<br>Hoteo 10.6<br>Hoteo 23.4<br>Hoteo 23.4<br>Hoteo 23.4<br>Hoteo 23.4<br>Hoteo 51.5<br>Hoteo 51.5<br>Hoteo 51.5<br>Hoteo 154.5<br>Hoteo 154.5<br>Hoteo 154.5<br>Hoteo 463.5<br>Hoteo 463.5<br>Hoteo 463.5<br>Hoteo 463.5<br>Hoteo 463.5 | Replicate           1           2           3           4           5           1           2           3           1           2           3           1           2           3           1           2           3           1           2           3           1           2           3           1           2           3           1           2           3           1           2           3           1           2           3           1           2           3           1           2           3           1           2           3           1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | # Daphnia exposed<br>10<br>10<br>10<br>10<br>10<br>10<br>10<br>10<br>10<br>10 | 24 h Survival<br>10<br>10<br>10<br>10<br>10<br>10<br>10<br>10<br>10<br>10 | 48 h Survival 10 10 10 10 10 10 10 10 10 10 10 10 10                             | Comment Sent to Hill labs for analysis T0 and T48 Not sent to Hill labs Not sent to Hill labs Not sent to Hill labs Sent to Hill labs for analysis T0 and T48 Sent to Hill labs for analysis T0 and T48 Sent to Hill labs for analysis T0 and T48 Sent to Hill labs for analysis T0 and T48 Sent to Hill labs for analysis T0 and T48 Sent to Hill labs for analysis T0 and T48 Sent to Hill labs for analysis T0 and T48 Sent to Hill labs for analysis T0 and T48                       |
| Natural water Nominal<br>Copper µg/L<br>Hoteo Control 0<br>Hoteo Control 0<br>Hoteo Control 0<br>Hoteo Control 0<br>Hoteo 1.0<br>Hoteo 1.0<br>Hoteo 1.0<br>Hoteo 2.2<br>Hoteo 2.2<br>Hoteo 2.2<br>Hoteo 2.2<br>Hoteo 4.8<br>Hoteo 4.8<br>Hoteo 4.8<br>Hoteo 4.8<br>Hoteo 10.6<br>Hoteo 10.6<br>Hoteo 10.6<br>Hoteo 10.6<br>Hoteo 23.4<br>Hoteo 23.4<br>Hoteo 51.5<br>Hoteo 51.5<br>Hoteo 51.5<br>Hoteo 51.5<br>Hoteo 51.5<br>Hoteo 51.5<br>Hoteo 154.5<br>Hoteo 154.5<br>Hoteo 154.5<br>Hoteo 463.5<br>Hoteo 1390.5<br>Hoteo 1390.5                   | Replicate           1           2           3           4           5           1           2           3           1           2           3           1           2           3           1           2           3           1           2           3           1           2           3           1           2           3           1           2           3           1           2           3           1           2           3           1           2           3           1           2           3           1           2           3           1           2           3           1           2           3           1           2           3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | # Daphnia exposed<br>10<br>10<br>10<br>10<br>10<br>10<br>10<br>10<br>10<br>10 | 24 h Survival<br>10<br>10<br>10<br>10<br>10<br>10<br>10<br>10<br>10<br>10 | 48 h Survival 10 10 10 10 10 10 10 10 10 10 10 10 10                             | Comment Sent to Hill labs for analysis T0 and T48 Not sent to Hill labs Not sent to Hill labs Not sent to Hill labs Sent to Hill labs for analysis T0 and T48 Sent to Hill labs for analysis T0 and T48 Sent to Hill labs for analysis T0 and T48 Sent to Hill labs for analysis T0 and T48 Sent to Hill labs for analysis T0 and T48 Sent to Hill labs for analysis T0 and T48 Sent to Hill labs for analysis T0 and T48 Sent to Hill labs for analysis T0 and T48                       |
| Natural water Nominal<br>Copper µg/L<br>Hoteo Control 0<br>Hoteo Control 0<br>Hoteo Control 0<br>Hoteo Control 0<br>Hoteo 1.0<br>Hoteo 1.0<br>Hoteo 1.0<br>Hoteo 2.2<br>Hoteo 2.2<br>Hoteo 2.2<br>Hoteo 2.2<br>Hoteo 4.8<br>Hoteo 4.8<br>Hoteo 4.8<br>Hoteo 4.8<br>Hoteo 4.8<br>Hoteo 10.6<br>Hoteo 10.6<br>Hoteo 10.6<br>Hoteo 10.6<br>Hoteo 23.4<br>Hoteo 23.4<br>Hoteo 51.5<br>Hoteo 51.5<br>Hoteo 51.5<br>Hoteo 51.5<br>Hoteo 51.5<br>Hoteo 154.5<br>Hoteo 154.5<br>Hoteo 154.5<br>Hoteo 154.5<br>Hoteo 463.5<br>Hoteo 1390.5<br>Hoteo 1390.5     | Replicate         1         2         3         4         5         1         2         3         1         2         3         1         2         3         1         2         3         1         2         3         1         2         3         1         2         3         1         2         3         1         2         3         1         2         3         1         2         3         1         2         3         1         2         3         1         2         3         1         2         3         1         2         3         1         2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | # Daphnia exposed<br>10<br>10<br>10<br>10<br>10<br>10<br>10<br>10<br>10<br>10 | 24 h Survival<br>10<br>10<br>10<br>10<br>10<br>10<br>10<br>10<br>10<br>10 | 48 h Survival<br>10<br>10<br>10<br>10<br>10<br>10<br>10<br>10<br>10<br>10        | Comment Sent to Hill labs for analysis T0 and T48 Not sent to Hill labs Sent to Hill labs for analysis T0 and T48 Sent to Hill labs for analysis T0 and T48 Sent to Hill labs for analysis T0 and T48 Sent to Hill labs for analysis T0 and T48 Sent to Hill labs for analysis T0 and T48 Sent to Hill labs for analysis T0 and T48 Sent to Hill labs for analysis T0 and T48 Sent to Hill labs for analysis T0 and T48 |

| Natural water Nominal |           |                    |                 |                 |                                            |
|-----------------------|-----------|--------------------|-----------------|-----------------|--------------------------------------------|
| Copper µg/L           | Replicate | # Daphnia exposed  | 24 h Survival   | 48 h Survival   | Comment                                    |
| Okutua Control        | 1         | 10                 | 10              | 10              |                                            |
| Okutua Control        | 2         | 10                 | 10              | 10              |                                            |
| Okutua Control        | 3         | 10                 | 10              | 10              |                                            |
| Okutua Control        | 4         | 10                 | 10              | 10              |                                            |
| Okutua Control        | 5         | 10                 | 10              | 9               |                                            |
| Okutua 1.0            | 1         | 10                 | 10              | 10              |                                            |
| Okutua 1.0            | 2         | 10                 | 10              | 10              |                                            |
| Okutua 1.0            | 3         | 10                 | 10              | 10              |                                            |
| Okutua 2.2            | 1         | 10                 | 10              | 10              |                                            |
| Okutua 2.2            | 2         | 10                 | 10              | 10              |                                            |
| Okutua 2.2            | 3         | 10                 | 10              | 10              |                                            |
| Okutua 4.8            | 1         | 10                 | 10              | 10              |                                            |
| Okutua 4.8            | 2         | 10                 | 10              | 9               |                                            |
| Okutua 4.8            | 3         | 10                 | 10              | 10              |                                            |
| Okutua 10.6           | 1         | 10                 | 10              | 10              |                                            |
| Okutua 10.6           | 2         | 10                 | 10              | 10              |                                            |
| Okutua 10.6           | 3         | 10                 | 10              | 10              |                                            |
| Okutua 23.4           | 1         | 10                 | 10              | 10              |                                            |
| Okutua 23.4           | 2         | 10                 | 10              | 10              |                                            |
| Okutua 23.4           | 3         | 10                 | 10              | 10              |                                            |
| Okutua 51 5           | 1         | 10                 | 10              | 10              |                                            |
| Okutua 51.5           | 2         | 10                 | 10              | 10              |                                            |
| Okutua 51.5           | 3         | 10                 | 10              | 9               |                                            |
| Okutua 113            | 1         | 10                 | 0               | 0               |                                            |
| Okutua 113            | 2         | 10                 | 10              | 0               |                                            |
| Okutua 113            | 2         | 10                 | 10              | 4               |                                            |
| Okutua 113            | 1         | 10                 | 0               | 0               |                                            |
| Okutua 249            | 2         | 10                 | 0               | 0               |                                            |
| Okutua 249            | 2         | 10                 | 0               | 0               |                                            |
| Natural water Nominal | 5         | 10                 | 0               | 0               |                                            |
|                       | Replicate | # Danhnia exposed  | 24 h Survival   | 18 h Survival   | Comment                                    |
| Clutha Control 0      |           | # Dupinilu exposed | 24 II Sul Vival | 48 11 3ul vival | Contro Hill John for analysis TO and T49   |
| Clutha Control 0      | 1         | 10                 | 10              | 10              |                                            |
| Clutha Control 0      | 2         | 10                 | 10              | 10              |                                            |
| Clutha Control 0      | 3         | 10                 | 10              | 10              |                                            |
| Clutha Control 0      | 4<br>F    | 10                 | 10              | 9               |                                            |
|                       | 5         | 10                 | 10              | 10              |                                            |
| Clutha 1.0            | 1         | 10                 | 10              | 10              | Not sent to Hill labs                      |
| Clutha 1.0            | 2         | 10                 | 10              | 10              |                                            |
| Clutha 1.0            | 3         | 10                 | 10              | 10              | Cont to Uill labo for one lucis TO and T49 |
| Clutha 2.2            | 1         | 10                 | 10              | 10              | Sent to Hill labs for analysis 10 and 148  |
| Clutha 2.2            | 2         | 10                 | 10              | 9               |                                            |
| Clutha 2.2            | 3         | 10                 | 10              | 10              | Cont to Uill labo for one lucis TO and T49 |
| Clutha 4.8            | 1         | 10                 | 10              | 10              |                                            |
| Clutha 4.8            | 2         | 10                 | 10              | 10              |                                            |
|                       | 3         | 10                 | 10              | 10              |                                            |
|                       | 1         | 10                 | 10              | 10              |                                            |
| Clutha 10.6           | 2         | 10                 | 10              | 10              |                                            |
| Clutha 10.6           | 3         | 10                 | 10              | 10              |                                            |
| Clutha 23.4           | 1         | 10                 | 8               | /               | Sent to Hill labs for analysis 10 and 148  |
| Clutha 23.4           | 2         | 10                 | 8               | 10              |                                            |
| Clutha 23.4           | 3         | 10                 | 7               | 9               |                                            |
| Clutha 51.5           | 1         | 10                 | 1               | 1               | Sent to Hill labs for analysis TO and T48  |
| Clutha 51.5           | 2         | 10                 | 1               | 1               |                                            |
| Clutha 51.5           | 3         | 10                 | 0               | 0               |                                            |

|                       | 1         |                   |               |               |                                           |
|-----------------------|-----------|-------------------|---------------|---------------|-------------------------------------------|
| Natural water Nominal |           |                   |               |               |                                           |
| Copper µg/L           | Replicate | # Daphnia exposed | 24 h Survival | 48 h Survival | Comment                                   |
| Waihou Control 0      | 1         | 10                | 10            | 10            | Sent to Hill labs for analysis TO and T48 |
| Waihou Control 0      | 2         | 10                | 10            | 9             |                                           |
| Waihou Control 0      | 3         | 10                | 10            | 10            |                                           |
| Waihou Control 0      | 4         | 10                | 10            | 9             |                                           |
| Waihou Control 0      | 5         | 10                | 10            | 10            |                                           |
| Waihou 1.0            | 1         | 10                | 10            | 10            | Not sent to Hill labs                     |
| Waihou 1.0            | 2         | 10                | 10            | 10            |                                           |
| Waihou 1.0            | 3         | 10                | 10            | 10            |                                           |
| Waihou 2.2            | 1         | 10                | 10            | 10            | Not sent to Hill labs                     |
| Waihou 2.2            | 2         | 10                | 10            | 10            |                                           |
| Waihou 2.2            | 3         | 10                | 10            | 10            |                                           |
| Waihou 4.8            | 1         | 10                | 10            | 10            | Not sent to Hill labs                     |
| Waihou 4.8            | 2         | 10                | 10            | 10            |                                           |
| Waihou 4.8            | 3         | 10                | 10            | 10            |                                           |
| Waihou 10.6           | 1         | 10                | 10            | 10            | Sent to Hill labs for analysis TO and T48 |
| Waihou 10.6           | 2         | 10                | 10            | 9             |                                           |
| Waihou 10.6           | 3         | 10                | 10            | 10            |                                           |
| Waihou 23.4           | 1         | 10                | 10            | 10            | Sent to Hill labs for analysis TO and T48 |
| Waihou 23.4           | 2         | 10                | 9             | 9             |                                           |
| Waihou 23.4           | 3         | 10                | 9             | 6             |                                           |
| Waihou 51.5           | 1         | 10                | 7             | 5             | Sent to Hill labs for analysis TO and T48 |
| Waihou 51.5           | 2         | 10                | 5             | 2             |                                           |
| Waihou 51.5           | 3         | 10                | 7             | 5             |                                           |
| Waihou 113            | 1         | 10                | 0             | 0             | Sent to Hill labs for analysis TO and T48 |
| Waihou 113            | 2         | 10                | 1             | 0             |                                           |
| Waihou 113            | 3         | 10                | 0             | 0             |                                           |
| Waihou 249            | 1         | 10                | 0             | 0             | Sent to Hill labs for analysis T0 and T48 |
| Waihou 249            | 2         | 10                | 0             | 0             |                                           |
| Waihou 249            | 3         | 10                | 0             | 0             |                                           |

# Appendix F CETIS statistical analyses – Mahurangi

#### Zinc

| CETIS Analytical Report                                            |                                                            |                                                                                |                                                    |                                                            |                      |                                          |                                                      |                                                     |                                             | Report Date:         27 May-24 14:24 (p           Test Code/ID:         24.003.1 Zn / 15-88 |                                                    |                                       |                                                                                       | 24 (p 1 of 2)<br>5-8888-6853 |            |
|--------------------------------------------------------------------|------------------------------------------------------------|--------------------------------------------------------------------------------|----------------------------------------------------|------------------------------------------------------------|----------------------|------------------------------------------|------------------------------------------------------|-----------------------------------------------------|---------------------------------------------|---------------------------------------------------------------------------------------------|----------------------------------------------------|---------------------------------------|---------------------------------------------------------------------------------------|------------------------------|------------|
| Daphnia thoms                                                      | soni 48-h Ac                                               | ute Surviv                                                                     | al T                                               | est                                                        |                      |                                          |                                                      |                                                     |                                             |                                                                                             |                                                    |                                       |                                                                                       | NIWA Eco                     | toxicology |
| Analysis ID: Analyzed: 2<br>Edit Date:                             | 17-8062-837(<br>27 May-24 14                               | )<br>I:24                                                                      | End<br>Anal<br>MD5                                 | point:<br>lysis:<br>i Hash:                                | 48h<br>Para<br>224   | Survival Ra<br>ametric-Mul<br>9197577821 | ate<br>tiple Compa<br>DA5F34CA2                      | rison<br>39A904E49                                  | 97A                                         | CETI<br>Statu<br>Edito                                                                      | S Versi<br>Is Level<br>or ID:                      | on:<br>:                              | CETISv2<br>1                                                                          | .1.4                         |            |
| Batch ID: ()<br>Start Date: ()<br>Ending Date: 7<br>Test Length: 4 | 03-1254-1573<br>08 May-24<br>10 May-24<br>48h              | 3                                                                              | Test<br>Prot<br>Spe<br>Taxo                        | Type:<br>ocol:<br>cies:<br>on:                             | Sun<br>NIW<br>Dap    | vival (48h)<br>/A SOP 10<br>ohnia thoms  | (2022)<br>oni (Water fl                              | ea)                                                 |                                             | Analy<br>Dilue<br>Brine<br>Sour                                                             | yst:  <br>ent:  <br>e:  <br>ce:                    | Ecot<br>Redv<br>Not /<br>Field        | ox Team<br>voods<br>Applicable<br>I Collected                                         |                              | Age:       |
| Sample ID: (<br>Sample Date: (<br>Receipt Date: (<br>Sample Age: 2 | 09-2771-2013<br>07 May-24<br>07 May-24<br>24h              | 3                                                                              | Cod<br>Mate<br>CAS<br>Clie                         | e:<br>erial:<br>(PC):<br>nt:                               | 24.0<br>Zino<br>Hyd  | 003.1 Zn<br>c sulfate<br>Irotoxy Rese    | earch                                                |                                                     |                                             | Proje<br>Sour<br>Statio                                                                     | ce: son: l                                         | Spec<br>Solu<br>Lab                   | ial Studies<br>tion made t<br>Solution                                                | DY NIWA                      |            |
| Data Transform                                                     | n                                                          | Alt H                                                                          | ур                                                 |                                                            |                      |                                          |                                                      | NOEL                                                | LO                                          | EL                                                                                          | TOEL                                               |                                       | Tox Units                                                                             | MSDu                         | PMSD       |
| Angular (Correc                                                    | C > T                                                      |                                                                                |                                                    |                                                            |                      |                                          | 240                                                  | 490                                                 |                                             | 342.9                                                                                       |                                                    |                                       | 0.06421                                                                               | 6.42%                        |            |
| Bonferroni Adj                                                     | t Test                                                     |                                                                                |                                                    |                                                            |                      |                                          |                                                      |                                                     |                                             |                                                                                             |                                                    |                                       |                                                                                       |                              |            |
| Control                                                            | vs Conc-µ                                                  | lg/L                                                                           | df Test Stat Critic                                |                                                            |                      | Critical                                 | MSD                                                  | P-Type                                              | P-V                                         | alue                                                                                        | Decisi                                             | on(                                   | a:5%)                                                                                 |                              |            |
| Dilution Water                                                     | 103                                                        |                                                                                | 6 0                                                |                                                            |                      | 2.56                                     | 0.09742                                              | CDF                                                 | 1.0                                         | 000                                                                                         | Non-S                                              | ignif                                 | icant Effect                                                                          |                              |            |
|                                                                    | 240                                                        |                                                                                | 6                                                  | 0                                                          |                      | 2.56                                     | 0.09742                                              | CDF                                                 | 1.0                                         | 000                                                                                         | Non-S                                              | ignif                                 | icant Effect                                                                          |                              |            |
|                                                                    | 490°<br>1055*                                              |                                                                                | 6                                                  | 4.283                                                      |                      | 2.50                                     | 0.09742                                              | CDF                                                 | <1.0                                        | DE-05                                                                                       | Signifi                                            | cant<br>cant                          | Effect                                                                                |                              |            |
|                                                                    |                                                            | -                                                                              |                                                    |                                                            |                      |                                          |                                                      |                                                     |                                             |                                                                                             |                                                    |                                       |                                                                                       |                              |            |
| Source                                                             | Sum S                                                      | mares                                                                          |                                                    | Mean                                                       | Sau                  | are                                      | DE                                                   | F Stat                                              | P.V                                         | alue                                                                                        | Decision(a:5%)                                     |                                       |                                                                                       |                              |            |
| Between                                                            | 1 80484                                                    | 1                                                                              |                                                    | 0 451                                                      | 209                  |                                          | 4                                                    | 166.2                                               | <1 (                                        | 0F-05                                                                                       | Signifi                                            | cant                                  | Effect                                                                                |                              |            |
| Error                                                              | 0.03258                                                    | 318                                                                            |                                                    | 0.002                                                      | 7152                 |                                          | 12                                                   |                                                     |                                             |                                                                                             |                                                    |                                       |                                                                                       |                              |            |
| Total                                                              | 1.83742                                                    | 2                                                                              |                                                    |                                                            |                      |                                          | 16                                                   | _                                                   |                                             |                                                                                             |                                                    |                                       |                                                                                       |                              |            |
| ANOVA Assum                                                        | ptions Tests                                               | 6                                                                              |                                                    |                                                            |                      |                                          |                                                      |                                                     |                                             |                                                                                             |                                                    |                                       |                                                                                       |                              |            |
| Attribute                                                          | Test                                                       |                                                                                |                                                    |                                                            |                      |                                          | Test Stat                                            | Critical                                            | P-V                                         | alue                                                                                        | Decisi                                             | on(                                   | a:1%)                                                                                 |                              |            |
| Variance                                                           | Bartlett                                                   | Equality of                                                                    | f Vai                                              | riance 1                                                   | Fest                 |                                          |                                                      |                                                     |                                             |                                                                                             | Indete                                             | rmin                                  | ate                                                                                   |                              |            |
| Distribution                                                       | Levene<br>Mod Le<br>Anders<br>D'Agosi<br>Kolmog<br>Shapiro | Equality o<br>vene Equa<br>on-Darling<br>tino Skewn<br>orov-Smin<br>o-Wilk W N | f Vai<br>ality o<br>A2 1<br>ness<br>nov 1<br>lorma | riance 1<br>of Varia<br>Test<br>Test<br>D Test<br>ality Te | Test<br>ince 1<br>st | Test                                     | 19.76<br>1.458<br>4.306<br>3.014<br>0.4412<br>0.5509 | 5.412<br>7.847<br>3.878<br>2.576<br>0.2405<br>0.848 | 3.3 <br>0.3<br><1.0<br>0.00<br><1.0<br><1.0 | E-05<br>105<br>DE-05<br>D26<br>DE-05<br>DE-05                                               | Unequ<br>Equal<br>Non-N<br>Non-N<br>Non-N<br>Non-N | al V<br>Varia<br>orma<br>orma<br>orma | ariances<br>ances<br>al Distributi<br>al Distributi<br>al Distributi<br>al Distributi | on<br>on<br>on               |            |
| 48h Survival R                                                     | ate Summar                                                 | у                                                                              |                                                    |                                                            |                      |                                          |                                                      |                                                     |                                             |                                                                                             |                                                    |                                       |                                                                                       |                              |            |
| Conc-µg/L                                                          | Code                                                       | Count                                                                          | t                                                  | Mean                                                       |                      | 95% LCL                                  | 95% UCL                                              | Median                                              | Min                                         |                                                                                             | Мах                                                |                                       | Std Err                                                                               | CV%                          | %Effect    |
| 3.2<br>103                                                         | D                                                          | 5                                                                              |                                                    | 1.000                                                      | 0                    | 1.0000                                   | 1.0000                                               | 1.0000                                              | 1.0                                         | 000                                                                                         | 1.0000                                             |                                       | 0.0000                                                                                | 0.00%                        | 0.00%      |
| 240                                                                |                                                            | 3                                                                              |                                                    | 1.000                                                      | 0                    | 1.0000                                   | 1.0000                                               | 1.0000                                              | 1.0                                         | 000                                                                                         | 1.0000                                             |                                       | 0.0000                                                                                | 0.00%                        | 0.00%      |
| 490                                                                |                                                            | 3                                                                              |                                                    | 0.900                                                      | 0                    | 0.8996                                   | 0.9004                                               | 0.9000                                              | 0.9                                         | 000                                                                                         | 0.9000                                             | )                                     | 0.0000                                                                                | 0.00%                        | 10.00%     |
| 1055                                                               |                                                            | 3                                                                              |                                                    | 0.266                                                      | 7                    | 0.0000                                   | 0.5535                                               | 0.2000                                              | 0.2                                         | 000                                                                                         | 0.4000                                             | )                                     | 0.0667                                                                                | 43.30%                       | 73.33%     |
| 2350                                                               |                                                            | 3                                                                              |                                                    | 0.000                                                      | 0                    | 0.0000                                   | 0.0000                                               | 0.0000                                              | 0.0                                         | 000                                                                                         | 0.0000                                             | )                                     | 0.0000                                                                                |                              | 100.00%    |
| Angular (Corre                                                     | cted) Transf                                               | ormed Su                                                                       | mm                                                 | ary                                                        |                      |                                          |                                                      |                                                     |                                             |                                                                                             |                                                    |                                       |                                                                                       |                              |            |
| Conc-µg/L                                                          | Code                                                       | Count                                                                          | t                                                  | Mean                                                       |                      | 95% LCL                                  | 95% UCL                                              | Median                                              | Min                                         | 1                                                                                           | Мах                                                |                                       | Std Err                                                                               | CV%                          | %Effect    |
| 3.2                                                                | D                                                          | 5                                                                              |                                                    | 1.412                                                      | 0                    | 1.4120                                   | 1.4120                                               | 1.4120                                              | 1.4                                         | 120                                                                                         | 1.4120                                             |                                       | 0.0000                                                                                | 0.00%                        | 0.00%      |
| 103                                                                |                                                            | 3                                                                              |                                                    | 1.412                                                      | 0                    | 1.4110                                   | 1.4130                                               | 1.4120                                              | 1.4                                         | 120                                                                                         | 1.4120                                             |                                       | 0.0000                                                                                | 0.00%                        | 0.00%      |
| 240<br>490                                                         |                                                            | 3                                                                              |                                                    | 1.412                                                      | 0                    | 1.2490                                   | 1.2490                                               | 1.4120                                              | 1.4                                         | 490                                                                                         | 1.2490                                             |                                       | 0.0000                                                                                | 0.00%                        | 11.54%     |
| 1055                                                               |                                                            | 3                                                                              |                                                    | 0.537                                                      | 3                    | 0.2203                                   | 0.8544                                               | 0.4636                                              | 0.4                                         | 636                                                                                         | 0.6847                                             | ,                                     | 0.0737                                                                                | 23.75%                       | 61.95%     |
| 2350                                                               |                                                            | 3                                                                              |                                                    | 0.158                                                      | 8                    | 0.1588                                   | 0.1588                                               | 0.1588                                              | 0.1                                         | 588                                                                                         | 0.1588                                             |                                       | 0.0000                                                                                | 0.00%                        | 88.76%     |
|                                                                    |                                                            |                                                                                |                                                    |                                                            |                      |                                          |                                                      |                                                     |                                             |                                                                                             |                                                    |                                       |                                                                                       |                              |            |

Convergent Rounding (4 sf)

CETIS™ v2.1.4.5 (009-951-268-0)

| CETIS Analytical Report Daphnia thomsoni 48-h Acute Survival Test |                            |                                 |                  |                                         |                                            |                                  |                          | Report Date:<br>Test Code/ID:                 | 27 May-24 14:24 (p 2 of 2)<br>24.003.1 Zn / 15-8888-6853 |
|-------------------------------------------------------------------|----------------------------|---------------------------------|------------------|-----------------------------------------|--------------------------------------------|----------------------------------|--------------------------|-----------------------------------------------|----------------------------------------------------------|
| Dapl                                                              | hnia tho                   | msoni 48-h Acute                | e Survival       | Test                                    |                                            |                                  |                          |                                               | NIWA Ecotoxicology                                       |
| Anal<br>Anal<br>Edit                                              | ysis ID:<br>yzed:<br>Date: | 17-8062-8370<br>27 May-24 14:24 | En<br>4 An<br>MC | dpoint: 48<br>alysis: Pa<br>)5 Hash: 22 | h Survival R<br>arametric-Mu<br>4919757782 | ate<br>Iltiple Comp<br>2DA5F34CA | oarison<br>\239A904E497A | CETIS Version:<br>Status Level:<br>Editor ID: | CETISv2.1.4<br>1                                         |
| 48h                                                               | Survival                   | Rate Detail                     |                  |                                         |                                            |                                  |                          |                                               |                                                          |
| Con                                                               | c-µg/L                     | Code                            | Rep 1            | Rep 2                                   | Rep 3                                      | Rep 4                            | Rep 5                    |                                               |                                                          |
| 3.2                                                               |                            | D                               | 1.0000           | 1.0000                                  | 1.0000                                     | 1.0000                           | 1.0000                   |                                               |                                                          |
| 103                                                               |                            |                                 | 1.0000           | 1.0000                                  | 1.0000                                     |                                  |                          |                                               |                                                          |
| 240                                                               |                            |                                 | 1.0000           | 1.0000                                  | 1.0000                                     |                                  |                          |                                               |                                                          |
| 490                                                               |                            |                                 | 0.9000           | 0.9000                                  | 0.9000                                     |                                  |                          |                                               |                                                          |
| 1055                                                              | 5                          |                                 | 0.2000           | 0.4000                                  | 0.2000                                     |                                  |                          |                                               |                                                          |
| 2350                                                              | )                          |                                 | 0.0000           | 0.0000                                  | 0.0000                                     |                                  |                          |                                               |                                                          |
| Ang                                                               | ular (Co                   | rrected) Transfor               | med Detai        | I                                       |                                            |                                  |                          |                                               |                                                          |
| Con                                                               | c-µg/L                     | Code                            | Rep 1            | Rep 2                                   | Rep 3                                      | Rep 4                            | Rep 5                    |                                               |                                                          |
| 3.2                                                               |                            | D                               | 1.4120           | 1.4120                                  | 1.4120                                     | 1.4120                           | 1.4120                   |                                               |                                                          |
| 103                                                               |                            |                                 | 1.4120           | 1.4120                                  | 1.4120                                     |                                  |                          |                                               |                                                          |
| 240                                                               |                            |                                 | 1.4120           | 1.4120                                  | 1.4120                                     |                                  |                          |                                               |                                                          |
| 490                                                               |                            |                                 | 1.2490           | 1.2490                                  | 1.2490                                     |                                  |                          |                                               |                                                          |
| 1055                                                              | 5                          |                                 | 0.4636           | 0.6847                                  | 0.4636                                     |                                  |                          |                                               |                                                          |
| 2350                                                              | )                          |                                 | 0.1588           | 0.1588                                  | 0.1588                                     |                                  |                          |                                               |                                                          |
| 48h                                                               | Survival                   | Rate Binomials                  |                  |                                         |                                            |                                  |                          |                                               |                                                          |
| Con                                                               | c-µg/L                     | Code                            | Rep 1            | Rep 2                                   | Rep 3                                      | Rep 4                            | Rep 5                    |                                               |                                                          |
| 3.2                                                               |                            | D                               | 10/10            | 10/10                                   | 10/10                                      | 10/10                            | 10/10                    |                                               |                                                          |
| 103                                                               |                            |                                 | 10/10            | 10/10                                   | 10/10                                      |                                  |                          |                                               |                                                          |
| 240                                                               |                            |                                 | 10/10            | 10/10                                   | 10/10                                      |                                  |                          |                                               |                                                          |
| 490                                                               |                            |                                 | 9/10             | 9/10                                    | 9/10                                       |                                  |                          |                                               |                                                          |
| 1055                                                              |                            |                                 | 2/10             | 4/10                                    | 2/10                                       |                                  |                          |                                               |                                                          |
| 2350                                                              | )                          |                                 | 0/10             | 0/10                                    | 0/10                                       |                                  |                          |                                               |                                                          |
| Grap                                                              | ohics                      |                                 |                  |                                         |                                            |                                  |                          |                                               |                                                          |
|                                                                   | 1.0 -                      |                                 | -                |                                         |                                            |                                  | 0.15 -                   |                                               | ۲                                                        |
|                                                                   | 0.9 -                      |                                 |                  | -                                       |                                            |                                  |                          |                                               |                                                          |
|                                                                   | 0.8 -                      |                                 |                  |                                         |                                            |                                  | 0.10 -                   |                                               |                                                          |
| e                                                                 | 0.7 -                      |                                 |                  |                                         |                                            |                                  |                          |                                               |                                                          |
| Rat                                                               | 0.6                        |                                 |                  |                                         |                                            |                                  | <u>e</u>                 |                                               |                                                          |
| val                                                               | 0.0 -                      |                                 |                  |                                         |                                            |                                  | 0.05 -                   |                                               |                                                          |
| urvi                                                              | 0.5 -                      |                                 |                  |                                         |                                            |                                  |                          |                                               |                                                          |
| sh S                                                              | 0.4 -                      |                                 |                  |                                         |                                            | d                                | S 0.00 -                 |                                               |                                                          |
| 48                                                                | 0.3 -                      |                                 |                  |                                         | -                                          |                                  | 0.00                     |                                               |                                                          |
|                                                                   | 0.2 -                      |                                 |                  |                                         |                                            |                                  |                          |                                               |                                                          |
|                                                                   | 0.1 -                      |                                 |                  |                                         |                                            |                                  | -0.05 -                  |                                               |                                                          |
|                                                                   | 0.0 -                      |                                 |                  |                                         |                                            | -                                | •                        | •                                             |                                                          |
|                                                                   |                            | 3.2 D 103                       | 240              | 490 10                                  | 055 2350                                   |                                  | -1                       | .5 -1.0 -0.5                                  | 0.0 0.5 1.0 1.5                                          |
|                                                                   |                            |                                 | Conc-            | µg/L                                    |                                            |                                  |                          | R                                             | ankits                                                   |
|                                                                   |                            |                                 |                  |                                         |                                            |                                  |                          |                                               |                                                          |
|                                                                   |                            |                                 |                  |                                         |                                            |                                  |                          |                                               |                                                          |
|                                                                   |                            |                                 |                  |                                         |                                            |                                  |                          |                                               |                                                          |

CETIS™ v2.1.4.5 (009-951-268-0)

| CETIS                                   | S Analyt                                           | ical Repo                           | ort                    |                                                      |                                              |                                |                             | F<br>T                     | Report D<br>Test Cod                      | ate:<br>e/ID:                     | 27<br>24.0                                          | May-24 14:2<br>003.1 Zn / 1 | 25 (p 1 of 3)<br>5-8888-6853 |
|-----------------------------------------|----------------------------------------------------|-------------------------------------|------------------------|------------------------------------------------------|----------------------------------------------|--------------------------------|-----------------------------|----------------------------|-------------------------------------------|-----------------------------------|-----------------------------------------------------|-----------------------------|------------------------------|
| Daphni                                  | ia thomsor                                         | ni 48-h Acute                       | Surviva                | Test                                                 |                                              |                                |                             |                            |                                           |                                   |                                                     | NIWA Eco                    | toxicology                   |
| Analysi<br>Analyzo<br>Edit Da           | is ID: 15-<br>ed: 27<br>ite:                       | -8302-1928<br>May-24 14:24          | Er<br>Ar<br>Mi         | ndpoint: 48h<br>nalysis: Nor<br>D5 Hash: 224         | n Survival Ra<br>nlinear Regr<br>19197577821 | ate<br>ession (NLF<br>DA5F34CA | R)<br>239A904E49            | )7A                        | CETIS<br>Status<br>Editor                 | Version<br>Level:<br>ID:          | CETISV.<br>1                                        | 2.1.4                       |                              |
| Batch I<br>Start D<br>Ending<br>Test Le | D: 03-<br>ate: 08<br>Date: 10<br>ength: 48         | -1254-1573<br>May-24<br>May-24<br>h | Te<br>Pr<br>Sp<br>Ta   | est Type: Sur<br>otocol: NIV<br>becies: Dap<br>ixon: | vival (48h)<br>VA SOP 10<br>phnia thoms      | (2022)<br>oni (Water           | flea)                       |                            | Analys<br>Diluen<br>Brine:<br>Source      | t: Eco<br>t: Reo<br>Not<br>e: Fie | otox Team<br>dwoods<br>: Applicable<br>Id Collected | I                           | Age:                         |
| Sample<br>Sample<br>Receip<br>Sample    | e ID: 09-<br>e Date: 07<br>t Date: 07<br>e Age: 24 | -2771-2013<br>May-24<br>May-24<br>h | Co<br>Ma<br>C/<br>Cl   | ode: 24.<br>aterial: Zin<br>AS (PC):<br>ient: Hyd    | 003.1 Zn<br>c sulfate<br>drotoxy Rese        |                                | Projec<br>Source<br>Station | t: Spe<br>e: Sol<br>n: Lat | ecial Studie:<br>ution made<br>) Solution | s<br>by NIWA                      |                                                     |                             |                              |
| Non-Li                                  | near Regre                                         | ession Optio                        | ns                     |                                                      |                                              |                                |                             |                            |                                           |                                   |                                                     |                             |                              |
| Model                                   | Name and                                           | Function                            |                        |                                                      |                                              | Weightin                       | g Function                  |                            |                                           | PTBS Fu                           | nction                                              | X Trans                     | Y Trans                      |
| 3P Log                                  | -Logistic: µ                                       | =α/[1+[x/δ]^γ]                      |                        |                                                      |                                              | Binomial                       | [ω=n/[p·q]]                 |                            |                                           | Off [µ*=µ                         | ]                                                   | None                        | None                         |
| Regres                                  | sion Sum                                           | mary                                |                        |                                                      |                                              |                                |                             |                            |                                           |                                   |                                                     |                             |                              |
| Iters                                   | LL                                                 | AICc                                | BIC                    | Adj R2                                               | PMSD                                         | Thresh                         | Optimize                    | FS                         | itat                                      | P-Value                           | Decisior                                            | n(α:5%)                     |                              |
| 4                                       | -7.72                                              | 22.94                               | 24.43                  | 0.9753                                               | 0.00%                                        | 1                              | Yes                         | 1.7                        | 02                                        | 0.2123                            | Non-Sigr                                            | hificant Lack-              | of-Fit                       |
| Point E                                 | stimates                                           |                                     |                        |                                                      |                                              |                                |                             |                            |                                           |                                   |                                                     |                             |                              |
| Level                                   | µg/L                                               | 95% LCL                             | 95% UC                 | L                                                    |                                              |                                |                             |                            |                                           |                                   |                                                     |                             |                              |
| LC5                                     | 433.6                                              | 377.4                               | 473.3                  |                                                      |                                              |                                |                             |                            |                                           |                                   |                                                     |                             |                              |
| LC10                                    | 510.6                                              | 459.2                               | 551                    |                                                      |                                              |                                |                             |                            |                                           |                                   |                                                     |                             |                              |
| LC15                                    | 565                                                | 516.6                               | 605.7                  |                                                      |                                              |                                |                             |                            |                                           |                                   |                                                     |                             |                              |
| LC20                                    | 640.4                                              | 503.4<br>604.5                      | 0.0C0                  |                                                      |                                              |                                |                             |                            |                                           |                                   |                                                     |                             |                              |
| LC25                                    | 755.7                                              | 712.5                               | 799.2                  |                                                      |                                              |                                |                             |                            |                                           |                                   |                                                     |                             |                              |
| LC50                                    | 825.9                                              | 781.6                               | 872.6                  |                                                      |                                              |                                |                             |                            |                                           |                                   |                                                     |                             |                              |
| Regres                                  | sion Para                                          | meters                              |                        |                                                      |                                              |                                |                             |                            |                                           |                                   |                                                     |                             |                              |
| Daramy                                  | otor                                               | Eetimato                            | Std Err                | or 05% I.Cl                                          | 05% [[[C]                                    | t Stat                         | D Value                     | Dec                        | cicion/a                                  | 5%)                               |                                                     |                             |                              |
| Faranne                                 | eter                                               | 1                                   | 1 518EJ                | 05 1                                                 | 1                                            | 65870                          | <1.0E-05                    | Sin                        | nificant F                                | Paramete                          | r                                                   |                             |                              |
| v                                       |                                                    | 4 57                                | 0.2874                 | 3 963                                                | 5 176                                        | 15.9                           | <1.0E-05                    | Sia                        | nificant F                                | Paramete                          | r                                                   |                             |                              |
| ō                                       |                                                    | 825.9                               | 21.46                  | 780.6                                                | 871.1                                        | 38.49                          | <1.0E-05                    | Sig                        | nificant F                                | Paramete                          | r                                                   |                             |                              |
| ANOVA                                   | Table                                              |                                     |                        |                                                      |                                              |                                |                             |                            |                                           |                                   |                                                     |                             |                              |
| Source                                  |                                                    | Sum Squa                            | ares M                 | ean Square                                           | DF                                           | F Stat                         | P-Value                     | Dee                        | cision(a:                                 | :5%)                              |                                                     |                             |                              |
| Model                                   |                                                    | 50040000                            | ) 16                   | 6800000                                              | 3                                            | 1.446E+0                       | 9 <1.0E-05                  | Sig                        | nificant E                                | ffect                             |                                                     |                             |                              |
| Lack of                                 | Fit                                                | 0.5239                              | 0.1                    | 1746                                                 | 3                                            | 1.702                          | 0.2123                      | Nor                        | n-Signific                                | ant Lack                          | -of-Fit                                             |                             |                              |
| Pure Er                                 | ror                                                | 1.437                               | 0.1                    | 1026                                                 | 14                                           |                                |                             |                            |                                           |                                   |                                                     |                             |                              |
| Residua                                 | al                                                 | 1.961                               | 0.1                    | 1153                                                 | 17                                           |                                |                             |                            |                                           |                                   |                                                     |                             |                              |
| Residu                                  | al Analysi                                         | s                                   |                        |                                                      |                                              |                                |                             |                            |                                           |                                   |                                                     |                             |                              |
| Attribu                                 | te                                                 | Method                              |                        |                                                      | Test Stat                                    | Critical                       | P-Value                     | Dee                        | cision(a                                  | :5%)                              |                                                     |                             |                              |
| Model F                                 | Fit                                                | Likelihood                          | Ratio GO               | F Test                                               | 2.194                                        | 27.59                          | 1.0000                      | Nor                        | n-Signific                                | ant Hete                          | rogeneity                                           |                             |                              |
| Variand                                 | م                                                  | Mod Lever                           | ni-oq GO<br>ne Equalit | r rest<br>v of Variance                              | 1 371                                        | 27.59                          | 0.3286                      | For                        | u-orgnino<br>ual Varia                    | ani Hete<br>nces                  | ogeneity                                            |                             |                              |
| Distribu                                | tion                                               | Anderson-                           | Darling A              | 2 Test                                               | 1.661                                        | 2 492                          | <1.0E-05                    | Nor                        | n-Normal                                  | Distribut                         | ion                                                 |                             |                              |
|                                         |                                                    | Shapiro-W                           | ilk W Nor              | mality Test                                          | 0.7373                                       | 0.9044                         | 0.0001                      | Nor                        | n-Normal                                  | Distribut                         | ion                                                 |                             |                              |
| Overdis                                 | persion                                            | Tarone C(                           | a) Overdis             | spersion Test                                        | 1.291                                        | 1.645                          | 0.0984                      | Nor                        | n-Signific                                | ant Over                          | dispersion                                          |                             |                              |
|                                         |                                                    |                                     |                        |                                                      |                                              |                                |                             |                            |                                           |                                   |                                                     |                             |                              |

CETIS™ v2.1.4.5 (009-951-268-0)

| CETIS An                                | alytical Repo                   | ort              |                                         | Report<br>Test C                            | Date:<br>ode/ID:                | 27 May-24 14:25<br>24.003.1 Zn / 15-8 |                          | 5 (p 2 of 3)<br>-8888-6853         |              |           |           |
|-----------------------------------------|---------------------------------|------------------|-----------------------------------------|---------------------------------------------|---------------------------------|---------------------------------------|--------------------------|------------------------------------|--------------|-----------|-----------|
| Daphnia tho                             | nsoni 48-h Acute                | Survival         | Test                                    |                                             |                                 |                                       |                          |                                    |              | NIWA Ecot | oxicology |
| Analysis ID:<br>Analyzed:<br>Edit Date: | 15-8302-1928<br>27 May-24 14:24 | En<br>4 An<br>MC | dpoint: 48<br>alysis: No<br>)5 Hash: 22 | h Survival R<br>onlinear Regi<br>4919757782 | ate<br>ression (NL<br>2DA5F34CA | R)<br>\239A904E4                      | CET<br>Stat<br>197A Edit | IS Version:<br>us Level:<br>or ID: | CETISV.<br>1 | 2.1.4     |           |
| 48h Survival                            | Rate Summary                    |                  |                                         |                                             |                                 | Calculate                             | d Variate(A              | /B)                                |              |           |           |
| Conc-µg/L                               | Code                            | Count            | Mean                                    | Median                                      | Min                             | Мах                                   | Std Err                  | Std Dev                            | CV%          | %Effect   | ΣΑ/ΣΒ     |
| 3.2                                     | D                               | 5                | 1.0000                                  | 1.0000                                      | 1.0000                          | 1.0000                                | 0.0000                   | 0.0000                             | 0.00%        | 0.00%     | 50/50     |
| 103                                     |                                 | 3                | 1.0000                                  | 1.0000                                      | 1.0000                          | 1.0000                                | 0.0000                   | 0.0000                             | 0.00%        | 0.00%     | 30/30     |
| 240                                     |                                 | 3                | 1.0000                                  | 1.0000                                      | 1.0000                          | 1.0000                                | 0.0000                   | 0.0000                             | 0.00%        | 0.00%     | 30/30     |
| 490                                     |                                 | 3                | 0.9000                                  | 0.9000                                      | 0.9000                          | 0.9000                                | 0.0000                   | 0.0000                             | 0.00%        | 10.00%    | 27/30     |
| 1055                                    |                                 | 3                | 0.2667                                  | 0.2000                                      | 0.2000                          | 0.4000                                | 0.0667                   | 0.1155                             | 43.30%       | 73.33%    | 8/30      |
| 2350                                    |                                 | 3                | 0.0000                                  | 0.0000                                      | 0.0000                          | 0.0000                                | 0.0000                   | 0.0000                             |              | 100.00%   | 0/30      |
| 48h Survival                            | Rate Detail                     |                  |                                         |                                             |                                 |                                       |                          |                                    |              |           |           |
| Conc-µg/L                               | Code                            | Rep 1            | Rep 2                                   | Rep 3                                       | Rep 4                           | Rep 5                                 |                          |                                    |              |           |           |
| 3.2                                     | D                               | 1.0000           | 1.0000                                  | 1.0000                                      | 1.0000                          | 1.0000                                |                          |                                    |              |           |           |
| 103                                     |                                 | 1.0000           | 1.0000                                  | 1.0000                                      |                                 |                                       |                          |                                    |              |           |           |
| 240                                     |                                 | 1.0000           | 1.0000                                  | 1.0000                                      |                                 |                                       |                          |                                    |              |           |           |
| 490                                     |                                 | 0.9000           | 0.9000                                  | 0.9000                                      |                                 |                                       |                          |                                    |              |           |           |
| 1055                                    |                                 | 0.2000           | 0.4000                                  | 0.2000                                      |                                 |                                       |                          |                                    |              |           |           |
| 2350                                    |                                 | 0.0000           | 0.0000                                  | 0.0000                                      |                                 |                                       |                          |                                    |              |           |           |
| 48h Survival                            | Rate Binomials                  |                  |                                         |                                             |                                 |                                       |                          |                                    |              |           |           |
| Conc-µg/L                               | Code                            | Rep 1            | Rep 2                                   | Rep 3                                       | Rep 4                           | Rep 5                                 |                          |                                    |              |           |           |
| 3.2                                     | D                               | 10/10            | 10/10                                   | 10/10                                       | 10/10                           | 10/10                                 |                          |                                    |              |           |           |
| 103                                     |                                 | 10/10            | 10/10                                   | 10/10                                       |                                 |                                       |                          |                                    |              |           |           |
| 240                                     |                                 | 10/10            | 10/10                                   | 10/10                                       |                                 |                                       |                          |                                    |              |           |           |
| 490                                     |                                 | 9/10             | 9/10                                    | 9/10                                        |                                 |                                       |                          |                                    |              |           |           |
| 1055                                    |                                 | 2/10             | 4/10                                    | 2/10                                        |                                 |                                       |                          |                                    |              |           |           |

2350

0/10

0/10

0/10

CETIS™ v2.1.4.5 (009-951-268-0)



CETIS™ v2.1.4.5 (009-951-268-0)

# Copper

| CETIS Analytical Report                                    |                             |                                                                             |                                                            |                                                          |                                                            |                    |                                         |                                                       |                                                    | Report Date:         27 May-24 14:09 (p 1           Test Code/ID:         24.003.1 Cu / 11-3123 |                                               |                                                           | 9 (p 1 of 2)<br>I-3123-4564                                                                                       |                                          |         |         |
|------------------------------------------------------------|-----------------------------|-----------------------------------------------------------------------------|------------------------------------------------------------|----------------------------------------------------------|------------------------------------------------------------|--------------------|-----------------------------------------|-------------------------------------------------------|----------------------------------------------------|-------------------------------------------------------------------------------------------------|-----------------------------------------------|-----------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------|------------------------------------------|---------|---------|
| Daphnia thon                                               | nsoni                       | 48-h Acute                                                                  | e Survi                                                    | ival T                                                   | est                                                        |                    |                                         |                                                       |                                                    |                                                                                                 | I                                             | NIWA Eco                                                  | toxicology                                                                                                        |                                          |         |         |
| Analysis ID:<br>Analyzed:<br>Edit Date:                    | 06-4<br>27 N                | 463-1136<br>lay-24 14:08                                                    | 3                                                          | End<br>Anal<br>MD5                                       | point:<br>ysis:<br>Hash:                                   | 48h<br>Para<br>5D2 | Survival Ra<br>ametric-Mul<br>41F0A1645 | ate<br>tiple Compa<br>i8046CC042                      | rison<br>27C2488552                                | 2BC                                                                                             | CETI<br>Statu<br>Edito                        | S Versio<br>Is Level:<br>or ID:                           | on:<br>:                                                                                                          | CETISv2.<br>1                            | 1.4     |         |
| Batch ID:<br>Start Date:<br>Ending Date:<br>Test Length:   | 15-9<br>04 N<br>06 N<br>48h | 420-8257<br>lay-24<br>lay-24                                                |                                                            | Test<br>Prot<br>Spec<br>Taxo                             | Type:<br>ocol:<br>cies:<br>on:                             | Sun<br>NIW<br>Dap  | vival (48h)<br>/A SOP 10<br>hnia thoms  | (2022)<br>oni (Water fl                               | ea)                                                |                                                                                                 | Analy<br>Dilue<br>Brine<br>Sour               | yst: E<br>ent: R<br>e: N<br>ce: F                         | Ecoto<br>Redw<br>Not A<br>Field                                                                                   | x Team<br>oods<br>pplicable<br>Collected |         | Age:    |
| Sample ID:<br>Sample Date:<br>Receipt Date:<br>Sample Age: | 04-1<br>03 N<br>03 N<br>24h | 166-2908<br>lay-24<br>lay-24                                                |                                                            | Cod<br>Mate<br>CAS<br>Clier                              | e:<br>erial:<br>(PC):<br>nt:                               | 24.0<br>Cop<br>Hyd | 003.1 Cu<br>oper<br>irotoxy Rese        | earch                                                 |                                                    |                                                                                                 | Proje<br>Sour<br>Statie                       | ect: S<br>ce: S<br>on: L                                  | Speci<br>Soluti<br>.ab S                                                                                          | al Studies<br>on made by<br>olution      | y NIWA  |         |
| Data Transfor                                              | m                           |                                                                             | Alt I                                                      | Нур                                                      |                                                            |                    |                                         |                                                       | NOEL                                               | LO                                                                                              | EL                                            | TOEL                                                      |                                                                                                                   | Tox Units                                | MSDu    | PMSD    |
| Angular (Corre                                             | ected)                      |                                                                             | C > 1                                                      | Г                                                        |                                                            |                    |                                         |                                                       | 51                                                 | 156                                                                                             |                                               | 89.2                                                      |                                                                                                                   |                                          | 0.06018 | 6.02%   |
| Bonferroni A                                               | lj t Te                     | est                                                                         |                                                            |                                                          |                                                            |                    |                                         |                                                       |                                                    |                                                                                                 |                                               |                                                           |                                                                                                                   |                                          |         |         |
| Control                                                    | vs                          | Conc-µg/L                                                                   | L                                                          | df                                                       | Test 9                                                     | Stat               | Critical                                | MSD                                                   | P-Type                                             | P-V                                                                                             | alue                                          | Decisi                                                    | on(α                                                                                                              | :5%)                                     |         |         |
| Dilution Water                                             |                             | 23                                                                          |                                                            | 6                                                        | 0                                                          |                    | 2.466                                   | 0.08906                                               | CDF                                                | 1.00                                                                                            | 000                                           | Non-Si                                                    | gnifio                                                                                                            | cant Effect                              |         |         |
|                                                            |                             | 51<br>156*                                                                  |                                                            | 6                                                        | 0                                                          |                    | 2.466                                   | 0.08906                                               | CDF                                                | 1.00                                                                                            | 000                                           | Non-Signific                                              | gnific                                                                                                            | ant Effect                               |         |         |
|                                                            |                             | 150                                                                         |                                                            |                                                          | 11.55                                                      |                    | 2.400                                   | 0.00300                                               | CDI                                                | ~1.4                                                                                            | 12-03                                         | Signino                                                   | anti                                                                                                              | Lilect                                   |         |         |
| ANOVA Table                                                |                             |                                                                             |                                                            |                                                          |                                                            | _                  |                                         | ~ ~                                                   |                                                    |                                                                                                 |                                               | <b>.</b>                                                  |                                                                                                                   | -                                        |         |         |
| Source                                                     |                             | Sum Squa                                                                    | ares                                                       |                                                          | Mean                                                       | Squ                | are                                     | DF                                                    | F Stat                                             | P-V                                                                                             | alue                                          | Decisi                                                    | on(α                                                                                                              | :5%)                                     |         |         |
| Error                                                      |                             | 0.0244562                                                                   |                                                            |                                                          | 0.130                                                      | 773<br>4456        |                                         | 3<br>10                                               | 00.93                                              | \$1.0                                                                                           | JE-05                                         | Signific                                                  | anti                                                                                                              | Ellect                                   |         |         |
| Total                                                      |                             | 0.434774                                                                    |                                                            |                                                          |                                                            |                    |                                         | 13                                                    | _                                                  |                                                                                                 |                                               |                                                           |                                                                                                                   |                                          |         |         |
| ANOVA Assu                                                 | nptic                       | ns Tests                                                                    |                                                            |                                                          |                                                            |                    |                                         |                                                       |                                                    |                                                                                                 |                                               |                                                           |                                                                                                                   |                                          |         |         |
| Attribute                                                  |                             | Test                                                                        |                                                            |                                                          |                                                            |                    |                                         | Test Stat                                             | Critical                                           | P-V                                                                                             | alue                                          | Decisi                                                    | on(α                                                                                                              | :1%)                                     |         |         |
| Variance                                                   |                             | Bartlett Eq                                                                 | uality                                                     | of Vai                                                   | iance 1                                                    | fest               |                                         |                                                       |                                                    |                                                                                                 |                                               | Indeter                                                   | mina                                                                                                              | ite                                      |         |         |
| Distribution                                               |                             | Levene Eq<br>Mod Lever<br>Anderson-<br>D'Agostino<br>Kolmogoro<br>Shapiro-W | quality<br>ne Equ<br>Darling<br>Skew<br>ov-Smi<br>/ilk W I | of Vai<br>iality o<br>g A2 1<br>iness<br>irnov 1<br>Norm | riance T<br>of Varia<br>Test<br>Test<br>D Test<br>ality Te | Fest<br>nce T      | Test                                    | 5.781<br>656.6<br>3.824<br>0.2587<br>0.4286<br>0.5624 | 6.552<br>9.78<br>3.878<br>2.576<br>0.262<br>0.8239 | 0.01<br><1.(<br><1.(<br>0.79<br><1.(<br>1.98                                                    | 148<br>DE-05<br>DE-05<br>958<br>DE-05<br>E-05 | Equal V<br>Unequa<br>Non-No<br>Normal<br>Non-No<br>Non-No | Equal Variances<br>Unequal Variances<br>Non-Normal Distribution<br>Normal Distribution<br>Non-Normal Distribution |                                          |         |         |
| 48h Survival                                               | Rate                        | Summary                                                                     |                                                            |                                                          |                                                            |                    |                                         |                                                       |                                                    |                                                                                                 |                                               |                                                           |                                                                                                                   |                                          |         |         |
| Conc-µg/L                                                  |                             | Code                                                                        | Cou                                                        | nt                                                       | Mean                                                       |                    | 95% LCL                                 | 95% UCL                                               | Median                                             | Min                                                                                             |                                               | Мах                                                       |                                                                                                                   | Std Err                                  | CV%     | %Effect |
| 0.25                                                       |                             | D                                                                           | 5                                                          |                                                          | 1.000                                                      | 0                  | 1.0000                                  | 1.0000                                                | 1.0000                                             | 1.00                                                                                            | 000                                           | 1.0000                                                    |                                                                                                                   | 0.0000                                   | 0.00%   | 0.00%   |
| 23                                                         |                             |                                                                             | 3                                                          |                                                          | 1.000                                                      | 0                  | 1.0000                                  | 1.0000                                                | 1.0000                                             | 1.00                                                                                            | 000                                           | 1.0000                                                    |                                                                                                                   | 0.0000                                   | 0.00%   | 0.00%   |
| 51                                                         |                             |                                                                             | 3                                                          |                                                          | 1.000                                                      | 0                  | 1.0000                                  | 1.0000                                                | 1.0000                                             | 1.00                                                                                            | 000                                           | 1.0000                                                    |                                                                                                                   | 0.0000                                   | 0.00%   | 20.00%  |
| 450                                                        |                             |                                                                             | 3                                                          |                                                          | 0.000                                                      | 0                  | 0.0000                                  | 0.0000                                                | 0.0000                                             | 0.00                                                                                            | 000                                           | 0.0000                                                    |                                                                                                                   | 0.0000                                   | 14.2370 | 100.00% |
| 1320                                                       |                             |                                                                             | 3                                                          |                                                          | 0.000                                                      | 0                  | 0.0000                                  | 0.0000                                                | 0.0000                                             | 0.00                                                                                            | 000                                           | 0.0000                                                    |                                                                                                                   | 0.0000                                   |         | 100.00% |
| Angular (Corr                                              | ected                       | l) Transfori                                                                | med S                                                      | umm                                                      | ary                                                        |                    |                                         |                                                       |                                                    |                                                                                                 |                                               |                                                           |                                                                                                                   |                                          |         |         |
| Conc-µg/L                                                  |                             | Code                                                                        | Cour                                                       | nt                                                       | Mean                                                       |                    | 95% LCL                                 | 95% UCL                                               | Median                                             | Min                                                                                             |                                               | Мах                                                       |                                                                                                                   | Std Err                                  | CV%     | %Effect |
| 0.25                                                       |                             | D                                                                           | 5                                                          |                                                          | 1.412                                                      | 0                  | 1.4120                                  | 1.4120                                                | 1.4120                                             | 1.41                                                                                            | 120                                           | 1.4120                                                    |                                                                                                                   | 0.0000                                   | 0.00%   | 0.00%   |
| 23                                                         |                             |                                                                             | 3                                                          |                                                          | 1.412                                                      | 0                  | 1.4110                                  | 1.4130                                                | 1.4120                                             | 1.41                                                                                            | 120                                           | 1.4120                                                    |                                                                                                                   | 0.0000                                   | 0.00%   | 0.00%   |
| 51                                                         |                             |                                                                             | 3                                                          |                                                          | 1.412                                                      | 0                  | 1.4110                                  | 1.4130                                                | 1.4120                                             | 1.41                                                                                            | 120                                           | 1.4120                                                    |                                                                                                                   | 0.0000                                   | 0.00%   | 0.00%   |
| 156                                                        |                             |                                                                             | 3                                                          |                                                          | 0.994                                                      | 8<br>0             | 0.7201                                  | 1.2690                                                | 0.9912                                             | 0.88                                                                                            | 301<br>:00                                    | 1.1070                                                    |                                                                                                                   | 0.0638                                   | 11.12%  | 29.55%  |
| 450                                                        |                             |                                                                             | 3                                                          |                                                          | 0.158                                                      | 0<br>8             | 0.1588                                  | 0.1588                                                | 0.1588                                             | 0.13                                                                                            | 588<br>588                                    | 0.1588                                                    |                                                                                                                   | 0.0000                                   | 0.00%   | 88 76%  |
| .020                                                       |                             |                                                                             |                                                            |                                                          | 0.100                                                      | -<br>-             | 3.1300                                  | 3.1000                                                | 3.1300                                             | 0.15                                                                                            |                                               | 0.1000                                                    |                                                                                                                   | 0.0000                                   | 3.0070  | 50.1070 |

Convergent Rounding (4 sf)

CETIS™ v2.1.4.5 (009-951-268-0)

Analyst:\_\_\_\_\_ QA:\_\_\_\_

\_

| CET                      | IS An                      | nalytical Rep                    | ort              |                                           |                                                |                              |                         | Report Date:<br>Test Code/ID:                   | 27 May-24 14:09 (p 2 of 2)<br>24.003.1 Cu / 11-3123-4564 |
|--------------------------|----------------------------|----------------------------------|------------------|-------------------------------------------|------------------------------------------------|------------------------------|-------------------------|-------------------------------------------------|----------------------------------------------------------|
| Daph                     | nia tho                    | omsoni 48-h Acut                 | e Survival       | Test                                      |                                                |                              |                         |                                                 | NIWA Ecotoxicology                                       |
| Analy<br>Analy<br>Edit [ | /sis ID:<br>/zed:<br>Date: | : 06-4463-1136<br>27 May-24 14:0 | En<br>8 An<br>Mi | ndpoint: 48<br>nalysis: Pa<br>D5 Hash: 5D | h Survival Ra<br>arametric-Mult<br>0241F0A1645 | ite<br>tiple Comj<br>8046CC0 | parison<br>427C2488552B | CETIS Version:<br>Status Level:<br>C Editor ID: | CETISv2.1.4<br>1                                         |
| 48h S                    | urviva                     | I Rate Detail                    |                  |                                           |                                                |                              |                         |                                                 |                                                          |
| Conc                     | -µg/L                      | Code                             | Rep 1            | Rep 2                                     | Rep 3                                          | Rep 4                        | Rep 5                   |                                                 |                                                          |
| 0.25                     |                            | D                                | 1.0000           | 1.0000                                    | 1.0000                                         | 1.0000                       | 1.0000                  |                                                 |                                                          |
| 23                       |                            |                                  | 1.0000           | 1.0000                                    | 1.0000                                         |                              |                         |                                                 |                                                          |
| 51                       |                            |                                  | 1.0000           | 1.0000                                    | 1.0000                                         |                              |                         |                                                 |                                                          |
| 156                      |                            |                                  | 0.8000           | 0.6000                                    | 0.7000                                         |                              |                         |                                                 |                                                          |
| 450                      |                            |                                  | 0.0000           | 0.0000                                    | 0.0000                                         |                              |                         |                                                 |                                                          |
| 1320                     |                            |                                  | 0.0000           | 0.0000                                    | 0.0000                                         |                              |                         |                                                 |                                                          |
| Angu                     | lar (Co                    | orrected) Transfor               | med Deta         | il                                        |                                                |                              |                         |                                                 |                                                          |
| Conc                     | -μg/L                      | Code                             | Rep 1            | Rep 2                                     | Rep 3                                          | Rep 4                        | Rep 5                   |                                                 |                                                          |
| 0.25                     |                            | D                                | 1.4120           | 1.4120                                    | 1.4120                                         | 1.4120                       | 1.4120                  |                                                 |                                                          |
| 23                       |                            |                                  | 1.4120           | 1.4120                                    | 1.4120                                         |                              |                         |                                                 |                                                          |
| 51                       |                            |                                  | 1.4120           | 1.4120                                    | 1.4120                                         |                              |                         |                                                 |                                                          |
| 156                      |                            |                                  | 1.1070           | 0.8861                                    | 0.9912                                         |                              |                         |                                                 |                                                          |
| 450                      |                            |                                  | 0.1588           | 0.1588                                    | 0.1588                                         |                              |                         |                                                 |                                                          |
| 1320                     |                            |                                  | 0.1588           | 0.1588                                    | 0.1588                                         |                              |                         |                                                 |                                                          |
| 48h S                    | Surviva                    | I Rate Binomials                 |                  |                                           |                                                |                              |                         |                                                 |                                                          |
| Conc                     | -µg/L                      | Code                             | Rep 1            | Rep 2                                     | Rep 3                                          | Rep 4                        | Rep 5                   |                                                 |                                                          |
| 0.25                     |                            | D                                | 10/10            | 10/10                                     | 10/10                                          | 10/10                        | 10/10                   |                                                 |                                                          |
| 23                       |                            |                                  | 10/10            | 10/10                                     | 10/10                                          |                              |                         |                                                 |                                                          |
| 51                       |                            |                                  | 10/10            | 10/10                                     | 10/10                                          |                              |                         |                                                 |                                                          |
| 150                      |                            |                                  | 8/10             | 0/10                                      | 0/10                                           |                              |                         |                                                 |                                                          |
| 1320                     |                            |                                  | 0/10             | 0/10                                      | 0/10                                           |                              |                         |                                                 |                                                          |
| 0                        |                            |                                  |                  |                                           |                                                |                              |                         |                                                 |                                                          |
| Grap                     | nics                       |                                  |                  |                                           |                                                |                              |                         |                                                 |                                                          |
|                          | 1.0-                       |                                  |                  |                                           |                                                | •                            | 0.10 -                  |                                                 | ٠                                                        |
|                          | 0.9 -                      |                                  |                  |                                           |                                                |                              |                         |                                                 |                                                          |
|                          | 0.8 -                      |                                  |                  |                                           |                                                |                              | 0.05                    |                                                 |                                                          |
| Rate                     | 0.7-                       |                                  |                  |                                           |                                                |                              | 0.03 -                  |                                                 |                                                          |
| val                      | 0.6 -                      |                                  |                  |                                           |                                                |                              | Angl                    |                                                 |                                                          |
| urvi                     | 0.5-                       |                                  |                  |                                           |                                                |                              | 0.00 -                  |                                                 | ****                                                     |
| 8h S                     | 0.4 -                      |                                  |                  |                                           |                                                |                              | ŭ                       |                                                 |                                                          |
| 4                        | 0.3                        |                                  |                  |                                           |                                                |                              | -0.05 -                 |                                                 |                                                          |
|                          | 0.1 -                      |                                  |                  |                                           |                                                |                              |                         |                                                 |                                                          |
|                          | 0.0                        |                                  |                  |                                           | <u> </u>                                       |                              | -0.10 -                 |                                                 |                                                          |
|                          |                            | 0.25 D 23                        | 51               | 156 4                                     | 50 1320                                        |                              | -                       | 1.5 -1.0 -0.5                                   | 0.0 0.5 1.0 1.5                                          |
|                          |                            |                                  | Conc-            | ua/L                                      |                                                |                              |                         | R                                               | ankits                                                   |
|                          |                            |                                  |                  |                                           |                                                |                              |                         |                                                 |                                                          |

CETIS™ v2.1.4.5 (009-951-268-0)

| CETIS Analytical Report                                                                                                         |                                                                                                                                                                                                                                                 |                         |                                            |                                     |                                                                                  |                          |                    |                                              |                             |             | R<br>T                         | eport<br>est Co            | Date:<br>de/ID:                |                                               | 27<br>24.    | May-24 14<br>003.1 Cu / | :09 (p<br>11-31: | 1 of 2)<br>23-4564 |        |
|---------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------|--------------------------------------------|-------------------------------------|----------------------------------------------------------------------------------|--------------------------|--------------------|----------------------------------------------|-----------------------------|-------------|--------------------------------|----------------------------|--------------------------------|-----------------------------------------------|--------------|-------------------------|------------------|--------------------|--------|
| Daphn                                                                                                                           | ia thon                                                                                                                                                                                                                                         | nsoni 4                 | 48-h Acute                                 | e Surv                              | ival T                                                                           | est                      |                    |                                              |                             |             |                                |                            |                                |                                               |              |                         | NIWA Ec          | otoxi              | cology |
| Analys<br>Analyz<br>Edit Da                                                                                                     | is ID:<br>ed:<br>ate:                                                                                                                                                                                                                           | 01-06<br>27 Ma          | 18-7910<br>iy-24 14:09                     | 9                                   | Endj<br>Anal<br>MD5                                                              | point:<br>ysis:<br>Hash: | 48h<br>Line<br>5D2 | Survival Rai<br>ear Interpolat<br>241F0A1645 | te<br>tion (ICPI<br>8046CC0 | N)<br>427C2 | 488552                         | 2BC                        | CETI<br>Statu<br>Edito         | S Versi<br>Is Leve<br>or ID:                  | ion:<br>I:   | CETISv<br>1             | 2.1.4            |                    |        |
| Batch  <br>Start D<br>Ending<br>Test Le                                                                                         | atch ID:     15-9420-8257     Test Type: Survival (48h)       tart Date:     04 May-24     Protocol:     NIWA SOP 10 (2022)       nding Date:     06 May-24     Species:     Daphnia thomsoni (Water flea)       est Length:     48h     Taxon: |                         |                                            |                                     |                                                                                  |                          |                    |                                              |                             |             | Anal<br>Dilue<br>Brine<br>Sour | yst:<br>ent:<br>e:<br>rce: | Ecot<br>Redv<br>Not /<br>Field | ox Team<br>woods<br>Applicable<br>I Collected | 1            | Ag                      | je:              |                    |        |
| Sample ID: 04-1166-2908<br>Sample Date: 03 May-24<br>Receipt Date: 03 May-24<br>Sample Age: 24h<br>Linear Interpolation Options |                                                                                                                                                                                                                                                 |                         |                                            |                                     | Code: 24.003.1 Cu<br>Material: Copper<br>CAS (PC):<br>Client: Hydrotoxy Research |                          |                    |                                              |                             |             | Proje<br>Sour<br>Stati         | ect:<br>ce:<br>on:         | Spec<br>Solut<br>Lab \$        | ial Studie<br>tion made<br>Solution           | s<br>by NIWA |                         |                  |                    |        |
| Linear                                                                                                                          | Interp                                                                                                                                                                                                                                          | olation                 | Options                                    |                                     |                                                                                  |                          |                    |                                              |                             |             |                                |                            |                                |                                               |              |                         |                  |                    |        |
| X Tran                                                                                                                          | sform                                                                                                                                                                                                                                           | Y.                      | Transform                                  | 1                                   | Seed                                                                             | 1                        |                    | Resamples                                    | Exp 95                      | % CL        | Meth                           | od                         |                                |                                               |              |                         |                  |                    |        |
| Log(X+                                                                                                                          | 1)                                                                                                                                                                                                                                              | Lir                     | near                                       |                                     | 8502                                                                             | 200                      | 1                  | 200                                          | Yes                         |             | Two-                           | Point                      | Interp                         | olation                                       |              |                         |                  |                    |        |
| Point E<br>Level<br>LC15<br>LC20<br>LC25<br>LC40                                                                                | Estimat<br>µg/L<br>89.3<br>107.0<br>129.0<br>181.5                                                                                                                                                                                              | tes<br>5<br>6<br>6<br>5 | 95% LCL<br>64.88<br>69.26<br>73.2<br>127.9 | 95%<br>149.<br>209.<br>207.<br>227. | UCL<br>7<br>2<br>5<br>4                                                          |                          |                    |                                              |                             |             |                                |                            |                                |                                               |              |                         |                  |                    |        |
| LC50                                                                                                                            | 211.3                                                                                                                                                                                                                                           | 2                       | 158.6                                      | 255.                                | 3                                                                                |                          |                    |                                              |                             |             |                                |                            |                                |                                               |              |                         |                  |                    |        |
| 48h Su                                                                                                                          | irvival                                                                                                                                                                                                                                         | Rate S                  | ummarv                                     |                                     |                                                                                  |                          |                    |                                              | Calculate                   | ed Vari     | iate(A/                        | B)                         |                                |                                               |              |                         | Isoto            | nic V              | ariate |
| Conc-                                                                                                                           | ua/L                                                                                                                                                                                                                                            |                         | Code                                       | Cou                                 | nt                                                                               | Mean                     |                    | Median                                       | Min                         | Ma          | x                              | CV <sup>e</sup>            | %                              | %Effe                                         | ect          | ΣΑ/ΣΒ                   | Mean             | %                  | Effect |
| 0.25                                                                                                                            | -g                                                                                                                                                                                                                                              |                         | D                                          | 5                                   |                                                                                  | 1.000                    | 0                  | 1.0000                                       | 1.0000                      | 1.0         | 000                            | 0.00                       | 0%                             | 0.00%                                         | 6            | 50/50                   | 1.0000           | 0.                 | .00%   |
| 23                                                                                                                              |                                                                                                                                                                                                                                                 |                         |                                            | 3                                   |                                                                                  | 1.000                    | D                  | 1.0000                                       | 1.0000                      | 1.0         | 000                            | 0.00                       | 0%                             | 0.00%                                         | 5            | 30/30                   | 1.0000           | 0.                 | .00%   |
| 51                                                                                                                              |                                                                                                                                                                                                                                                 |                         |                                            | 3                                   |                                                                                  | 1.000                    | D                  | 1.0000                                       | 1.0000                      | 1.0         | 000                            | 0.00                       | 0%                             | 0.00%                                         | b            | 30/30                   | 1.0000           | 0.                 | .00%   |
| 156                                                                                                                             |                                                                                                                                                                                                                                                 |                         |                                            | 3                                   |                                                                                  | 0.700                    | D                  | 0.7000                                       | 0.6000                      | 0.8         | 000                            | 14.3                       | 29%                            | 30.00                                         | %            | 21/30                   | 0.7000           | 30                 | 0.00%  |
| 450                                                                                                                             |                                                                                                                                                                                                                                                 |                         |                                            | 3                                   |                                                                                  | 0.000                    | D<br>D             | 0.0000                                       | 0.0000                      | 0.0         | 000                            |                            |                                | 100.00                                        | 0%           | 0/30                    | 0.0000           | 10                 | 00.00% |
| 1320                                                                                                                            |                                                                                                                                                                                                                                                 |                         |                                            | 3                                   |                                                                                  | 0.000                    |                    | 0.0000                                       | 0.0000                      | 0.0         | 000                            |                            |                                | 100.00                                        | 070          | 0/30                    | 0.0000           |                    | 00.00% |
| 48h Su                                                                                                                          | irvival                                                                                                                                                                                                                                         | Rate D                  | etail                                      |                                     |                                                                                  |                          |                    |                                              |                             |             |                                |                            |                                |                                               |              |                         |                  |                    |        |
| Conc-                                                                                                                           | ıg/L                                                                                                                                                                                                                                            |                         | Code                                       | Rep                                 | 1                                                                                | Rep 2                    |                    | Rep 3                                        | Rep 4                       | Re          | p 5                            |                            |                                |                                               |              |                         |                  |                    |        |
| 0.25                                                                                                                            |                                                                                                                                                                                                                                                 |                         | U                                          | 1.00                                | 00                                                                               | 1.000                    | U<br>N             | 1.0000                                       | 1.0000                      | 1.0         | 000                            |                            |                                |                                               |              |                         |                  |                    |        |
| 23                                                                                                                              |                                                                                                                                                                                                                                                 |                         |                                            | 1.00                                | 00                                                                               | 1.000                    | n                  | 1.0000                                       |                             |             |                                |                            |                                |                                               |              |                         |                  |                    |        |
| 156                                                                                                                             |                                                                                                                                                                                                                                                 |                         |                                            | 0.80                                | 00                                                                               | 0.600                    | n                  | 0 7000                                       |                             |             |                                |                            |                                |                                               |              |                         |                  |                    |        |
| 450                                                                                                                             |                                                                                                                                                                                                                                                 |                         |                                            | 0.00                                | 00                                                                               | 0.000                    | 0                  | 0.0000                                       |                             |             |                                |                            |                                |                                               |              |                         |                  |                    |        |
| 1320                                                                                                                            |                                                                                                                                                                                                                                                 |                         |                                            | 0.00                                | 00                                                                               | 0.000                    | D                  | 0.0000                                       |                             |             |                                |                            |                                |                                               |              |                         |                  |                    |        |
| 48h Su                                                                                                                          | irvival                                                                                                                                                                                                                                         | Rate B                  | inomials                                   |                                     |                                                                                  |                          |                    |                                              |                             |             |                                |                            |                                |                                               |              |                         |                  |                    |        |
| Conc-                                                                                                                           | ıg/L                                                                                                                                                                                                                                            |                         | Code                                       | Rep                                 | 1                                                                                | Rep 2                    |                    | Rep 3                                        | Rep 4                       | Re          | o 5                            |                            |                                |                                               |              |                         |                  |                    |        |
| 0.25                                                                                                                            | -                                                                                                                                                                                                                                               |                         | D                                          | 10/1                                | 0                                                                                | 10/10                    |                    | 10/10                                        | 10/10                       | 10/         | 10                             |                            |                                |                                               |              |                         |                  |                    |        |
| 23                                                                                                                              |                                                                                                                                                                                                                                                 |                         |                                            | 10/1                                | 0                                                                                | 10/10                    |                    | 10/10                                        |                             |             |                                |                            |                                |                                               |              |                         |                  |                    |        |
| 51                                                                                                                              |                                                                                                                                                                                                                                                 |                         |                                            | 10/1                                | 0                                                                                | 10/10                    |                    | 10/10                                        |                             |             |                                |                            |                                |                                               |              |                         |                  |                    |        |
| 156                                                                                                                             |                                                                                                                                                                                                                                                 |                         |                                            | 8/10                                |                                                                                  | 6/10                     |                    | 7/10                                         |                             |             |                                |                            |                                |                                               |              |                         |                  |                    |        |
| 450                                                                                                                             |                                                                                                                                                                                                                                                 |                         |                                            | 0/10                                |                                                                                  | 0/10                     |                    | 0/10                                         |                             |             |                                |                            |                                |                                               |              |                         |                  |                    |        |
| 1320                                                                                                                            |                                                                                                                                                                                                                                                 |                         |                                            | 0/10                                |                                                                                  | 0/10                     |                    | 0/10                                         |                             |             |                                |                            |                                |                                               |              |                         |                  |                    |        |
|                                                                                                                                 |                                                                                                                                                                                                                                                 |                         |                                            |                                     |                                                                                  |                          |                    |                                              |                             |             |                                |                            |                                |                                               |              |                         |                  |                    |        |

CETIS™ v2.1.4.5 (009-951-268-0)

| <b>CETIS An</b>                                                                                               | alvtical Report                 |                                                                                                                | Report Date:                                        | 27 May-24 14:09 (p 2 of 2) |
|---------------------------------------------------------------------------------------------------------------|---------------------------------|----------------------------------------------------------------------------------------------------------------|-----------------------------------------------------|----------------------------|
|                                                                                                               |                                 |                                                                                                                | Test Code/ID:                                       | 24.003.1 Cu / 11-3123-4564 |
| Daphnia tho                                                                                                   | msoni 48-h Acute Su             | Irvival Test                                                                                                   |                                                     | NIWA Ecotoxicology         |
| Analysis ID:<br>Analyzed:<br>Edit Date:                                                                       | 01-0618-7910<br>27 May-24 14:09 | Endpoint: 48h Survival Rate<br>Analysis: Linear Interpolation (ICPIN)<br>MD5 Hash: 5D241F0A16458046CC0427C2488 | CETIS Version:<br>Status Level:<br>552BC Editor ID: | CETISv2.1.4<br>1           |
| Graphics                                                                                                      |                                 |                                                                                                                |                                                     |                            |
| 1.0-<br>0.9<br>0.8<br>0.7<br>0.6<br>0.5<br>0.6<br>0.5<br>0.4<br>0.3<br>0.4<br>0.3<br>0.2<br>0.1<br>0.1<br>0.0 |                                 |                                                                                                                |                                                     |                            |

•

1200

1000

600

Conc-µg/L

800

400

0

200

Convergent Rounding (4 sf)

CETIS™ v2.1.4.5 (009-951-268-0)

# Appendix G CETIS statistical analyses – Hoteo

#### Zinc

| CETIS Anal                                                                                                                                         |                                                      |                                                                                                      | F<br>T                                                         | leport<br>est Co                                                       | Date:<br>de/ID:              |                                         | 27 I<br>24.0                                         | May-24 14:2<br>03.2 Zn / 1                                                                                                                                                     | 26 (p 1 of 2)<br>8-3585-2031           |                                            |                                                                                                                                      |                                |                                           |              |                  |
|----------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------|------------------------------------------------------------------------------------------------------|----------------------------------------------------------------|------------------------------------------------------------------------|------------------------------|-----------------------------------------|------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------|--------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------|--------------------------------|-------------------------------------------|--------------|------------------|
| Daphnia thoms                                                                                                                                      | soni 48-h                                            | Acute Surv                                                                                           | ival T                                                         | est                                                                    |                              |                                         |                                                      |                                                                                                                                                                                |                                        |                                            |                                                                                                                                      |                                |                                           | NIWA Eco     | toxicology       |
| Analysis ID: 0<br>Analyzed: 2<br>Edit Date:                                                                                                        | )5-6314-4<br>27 May-24                               | 525<br>14:26                                                                                         | End<br>Ana<br>MDS                                              | point:<br>lysis:<br>5 Hash:                                            | 48h<br>Par<br>8CE            | Survival Ra<br>ametric-Mul<br>3123CEE58 | ate<br>tiple Compa<br>01E9A4A60                      | irison<br>3D8DCEB3                                                                                                                                                             | 372A                                   | CETI<br>Statu<br>Edito                     | S Versi<br>Is Leve<br>or ID:                                                                                                         | ion:<br>:                      | CETISv2<br>1                              | 2.1.4        |                  |
| Batch ID: 2<br>Start Date: 0<br>Ending Date: 1<br>Test Length: 4                                                                                   | 20-4051-48<br>08 May-24<br>10 May-24<br>18h          | 304                                                                                                  | Test<br>Prot<br>Spe<br>Tax                                     | Type:<br>ocol:<br>cies:<br>on:                                         | Sur<br>NIW<br>Dap            | vival (48h)<br>/A SOP 10<br>ohnia thoms | (2022)<br>oni (Water fi                              | lea)                                                                                                                                                                           |                                        | Analy<br>Dilue<br>Brine<br>Sour            | yst:<br>ent:<br>e:<br>rce:                                                                                                           | Ecot<br>Hote<br>Not /<br>Field | ox Team<br>o<br>Applicable<br>I Collected |              | Age:             |
| Sample ID: 0<br>Sample Date: 0<br>Receipt Date: 0<br>Sample Age: 2                                                                                 | 04-6256-93<br>07 May-24<br>07 May-24<br>24h          | 350                                                                                                  | Cod<br>Mate<br>CAS<br>Clie                                     | e:<br>erial:<br>(PC):<br>nt:                                           | 24.(<br>Zind                 | 003.2 Zn<br>c sulfate<br>irotoxy Rese   | earch                                                |                                                                                                                                                                                |                                        | Proje<br>Sour<br>Stati                     | ect:<br>rce:<br>on:                                                                                                                  | Spec<br>Solut<br>Lab 3         | cial Studies<br>tion made l<br>Solution   | by NIWA      |                  |
| Data Transform                                                                                                                                     | ı                                                    | Alt I                                                                                                | Нур                                                            |                                                                        |                              |                                         |                                                      | NOEL                                                                                                                                                                           | LO                                     | EL                                         | TOEL                                                                                                                                 | -                              | Tox Units                                 | ≶ MSDu       | PMSD             |
| Angular (Correc                                                                                                                                    | ted)                                                 | C > 1                                                                                                | Г                                                              |                                                                        |                              |                                         |                                                      | 235                                                                                                                                                                            | 505                                    | j                                          | 344.5                                                                                                                                |                                |                                           | 0.09253      | 9.25%            |
| Bonferroni Adj t Test                                                                                                                              |                                                      |                                                                                                      |                                                                |                                                                        |                              |                                         |                                                      |                                                                                                                                                                                |                                        |                                            |                                                                                                                                      |                                |                                           |              |                  |
| Control V                                                                                                                                          | s Con                                                | c-µg/L                                                                                               | Stat                                                           | Critical                                                               | MSD                          | P-Type                                  | P-V                                                  | alue                                                                                                                                                                           | Decis                                  | sion(e                                     | a:5%)                                                                                                                                |                                |                                           |              |                  |
| Dilution Water                                                                                                                                     | 105<br>235<br>505*<br>1055                           | *                                                                                                    | 0<br>0<br>7.106<br>13.67                                       |                                                                        | 2.56<br>2.56<br>2.56<br>2.56 | 0.1503<br>0.1503<br>0.1503<br>0.1503    | CDF<br>CDF<br>CDF<br>CDF                             | 1.0000         Non-Significant Effect           1.0000         Non-Significant Effect           2.5E-05         Significant Effect           1.0000         Significant Effect |                                        |                                            |                                                                                                                                      |                                | t<br>t                                    |              |                  |
|                                                                                                                                                    | 1055                                                 |                                                                                                      |                                                                | 15.01                                                                  |                              | 2.50                                    | 0.1505                                               | 001                                                                                                                                                                            | - 1.                                   | 02-05                                      | olgrin                                                                                                                               | Ican                           | Lincor                                    |              |                  |
| ANOVA Table                                                                                                                                        |                                                      |                                                                                                      |                                                                |                                                                        |                              |                                         |                                                      |                                                                                                                                                                                | _                                      |                                            |                                                                                                                                      |                                |                                           |              |                  |
| Source                                                                                                                                             | Sum                                                  | Squares                                                                                              |                                                                | Mean                                                                   | Squ                          | are                                     | DF                                                   | F Stat                                                                                                                                                                         | P-V                                    | alue                                       | Decis                                                                                                                                | sion(                          | a:5%)                                     |              |                  |
| Between                                                                                                                                            | 1.66                                                 | 046<br>75609                                                                                         |                                                                | 0.416                                                                  | 616<br>4634                  |                                         | 4<br>12                                              | 64.46                                                                                                                                                                          | <1.                                    | 0E-05                                      | Signit                                                                                                                               | icant                          | Effect                                    |              |                  |
| Total                                                                                                                                              | 1.74                                                 | 402                                                                                                  |                                                                | 0.000                                                                  | 1001                         |                                         | 16                                                   | _                                                                                                                                                                              |                                        |                                            |                                                                                                                                      |                                |                                           |              |                  |
| ANOVA Assum                                                                                                                                        | ptions Te                                            | sts                                                                                                  |                                                                |                                                                        |                              |                                         |                                                      |                                                                                                                                                                                |                                        |                                            |                                                                                                                                      |                                |                                           |              |                  |
| Attribute                                                                                                                                          | Test                                                 |                                                                                                      |                                                                |                                                                        |                              |                                         | Test Stat                                            | Critical                                                                                                                                                                       | P-V                                    | alue                                       | Decis                                                                                                                                | sion(                          | a:1%)                                     |              |                  |
| Variance<br>Distribution                                                                                                                           | Barti<br>Leve<br>Mod<br>Ande<br>D'Ag<br>Kolm<br>Shap | ett Equality<br>ne Equality<br>Levene Equ<br>erson-Darlin<br>ostino Skew<br>ogorov-Sm<br>piro-Wilk W | of Va<br>of Va<br>Jality (<br>g A2<br>vness<br>irnov l<br>Norm | riance 1<br>riance 1<br>of Varia<br>Test<br>Test<br>D Test<br>ality Te | Test<br>Test<br>nce<br>st    | Test                                    | 5.924<br>22.1<br>2.777<br>0.9691<br>0.3824<br>0.7463 | 5.412<br>7.847<br>3.878<br>2.576<br>0.2405<br>0.848                                                                                                                            | 0.0<br>0.0<br><1.<br>0.3<br><1.<br>0.0 | 072<br>005<br>0E-05<br>325<br>0E-05<br>004 | Indeterminate<br>Unequal Variances<br>Unequal Variances<br>Non-Normal Distribution<br>Normal Distribution<br>Non-Normal Distribution |                                |                                           |              |                  |
| 48h Survival R                                                                                                                                     | ate Summ                                             | arv                                                                                                  |                                                                |                                                                        |                              |                                         |                                                      |                                                                                                                                                                                |                                        |                                            |                                                                                                                                      |                                |                                           |              |                  |
| Conc-µg/L                                                                                                                                          | Code                                                 | e Cou                                                                                                | nt                                                             | Mean                                                                   |                              | 95% LCL                                 | 95% UCL                                              | Median                                                                                                                                                                         | Min                                    |                                            | Мах                                                                                                                                  |                                | Std Err                                   | CV%          | %Effect          |
| Conc-µg/L<br>4.35                                                                                                                                  | Code<br>D                                            | e Cou<br>5                                                                                           | nt                                                             | Mean<br>1.000                                                          | 0                            | 95% LCL<br>1.0000                       | 95% UCL<br>1.0000                                    | Median<br>1.0000                                                                                                                                                               | Mir<br>1.0                             | )<br>000                                   | Max<br>1.000                                                                                                                         | 0                              | Std Err<br>0.0000                         | CV%<br>0.00% | %Effect<br>0.00% |
| 105                                                                                                                                                |                                                      | 3                                                                                                    |                                                                | 1.000                                                                  | 0                            | 1.0000                                  | 1.0000                                               | 1.0000                                                                                                                                                                         | 1.0                                    | 000                                        | 1.000                                                                                                                                | 0                              | 0.0000                                    | 0.00%        | 0.00%            |
| 235                                                                                                                                                |                                                      | 3                                                                                                    |                                                                | 1.000                                                                  | 0                            | 1.0000                                  | 1.0000                                               | 1.0000                                                                                                                                                                         | 1.0                                    | 000                                        | 1.000                                                                                                                                | 0                              | 0.0000                                    | 0.00%        | 0.00%            |
| 1055                                                                                                                                               |                                                      | 3                                                                                                    |                                                                | 0.333                                                                  | 3                            | 0.4510                                  | 0.9464                                               | 0.7000                                                                                                                                                                         | 0.0                                    | 000                                        | 0.600                                                                                                                                | 0                              | 0.0377                                    | 45.83%       | 50.00%<br>66.67% |
| 2400                                                                                                                                               |                                                      | 3                                                                                                    |                                                                | 0.000                                                                  | 0                            | 0.0000                                  | 0.0000                                               | 0.0000                                                                                                                                                                         | 0.0                                    | 000                                        | 0.000                                                                                                                                | 0                              | 0.0000                                    |              | 100.00%          |
| Angular (Corrected) Transformed Summary                                                                                                            |                                                      |                                                                                                      |                                                                |                                                                        |                              |                                         |                                                      |                                                                                                                                                                                |                                        |                                            |                                                                                                                                      |                                |                                           |              |                  |
| Conc-µg/L Code Count Mean 95% L(                                                                                                                   |                                                      |                                                                                                      |                                                                |                                                                        |                              |                                         | 95% UCL                                              | Median                                                                                                                                                                         | Mir                                    | 1                                          | Мах                                                                                                                                  |                                | Std Err                                   | CV%          | %Effect          |
| 4.35                                                                                                                                               | D                                                    | 5                                                                                                    |                                                                | 1.412                                                                  | 0                            | 1.4120                                  | 1.4120                                               | 1.4120                                                                                                                                                                         | 1.4                                    | 120                                        | 1.412                                                                                                                                | 0                              | 0.0000                                    | 0.00%        | 0.00%            |
| 105                                                                                                                                                |                                                      | 3                                                                                                    |                                                                | 1.412                                                                  | 0                            | 1.4110                                  | 1.4130                                               | 1.4120                                                                                                                                                                         | 1.4                                    | 120                                        | 1.412                                                                                                                                | 0                              | 0.0000                                    | 0.00%        | 0.00%            |
| 235                                                                                                                                                |                                                      | 3                                                                                                    |                                                                | 1.412                                                                  | 0                            | 1.4110                                  | 1.4130                                               | 1.4120                                                                                                                                                                         | 1.4                                    | 120                                        | 1.412                                                                                                                                | 0                              | 0.0000                                    | 0.00%        | 0.00%            |
| 505<br>1055                                                                                                                                        | 0.7201                                               | 1.2090                                                                                               | 0.9912                                                         | 0.8                                                                    | 501<br>626                   | 1.10/                                   | 0                                                    | 0.0638                                                                                                                                                                         | 11.12%<br>26.72%                       | 29.55%                                     |                                                                                                                                      |                                |                                           |              |                  |
| 305         3         0.000         0.12           1055         3         0.6096         0.20           2400         3         0.1588         0.15 |                                                      |                                                                                                      |                                                                |                                                                        |                              |                                         | 0.1588                                               | 0.1588                                                                                                                                                                         | 0.4                                    | 588                                        | 0.785                                                                                                                                | 8                              | 0.0000                                    | 0.00%        | 88.76%           |

Convergent Rounding (4 sf)

CETIS™ v2.1.4.5 (009-951-268-0)

| CETIS And                               | alytical Repo                   | ort              |                                         |                                          |                                  |                        | Report Date:<br>Test Code/ID:                 | 27 May-24 14:26 (p 2 of 2)<br>24.003.2 Zn / 18-3585-2031 |
|-----------------------------------------|---------------------------------|------------------|-----------------------------------------|------------------------------------------|----------------------------------|------------------------|-----------------------------------------------|----------------------------------------------------------|
| Daphnia thor                            | nsoni 48-h Acute                | e Survival       | Test                                    |                                          |                                  |                        |                                               | NIWA Ecotoxicology                                       |
| Analysis ID:<br>Analyzed:<br>Edit Date: | 05-6314-4525<br>27 May-24 14:20 | En<br>6 An<br>MD | dpoint: 48<br>alysis: Pa<br>95 Hash: 8C | h Survival R<br>rametric-Mu<br>B123CEE58 | ate<br>Iltiple Comp<br>301E9A4A6 | arison<br>03D8DCEB3724 | CETIS Version:<br>Status Level:<br>Editor ID: | CETISv2.1.4<br>1                                         |
| 48h Survival                            | Rate Detail                     |                  |                                         |                                          |                                  |                        |                                               |                                                          |
| Conc-µg/L                               | Code                            | Rep 1            | Rep 2                                   | Rep 3                                    | Rep 4                            | Rep 5                  |                                               |                                                          |
| 4.35                                    | D                               | 1.0000           | 1.0000                                  | 1.0000                                   | 1.0000                           | 1.0000                 |                                               |                                                          |
| 105                                     |                                 | 1.0000           | 1.0000                                  | 1.0000                                   |                                  |                        |                                               |                                                          |
| 235                                     |                                 | 1.0000           | 1.0000                                  | 1.0000                                   |                                  |                        |                                               |                                                          |
| 1055                                    |                                 | 0.6000           | 0.7000                                  | 0.8000                                   |                                  |                        |                                               |                                                          |
| 2400                                    |                                 | 0.2000           | 0.0000                                  | 0.0000                                   |                                  |                        |                                               |                                                          |
| Angular (Cor                            | rected) Transfor                | med Detai        | 1                                       |                                          |                                  |                        |                                               |                                                          |
| Conc-µg/L                               | Code                            | Rep 1            | Rep 2                                   | Rep 3                                    | Rep 4                            | Rep 5                  |                                               |                                                          |
| 4.35                                    | D                               | 1.4120           | 1.4120                                  | 1.4120                                   | 1.4120                           | 1.4120                 |                                               |                                                          |
| 105                                     |                                 | 1.4120           | 1.4120                                  | 1.4120                                   |                                  |                        |                                               |                                                          |
| 235                                     |                                 | 1.4120           | 1.4120                                  | 1.4120                                   |                                  |                        |                                               |                                                          |
| 505                                     |                                 | 0.8861           | 0.9912                                  | 1.1070                                   |                                  |                        |                                               |                                                          |
| 2400                                    |                                 | 0.4636           | 0.5796                                  | 0.7854                                   |                                  |                        |                                               |                                                          |
| A0h Curuinal                            | Data Dinamiala                  |                  |                                         |                                          |                                  |                        |                                               |                                                          |
| 4011 Survival                           | Code                            | Dop 1            | Dop 2                                   | Dop 2                                    | Bop 4                            | Dop 5                  |                                               |                                                          |
| / 35                                    | Code                            | 10/10            | 10/10                                   | 10/10                                    | 10/10                            | 10/10                  |                                               |                                                          |
| 105                                     | U                               | 10/10            | 10/10                                   | 10/10                                    | 10/10                            | 10/10                  |                                               |                                                          |
| 235                                     |                                 | 10/10            | 10/10                                   | 10/10                                    |                                  |                        |                                               |                                                          |
| 505                                     |                                 | 6/10             | 7/10                                    | 8/10                                     |                                  |                        |                                               |                                                          |
| 1055                                    |                                 | 2/10             | 3/10                                    | 5/10                                     |                                  |                        |                                               |                                                          |
| 2400                                    |                                 | 0/10             | 0/10                                    | 0/10                                     |                                  |                        |                                               |                                                          |
| Graphics                                |                                 |                  |                                         |                                          |                                  |                        |                                               |                                                          |
| 1.0 -                                   |                                 | -                |                                         |                                          |                                  |                        |                                               | ٠                                                        |
| 0.9 -                                   |                                 |                  |                                         |                                          | _ ▼                              | 0.15 -                 |                                               |                                                          |
| 0.8 -                                   |                                 |                  |                                         |                                          |                                  | 0.10 -                 |                                               | •                                                        |
| <b>2</b> 0.7 –                          |                                 |                  |                                         |                                          |                                  |                        |                                               |                                                          |
| <b>₩</b> 0.6 -                          |                                 | I                |                                         |                                          | -                                | 0.05 -                 |                                               |                                                          |
| ≥ 0.5 –                                 |                                 |                  |                                         |                                          |                                  | <b>Z</b>               |                                               |                                                          |
| 0.4 -                                   |                                 |                  |                                         |                                          |                                  | 5                      |                                               |                                                          |
| <b>9</b> 0.3 -                          |                                 |                  |                                         |                                          |                                  | -0.05 -                |                                               |                                                          |
| 0.2 -                                   |                                 |                  |                                         |                                          |                                  |                        |                                               |                                                          |
| 0.1 -                                   |                                 |                  |                                         |                                          |                                  | -0.10 -                | •                                             |                                                          |
| 0.0 -                                   |                                 |                  | _,,                                     |                                          | -                                | -0.15 -                |                                               |                                                          |
|                                         | 4.35 D 105                      | 235              | 505 10                                  | 55 2400                                  |                                  | -1.                    | 5 -1.0 -0.5                                   | 0.0 0.5 1.0 1.5                                          |
|                                         |                                 | Conc-µ           | ig/L                                    |                                          |                                  |                        | R                                             | ankits                                                   |
|                                         |                                 |                  |                                         |                                          |                                  |                        |                                               |                                                          |
|                                         |                                 |                  |                                         |                                          |                                  |                        |                                               |                                                          |

CETIS™ v2.1.4.5 (009-951-268-0)

| CETIS                                     | Analy                                 | ytic                             | al Repo                   | ort     |                              |                                       |                        |                                         |                                 |                 | R    | leport l<br>est Co               | Date:<br>de/ID:          |                                  | 27 I<br>24.0                            | May-24 14:2<br>03.2 Zn / 18 | 7 (p 1 of 3)<br>-3585-2031 |
|-------------------------------------------|---------------------------------------|----------------------------------|---------------------------|---------|------------------------------|---------------------------------------|------------------------|-----------------------------------------|---------------------------------|-----------------|------|----------------------------------|--------------------------|----------------------------------|-----------------------------------------|-----------------------------|----------------------------|
| Daphnia                                   | a thoms                               | oni 4                            | 48-h Acute                | Survi   | ival T                       | est                                   |                        |                                         |                                 |                 |      |                                  |                          |                                  |                                         | NIWA Ecot                   | oxicology                  |
| Analysi<br>Analyze<br>Edit Da             | s ID: 0<br>ed: 2<br>te:               | )5-74<br>27 Ma                   | 11-6460<br>ay-24 14:26    | i       | Endj<br>Anal<br>MD5          | point: 4<br>ysis: 1<br>Hash: 8        | 48h S<br>Nonli<br>BCB1 | Survival Ra<br>inear Regre<br>123CEE58( | ite<br>ession (NLF<br>01E9A4A60 | R)<br>D3D8DCEB3 | 72A  | CETIS<br>Statu<br>Edito          | SVers<br>sLeve<br>rID:   | ion:<br>el:                      | CETISv2<br>1                            | 2.1.4                       |                            |
| Batch II<br>Start Da<br>Ending<br>Test Le | D: 2<br>ate: 0<br>Date: 1<br>ngth: 4  | 20-40<br>)8 Ma<br>10 Ma<br>18h   | 51-4804<br>ay-24<br>ay-24 |         | Test<br>Prot<br>Spec<br>Taxo | Type: \$<br>ocol: 1<br>cies: [<br>on: | Survi<br>NIW/<br>Daph  | ival (48h)<br>A SOP 10 (<br>nnia thomso | (2022)<br>oni (Water f          | flea)           |      | Analy<br>Dilue<br>Brine<br>Sourc | vst:<br>nt:<br>::<br>ce: | Ecoto<br>Hoteo<br>Not A<br>Field | ox Team<br>o<br>Applicable<br>Collected |                             | Age:                       |
| Sample<br>Sample<br>Receipt<br>Sample     | ID: 0<br>Date: 0<br>Date: 0<br>Age: 2 | )4-62<br>)7 Ma<br>)7 Ma<br>)7 Ma | 56-9350<br>ay-24<br>ay-24 |         | Code<br>Mate<br>CAS<br>Clier | e: 2<br>erial: 2<br>(PC):<br>nt: H    | 24.00<br>Zinc<br>Hydro | 03.2 Zn<br>sulfate<br>otoxy Rese        | arch                            |                 |      | Proje<br>Soure<br>Static         | ct:<br>ce:<br>on:        | Spec<br>Solut<br>Lab S           | ial Studies<br>ion made I<br>Solution   | by NIWA                     |                            |
| Non-Lir                                   | iear Reg                              | gress                            | sion Option               | ns      |                              |                                       |                        |                                         |                                 |                 |      |                                  |                          |                                  |                                         |                             |                            |
| Model N                                   | Name an                               | nd Fu                            | Inction                   |         |                              |                                       |                        |                                         | Weightin                        | g Function      |      |                                  | PTBS                     | 5 Fun                            | ction                                   | X Trans                     | Y Trans                    |
| 3P Log-                                   | Logistic:                             | : μ=α                            | /[1+[x/δ]^γ]              |         |                              |                                       |                        |                                         | Binomial [                      | [ω=n/[p·q]]     |      |                                  | Off [µ                   | ι*=μ]                            |                                         | None                        | None                       |
| Regres                                    | sion Su                               | mma                              | ry                        |         |                              |                                       |                        |                                         |                                 |                 |      |                                  |                          |                                  |                                         |                             |                            |
| Iters                                     | LL                                    |                                  | AICc                      | BIC     |                              | Adj R2                                | 2                      | PMSD                                    | Thresh                          | Optimize        | FS   | tat                              | P-Va                     | lue                              | Decision                                | (α:5%)                      |                            |
| 8                                         | -12.01                                |                                  | 31.51                     | 33      |                              | 0.9001                                |                        | 0.63%                                   | 0.9987                          | Yes             | 4.81 | 16                               | 0.016                    | 66                               | Significan                              | t Lack-of-Fit               |                            |
| Point E                                   | stimates                              | s                                |                           |         |                              |                                       |                        |                                         |                                 |                 |      |                                  |                          |                                  |                                         |                             |                            |
| Level                                     | µg/L                                  |                                  | 95% LCL                   | 95%     | UCL                          |                                       |                        |                                         |                                 |                 |      |                                  |                          |                                  |                                         |                             |                            |
| LC5                                       | 295.4                                 |                                  | 188.7                     | 357.1   | 1                            |                                       |                        |                                         |                                 |                 |      |                                  |                          |                                  |                                         |                             |                            |
| LC10                                      | 374.3                                 |                                  | 278.7                     | 441.9   | 9                            |                                       |                        |                                         |                                 |                 |      |                                  |                          |                                  |                                         |                             |                            |
| LC15                                      | 433.4                                 |                                  | 343.4                     | 504.6   | 6                            |                                       |                        |                                         |                                 |                 |      |                                  |                          |                                  |                                         |                             |                            |
| LC20                                      | 483.9                                 |                                  | 397.5                     | 558     |                              |                                       |                        |                                         |                                 |                 |      |                                  |                          |                                  |                                         |                             |                            |
| LC25                                      | 530.1                                 |                                  | 445.9                     | 606.9   | 9                            |                                       |                        |                                         |                                 |                 |      |                                  |                          |                                  |                                         |                             |                            |
| LC40                                      | 660.3                                 |                                  | 576.1                     | 748.4   | 4                            |                                       |                        |                                         |                                 |                 |      |                                  |                          |                                  |                                         |                             |                            |
| LC50                                      | 750.7                                 |                                  | 661.1                     | 852.5   | 5                            |                                       |                        |                                         |                                 |                 |      |                                  |                          |                                  |                                         |                             |                            |
| Regres                                    | sion Par                              | rame                             | ters                      |         |                              |                                       |                        |                                         |                                 |                 |      |                                  |                          |                                  |                                         |                             |                            |
| Parame                                    | ter                                   |                                  | Estimate                  | Std E   | Error                        | 95% LO                                | CL                     | 95% UCL                                 | t Stat                          | P-Value         | Dec  | ision(                           | a:5%)                    |                                  |                                         |                             |                            |
| α                                         |                                       |                                  | 0.9987                    | 0.002   | 2998                         | 0.9924                                |                        | 1.005                                   | 333.1                           | <1.0E-05        | Sigr | nificant                         | Paran                    | neter                            |                                         |                             |                            |
| Y                                         |                                       |                                  | 3.157                     | 0.35    | 54                           | 2.407                                 |                        | 3.907                                   | 8.883                           | <1.0E-05        | Sigr | nificant                         | Paran                    | neter                            |                                         |                             |                            |
| ō                                         |                                       |                                  | 750.7                     | 44.71   | 7                            | 656.3                                 |                        | 845.2                                   | 16.77                           | <1.0E-05        | Sigr | nificant                         | Paran                    | neter                            |                                         |                             |                            |
| ANOVA                                     | Table                                 |                                  |                           |         |                              |                                       |                        |                                         |                                 |                 |      |                                  |                          |                                  |                                         |                             |                            |
| Source                                    |                                       |                                  | Sum Squa                  | res     | Mea                          | n Square                              | е                      | DF                                      | F Stat                          | P-Value         | Dec  | ision(                           | a:5%)                    |                                  |                                         |                             |                            |
| Model                                     |                                       |                                  | 50060                     |         | 1669                         | 0                                     |                        | 3                                       | 38650                           | <1.0E-05        | Sig  | nificant                         | Effect                   |                                  |                                         |                             |                            |
| Lack of                                   | Fit                                   |                                  | 3.728                     |         | 1.24                         | 3                                     |                        | 3                                       | 4.816                           | 0.0166          | Sigr | nificant                         | Lack-                    | of-Fit                           |                                         |                             |                            |
| Pure En                                   | ror                                   |                                  | 3.612                     |         | 0.25                         | в                                     |                        | 14                                      |                                 |                 |      |                                  |                          |                                  |                                         |                             |                            |
| Residua                                   | il                                    |                                  | 7.34                      |         | 0.43                         | 18                                    |                        | 17                                      |                                 |                 |      |                                  |                          |                                  |                                         |                             |                            |
| Residua                                   | al Analy                              | sis                              |                           |         |                              |                                       |                        |                                         |                                 |                 |      |                                  |                          |                                  |                                         |                             |                            |
| Attribut                                  | е                                     |                                  | Method                    |         |                              |                                       |                        | Test Stat                               | Critical                        | P-Value         | Dec  | ision(                           | a:5%)                    |                                  |                                         |                             |                            |
| Model F                                   | it                                    |                                  | Likelihood                | Ratio   | GOF                          | Test                                  |                        | 8.369                                   | 27.59                           | 0.9580          | Nor  | n-Signif                         | icant H                  | letero                           | geneity                                 |                             |                            |
|                                           |                                       |                                  | Pearson C                 | hi-Sq   | GOF '                        | Test                                  |                        | 7.34                                    | 27.59                           | 0.9787          | Nor  | n-Signif                         | icant H                  | letero                           | geneity                                 |                             |                            |
| Variance                                  | e                                     |                                  | Mod Leven                 | ie Equ  | ality o                      | of Varian                             | се                     | 15.46                                   | 3.687                           | 0.0006          | Une  | equal V                          | ariance                  | es                               |                                         |                             |                            |
| Distribut                                 | tion                                  |                                  | Anderson-I                | Darling | g A2 T                       | est                                   |                        | 1.153                                   | 2.492                           | 0.0052          | Nor  | n-Norma                          | al Dist                  | ributio                          | n                                       |                             |                            |
|                                           |                                       |                                  | Shapiro-W                 | ilk W I | Norma                        | ality Test                            |                        | 0.886                                   | 0.9044                          | 0.0227          | Nor  | n-Norma                          | al Dist                  | ributio                          | n                                       |                             |                            |
| Overdis                                   | persion                               |                                  | Tarone C(d                | a) Ove  | erdispe                      | ersion Te                             | est                    | 0.8812                                  | 1.645                           | 0.1891          | Nor  | n-Signif                         | icant C                  | verdi                            | spersion                                |                             |                            |
|                                           |                                       |                                  |                           |         |                              |                                       |                        |                                         |                                 |                 |      |                                  |                          |                                  |                                         |                             |                            |
|                                           |                                       |                                  |                           |         |                              |                                       |                        |                                         |                                 |                 |      |                                  |                          |                                  |                                         |                             |                            |

CETIS™ v2.1.4.5 (009-951-268-0)

| CETIS An                                  | alytical Repo                   | ort                                                      |                                                          |                                                          | Repor<br>Test C                                          | t Date:<br>ode/ID:                                       | 27<br>24.0                                               | May-24 14:2<br>003.2 Zn / 18                             | 7 (p 2 of 3)<br>-3585-2031                  |                                                        |                                                   |
|-------------------------------------------|---------------------------------|----------------------------------------------------------|----------------------------------------------------------|----------------------------------------------------------|----------------------------------------------------------|----------------------------------------------------------|----------------------------------------------------------|----------------------------------------------------------|---------------------------------------------|--------------------------------------------------------|---------------------------------------------------|
| Daphnia tho                               | msoni 48-h Acute                | Survival                                                 | Test                                                     |                                                          |                                                          |                                                          |                                                          | NIWA Ecot                                                | oxicology                                   |                                                        |                                                   |
| Analysis ID:<br>Analyzed:<br>Edit Date:   | 05-7411-6460<br>27 May-24 14:26 | En<br>6 An<br>MC                                         | dpoint: 48<br>alysis: No<br>05 Hash: 80                  | h Survival R<br>onlinear Reg<br>B123CEE58                | ate<br>ression (NL<br>801E9A4A6                          | R)<br>03D8DCEB                                           | CE<br>Sta<br>372A Edi                                    | FIS Version:<br>tus Level:<br>tor ID:                    | CETISV2<br>1                                | 2.1.4                                                  |                                                   |
| 48h Survival                              | Rate Summary                    |                                                          |                                                          |                                                          |                                                          | Calculate                                                | d Variate(A                                              | /B)                                                      |                                             |                                                        |                                                   |
| Conc-µg/L                                 | Code                            | Count                                                    | Mean                                                     | Median                                                   | Min                                                      | Мах                                                      | Std Err                                                  | Std Dev                                                  | CV%                                         | %Effect                                                | ΣΑ/ΣΒ                                             |
| 4.35<br>105<br>235<br>505<br>1055<br>2400 | D                               | 5<br>3<br>3<br>3<br>3<br>3<br>3                          | 1.0000<br>1.0000<br>1.0000<br>0.7000<br>0.3333<br>0.0000 | 1.0000<br>1.0000<br>1.0000<br>0.7000<br>0.3000<br>0.0000 | 1.0000<br>1.0000<br>1.0000<br>0.6000<br>0.2000<br>0.0000 | 1.0000<br>1.0000<br>1.0000<br>0.8000<br>0.5000<br>0.0000 | 0.0000<br>0.0000<br>0.0000<br>0.0577<br>0.0882<br>0.0000 | 0.0000<br>0.0000<br>0.0000<br>0.1000<br>0.1528<br>0.0000 | 0.00%<br>0.00%<br>0.00%<br>14.29%<br>45.83% | 0.00%<br>0.00%<br>0.00%<br>30.00%<br>66.67%<br>100.00% | 50/50<br>30/30<br>30/30<br>21/30<br>10/30<br>0/30 |
| 48h Survival                              | Rate Detail                     |                                                          |                                                          |                                                          |                                                          |                                                          |                                                          |                                                          |                                             |                                                        |                                                   |
| Conc-µg/L                                 | Code                            | Rep 1                                                    | Rep 2                                                    | Rep 3                                                    | Rep 4                                                    | Rep 5                                                    |                                                          |                                                          |                                             |                                                        |                                                   |
| 4.35<br>105<br>235<br>505<br>1055<br>2400 | D                               | 1.0000<br>1.0000<br>1.0000<br>0.6000<br>0.2000<br>0.0000 | 1.0000<br>1.0000<br>1.0000<br>0.7000<br>0.3000<br>0.0000 | 1.0000<br>1.0000<br>1.0000<br>0.8000<br>0.5000<br>0.0000 | 1.0000                                                   | 1.0000                                                   |                                                          |                                                          |                                             |                                                        |                                                   |
| 48h Survival                              | Rate Binomials                  |                                                          |                                                          |                                                          |                                                          |                                                          |                                                          |                                                          |                                             |                                                        |                                                   |
| Conc-µg/L                                 | Code                            | Rep 1                                                    | Rep 2                                                    | Rep 3                                                    | Rep 4                                                    | Rep 5                                                    |                                                          |                                                          |                                             |                                                        |                                                   |
| 4.35<br>105<br>235<br>505<br>1055<br>2400 | D                               | 10/10<br>10/10<br>10/10<br>6/10<br>2/10<br>0/10          | 10/10<br>10/10<br>10/10<br>7/10<br>3/10<br>0/10          | 10/10<br>10/10<br>10/10<br>8/10<br>5/10<br>0/10          | 10/10                                                    | 10/10                                                    |                                                          |                                                          |                                             |                                                        |                                                   |

CETIS™ v2.1.4.5 (009-951-268-0)



CETIS™ v2.1.4.5 (009-951-268-0)

# Copper

| CETIS Analytical Report Daphnia thomsoni 48-h Acute Survival Test |              |                          |         |                    |                          |                    |                                         |                                 | R                  | leport<br>est Co | Date:<br>de/ID:        |                                 | 27 M<br>24.00 | lay-24 14:1<br>3.2 Cu / 11 | 5 (p 1 of 2)<br>-1449-0779 |         |
|-------------------------------------------------------------------|--------------|--------------------------|---------|--------------------|--------------------------|--------------------|-----------------------------------------|---------------------------------|--------------------|------------------|------------------------|---------------------------------|---------------|----------------------------|----------------------------|---------|
| Daphnia thon                                                      | nsoni        | 48-h Acute               | Surv    | ival T             | est                      |                    |                                         |                                 |                    |                  |                        | l                               | NIWA Eco      | toxicology                 |                            |         |
| Analysis ID:<br>Analyzed:<br>Edit Date:                           | 02-8<br>27 N | 623-2987<br>1ay-24 14:14 | ļ       | End<br>Anal<br>MD5 | point:<br>ysis:<br>Hash: | 48h<br>Para<br>754 | Survival Ra<br>ametric-Mul<br>0DE25745E | ite<br>tiple Compa<br>A65EB54EI | rison<br>BC125F9B5 | 5243             | CETI<br>Statu<br>Edito | S Versio<br>Is Level:<br>or ID: | on:<br>:      | CETISv2.<br>1              | 1.4                        |         |
| Batch ID:                                                         | 19-5         | 192-3864                 |         | Test               | Type:                    | Sun                | vival (48h)                             |                                 |                    |                  | Analy                  | yst: E                          | Ecoto         | ox Team                    |                            |         |
| Start Date:                                                       | 04 N         | lay-24                   |         | Prot               | ocol:                    | NIW                | A SOP 10                                | (2022)                          |                    |                  | Dilue                  | ent: H                          | lote          | 0                          |                            |         |
| Ending Date:                                                      | 06 N         | lay-24                   |         | Spe                | cies:                    | Dap                | hnia thoms                              | oni (Water fl                   | lea)               |                  | Brine                  | e: N                            | Not A         | Applicable                 |                            | Ago:    |
| rest Lengui.                                                      | 4011         |                          |         | Tax                | л.                       |                    |                                         |                                 |                    |                  | Sour                   | ce. r                           | leiu          | Collected                  |                            | Age.    |
| Sample ID:                                                        | 03-6         | 699-5858                 |         | Cod                | e:<br>vriete             | 24.0               | 03.2 Cu                                 |                                 |                    |                  | Proje                  | ect: S                          | Spec          | ial Studies                |                            |         |
| Receipt Date:                                                     | 03 N         | 1ay-24<br>1ay-24         |         | CAS                | (DC)                     | Zind               | sunate                                  |                                 |                    |                  | Stati                  | ce: a<br>on: l                  | ah 9          | Solution                   | y NIWA                     |         |
| Sample Age:                                                       | 24h          | iay 24                   |         | Clier              | nt:                      | Hyd                | rotoxy Rese                             | earch                           |                    |                  | Jun                    |                                 |               | Johanon                    |                            |         |
| Data Transfor                                                     | m            |                          | Alt I   | Нур                |                          |                    |                                         |                                 | NOEL               | LO               | EL                     | TOEL                            |               | Tox Units                  | MSDu                       | PMSD    |
| Angular (Corre                                                    | ected)       |                          | C > 1   | T.                 |                          |                    |                                         |                                 | 151                | 470              |                        | 266.4                           |               |                            | 0.05224                    | 5.22%   |
| Bonferroni A                                                      | ijtTe        | est                      |         |                    |                          |                    |                                         |                                 |                    |                  |                        |                                 |               |                            |                            |         |
| Control                                                           | vs           | Conc-µg/L                | _       | df                 | Test S                   | stat               | Critical                                | MSD                             | P-Type             | P-V              | alue                   | Decisi                          | on(o          | 1:5%)                      |                            |         |
| Dilution Water                                                    |              | 24.5                     |         | 6                  | 0                        |                    | 2.56                                    | 0.07182                         | CDF                | 1.00             | 000                    | Non-Si                          | gnifi         | cant Effect                |                            |         |
|                                                                   |              | 53                       |         | 6                  | 0                        |                    | 2.56                                    | 0.07182                         | CDF                | 1.00             | 000                    | Non-Si                          | gnifi         | cant Effect                |                            |         |
|                                                                   |              | 151                      |         | 6                  | 0                        |                    | 2.56                                    | 0.07182                         | CDF                | 1.00             | 000                    | Non-Si<br>Signific              | gnifi         | cant Effect                |                            |         |
|                                                                   |              | 470                      |         | 0                  | 42.14                    |                    | 2.30                                    | 0.07102                         | CDI                | 51.4             | JE-03                  | Signing                         | am            | Lileu                      |                            |         |
| ANOVA Table                                                       |              | Sum Saua                 | ree     |                    | Mean                     | 6 au               |                                         | DE                              | E Stat             | D V              | alua                   | Desisi                          |               |                            |                            |         |
| Source                                                            |              | 3 5512                   | ires    |                    | Mean                     | Squ                | are                                     |                                 | F Stat             | P-V              |                        | Decisi                          | on(c          | 1:5%)<br>Effect            |                            |         |
| Error                                                             |              | 0.0177062                |         |                    | 0.0014                   | ,<br>1755          |                                         | 4<br>12                         | 001.7              | \$1.0            | JE-03                  | Signing                         | am            | Ellect                     |                            |         |
| Total                                                             |              | 3.56891                  |         |                    |                          |                    |                                         | 16                              | -                  |                  |                        |                                 |               |                            |                            |         |
| ANOVA Assu                                                        | mptic        | ons Tests                |         |                    |                          |                    |                                         |                                 |                    |                  |                        |                                 |               |                            |                            |         |
| Attribute                                                         |              | Test                     |         |                    |                          |                    |                                         | Test Stat                       | Critical           | P-V              | alue                   | Decisi                          | on(o          | 1:1%)                      |                            |         |
| Variance                                                          |              | Bartlett Eq              | uality  | of Vai             | riance T                 | est                |                                         |                                 |                    |                  |                        | Indeter                         | min           | ate                        |                            |         |
|                                                                   |              | Levene Eq                | uality  | of Vai             | riance T                 | est                | Tost                                    | 19.76                           | 5.412              | 3.3              | E-05                   | Unequa                          | al Va         | ariances                   |                            |         |
| Distribution                                                      |              | Anderson-I               | Darlin  | n A2 1             | Fest                     | ice                | lest                                    | 4.306                           | 3.878              | <1.0             | DE-05                  | Non-No                          | orma          | ances<br>al Distributio    | n                          |         |
|                                                                   |              | D'Agostino               | Skew    | /ness              | Test                     |                    |                                         | 3.014                           | 2.576              | 0.00             | 026                    | Non-No                          | orma          | al Distributio             | n                          |         |
|                                                                   |              | Kolmogoro                | v-Smi   | irnov [            | D Test                   |                    |                                         | 0.4412                          | 0.2405             | <1.(             | DE-05                  | Non-No                          | orma          | al Distributio             | n                          |         |
|                                                                   |              | Shapiro-W                | ilk W I | Norma              | ality Tes                | st                 |                                         | 0.5509                          | 0.848              | <1.(             | DE-05                  | Non-No                          | orma          | al Distributio             | n                          |         |
| 48h Survival                                                      | Rate         | Summary                  |         |                    |                          |                    |                                         |                                 |                    |                  |                        |                                 |               |                            |                            |         |
| Conc-µg/L                                                         |              | Code                     | Cou     | nt                 | Mean                     |                    | 95% LCL                                 | 95% UCL                         | Median             | Min              | 1                      | Max                             |               | Std Err                    | CV%                        | %Effect |
| 1.1                                                               |              | D                        | 5       |                    | 1.0000                   | )                  | 1.0000                                  | 1.0000                          | 1.0000             | 1.00             | 000                    | 1.0000                          |               | 0.0000                     | 0.00%                      | 0.00%   |
| 24.5                                                              |              |                          | 3       |                    | 1.0000                   | )                  | 1.0000                                  | 1.0000                          | 1.0000             | 1.00             | 000                    | 1.0000                          |               | 0.0000                     | 0.00%                      | 0.00%   |
| 03<br>151                                                         |              |                          | 3       |                    | 1.0000                   | ,<br>,             | 1.0000                                  | 1.0000                          | 1.0000             | 1.00             | 000                    | 1.0000                          |               | 0.0000                     | 0.00%                      | 0.00%   |
| 470                                                               |              |                          | 3       |                    | 0.0333                   | 3                  | 0.0000                                  | 0.1768                          | 0.0000             | 0.00             | 000                    | 0.1000                          |               | 0.0333                     | 173.21%                    | 96.67%  |
| 1320                                                              |              |                          | 3       |                    | 0.000                    | 0                  | 0.0000                                  | 0.0000                          | 0.0000             | 0.0              | 000                    | 0.0000                          |               | 0.0000                     |                            | 100.00% |
| Angular (Corr                                                     | ected        | d) Transform             | ned S   | umm                | ary                      |                    |                                         |                                 |                    |                  |                        |                                 |               |                            |                            |         |
| Conc-µg/L                                                         |              | Code                     | Cou     | nt                 | Mean                     |                    | 95% LCL                                 | 95% UCL                         | Median             | Min              |                        | Мах                             |               | Std Err                    | CV%                        | %Effect |
| 1.1                                                               |              | D                        | 5       |                    | 1.4120                   | )                  | 1.4120                                  | 1.4120                          | 1.4120             | 1.41             | 120                    | 1.4120                          |               | 0.0000                     | 0.00%                      | 0.00%   |
| 24.5                                                              |              |                          | 3       |                    | 1.4120                   | )                  | 1.4110                                  | 1.4130                          | 1.4120             | 1.4              | 120                    | 1.4120                          |               | 0.0000                     | 0.00%                      | 0.00%   |
| 53                                                                |              |                          | 3       |                    | 1.4120                   | J                  | 1.4110                                  | 1.4130                          | 1.4120             | 1.4              | 120                    | 1.4120                          |               | 0.0000                     | 0.00%                      | 0.00%   |
| 101                                                               |              |                          | 2       |                    | 1.4120                   | 1                  | -0.0206                                 | 0.4469                          | 0.1500             | 0.4              | 120                    | 1.4120                          |               | 0.0000                     | 1/1 15%                    | 0.00%   |
| 1320                                                              |              |                          | 3       |                    | 0.1588                   | 3                  | 0.1588                                  | 0.1588                          | 0.1588             | 0.1              | 588                    | 0.3218                          |               | 0.0000                     | 0.00%                      | 88.76%  |
|                                                                   |              |                          | _       |                    |                          |                    |                                         |                                 |                    |                  |                        |                                 |               |                            |                            |         |
|                                                                   |              |                          |         |                    |                          |                    |                                         |                                 |                    |                  |                        |                                 |               |                            |                            |         |

Convergent Rounding (4 sf)

CETIS™ v2.1.4.5 (009-951-268-0)

| CETIS And                               | alytical Repo                   | ort            |                                         |                                             |                              |                            | Report Date:<br>Test Code/ID:                 | 27 May-24 14:15 (p 2 of 2)<br>24.003.2 Cu / 11-1449-0779 |
|-----------------------------------------|---------------------------------|----------------|-----------------------------------------|---------------------------------------------|------------------------------|----------------------------|-----------------------------------------------|----------------------------------------------------------|
| Daphnia thor                            | nsoni 48-h Acute                | Survival       | Test                                    |                                             |                              |                            |                                               | NIWA Ecotoxicology                                       |
| Analysis ID:<br>Analyzed:<br>Edit Date: | 02-8623-2987<br>27 May-24 14:14 | En<br>An<br>MC | dpoint: 48<br>alysis: Pa<br>)5 Hash: 75 | h Survival Ra<br>arametric-Mu<br>40DE257458 | ate<br>Itiple Com<br>EA65EB5 | nparison<br>4EBC125F9B5243 | CETIS Version:<br>Status Level:<br>Editor ID: | CETISv2.1.4<br>1                                         |
| 48h Survival                            | Rate Detail                     |                |                                         |                                             |                              |                            |                                               |                                                          |
| Conc-µg/L                               | Code                            | Rep 1          | Rep 2                                   | Rep 3                                       | Rep 4                        | Rep 5                      |                                               |                                                          |
| 1.1                                     | D                               | 1.0000         | 1.0000                                  | 1.0000                                      | 1.0000                       | 1.0000                     |                                               |                                                          |
| 24.5                                    |                                 | 1.0000         | 1.0000                                  | 1.0000                                      |                              |                            |                                               |                                                          |
| 53                                      |                                 | 1.0000         | 1.0000                                  | 1.0000                                      |                              |                            |                                               |                                                          |
| 151                                     |                                 | 1.0000         | 1.0000                                  | 1.0000                                      |                              |                            |                                               |                                                          |
| 470                                     |                                 | 0.0000         | 0.0000                                  | 0.1000                                      |                              |                            |                                               |                                                          |
| 1320                                    |                                 | 0.0000         | 0.0000                                  | 0.0000                                      |                              |                            |                                               |                                                          |
| Angular (Cor                            | rected) Transforn               | ned Detai      | I                                       |                                             |                              |                            |                                               |                                                          |
| Conc-µg/L                               | Code                            | Rep 1          | Rep 2                                   | Rep 3                                       | Rep 4                        | Rep 5                      |                                               |                                                          |
| 1.1                                     | D                               | 1.4120         | 1.4120                                  | 1.4120                                      | 1.4120                       | 1.4120                     |                                               |                                                          |
| 24.5                                    |                                 | 1.4120         | 1.4120                                  | 1.4120                                      |                              |                            |                                               |                                                          |
| 53                                      |                                 | 1.4120         | 1.4120                                  | 1.4120                                      |                              |                            |                                               |                                                          |
| 151                                     |                                 | 1.4120         | 1.4120                                  | 1.4120                                      |                              |                            |                                               |                                                          |
| 1320                                    |                                 | 0.1588         | 0.1588                                  | 0.3218                                      |                              |                            |                                               |                                                          |
| A8h Survival                            | Rate Binomials                  |                |                                         |                                             |                              |                            |                                               |                                                          |
| Conc. ug/l                              | Code                            | Den 4          | Dep 2                                   | Dan 2                                       | Den 4                        | Den F                      |                                               |                                                          |
| Conc-µg/L                               | Code                            | Kep 1          | Kep 2                                   | Rep 5                                       | Rep 4                        | Kep 5                      |                                               |                                                          |
| 1.1                                     | D                               | 10/10          | 10/10                                   | 10/10                                       | 10/10                        | 10/10                      |                                               |                                                          |
| 53                                      |                                 | 10/10          | 10/10                                   | 10/10                                       |                              |                            |                                               |                                                          |
| 151                                     |                                 | 10/10          | 10/10                                   | 10/10                                       |                              |                            |                                               |                                                          |
| 470                                     |                                 | 0/10           | 0/10                                    | 1/10                                        |                              |                            |                                               |                                                          |
| 1320                                    |                                 | 0/10           | 0/10                                    | 0/10                                        |                              |                            |                                               |                                                          |
| Graphics                                |                                 |                |                                         |                                             |                              |                            |                                               |                                                          |
| 1.0 -                                   |                                 | -              | -                                       |                                             | <b>-</b>                     |                            |                                               | •                                                        |
| 0.9 -                                   |                                 |                |                                         |                                             |                              | 0.10 -                     |                                               |                                                          |
| 0.8 -                                   |                                 |                |                                         |                                             |                              | 0.08 -                     |                                               |                                                          |
| <b>9</b> 0.7 -                          |                                 |                |                                         |                                             |                              | 0.06 -                     |                                               |                                                          |
| <b>8</b> 06                             |                                 |                |                                         |                                             |                              | <u>e</u>                   |                                               |                                                          |
|                                         |                                 |                |                                         |                                             |                              | 6 0.04 -                   |                                               |                                                          |
| 2 0.5                                   |                                 |                |                                         |                                             |                              | <b>E</b> 0.02 -            |                                               |                                                          |
| S 0.4 -                                 |                                 |                |                                         |                                             |                              | Ö                          |                                               |                                                          |
| <b>¥</b> 0.3-                           |                                 |                |                                         |                                             |                              |                            |                                               |                                                          |
| 0.2 -                                   |                                 |                |                                         |                                             |                              | -0.02 -                    |                                               |                                                          |
| 0.1 -                                   |                                 |                |                                         |                                             |                              | -0.04 -                    |                                               |                                                          |
| 0.0 -                                   |                                 |                |                                         |                                             |                              |                            | •                                             |                                                          |
|                                         | 1.1 D 24.5                      | 53             | 151 4                                   | 70 1320                                     |                              | -1.                        | .5 -1.0 -0.5                                  | 0.0 0.5 1.0 1.5                                          |
|                                         |                                 | Conc-          | ug/L                                    |                                             |                              |                            | R                                             | ankits                                                   |
|                                         |                                 |                |                                         |                                             |                              |                            |                                               |                                                          |
|                                         |                                 |                |                                         |                                             |                              |                            |                                               |                                                          |
|                                         |                                 |                |                                         |                                             |                              |                            |                                               |                                                          |
|                                         |                                 |                |                                         |                                             |                              |                            |                                               |                                                          |
|                                         |                                 |                |                                         |                                             |                              |                            |                                               |                                                          |
|                                         |                                 |                |                                         |                                             |                              |                            |                                               |                                                          |

CETIS™ v2.1.4.5 (009-951-268-0)

| CETIS                         | S Ana                 | lytical Repo                    | ort                |                                    |                                                     |                                 |                | F       | Report<br>Test Co      | Date:<br>de/ID:                  | 2<br>24       | 27 May-24 14<br>4.003.2 Cu / | :15 (p 1 of 2)<br>11-1449-0779 |
|-------------------------------|-----------------------|---------------------------------|--------------------|------------------------------------|-----------------------------------------------------|---------------------------------|----------------|---------|------------------------|----------------------------------|---------------|------------------------------|--------------------------------|
| Daphni                        | a thom                | soni 48-h Acute                 | e Survival T       | est                                |                                                     |                                 |                |         |                        |                                  |               | NIWA Ec                      | otoxicology                    |
| Analysi<br>Analyze<br>Edit Da | is ID:<br>ed:<br>ite: | 01-8576-5485<br>27 May-24 14:14 | End<br>4 Ana<br>MD | lpoint: 4<br>lysis: 1<br>5 Hash: 7 | 48h Survival Ra<br>Linear Interpola<br>7540DE25745E | ate<br>Ition (ICPII<br>EA65EB54 | N)<br>EBC125F9 | B5243   | CETI<br>Statu<br>Edito | S Version<br>Is Level:<br>Or ID: | n: CETIS<br>1 | Sv2.1.4                      |                                |
| Batch I                       | D:                    | 19-5192-3864                    | Tes                | t Type: 🖇                          | Survival (48h)                                      |                                 |                |         | Anal                   | yst: E                           | cotox Team    | ı                            |                                |
| Start D                       | ate:                  | 04 May-24                       | Pro                | tocol: 1                           | NIWA SOP 10                                         | (2022)                          |                |         | Dilue                  | ent: He                          | oteo          |                              |                                |
| Ending                        | Date:                 | 06 May-24                       | Spe                | cies: [                            | Daphnia thoms                                       | oni (Water                      | flea)          |         | Brine                  | e: No                            | ot Applicab   | le                           |                                |
| Test Le                       | ength:                | 48n                             | Tax                | on:                                |                                                     |                                 |                |         | Sour                   | ce: FI                           | eld Collecte  | ed                           | Age:                           |
| Sample                        | D:                    | 03-6699-5858                    | Cod                | le: 2                              | 24.003.2 Cu                                         |                                 |                |         | Proje                  | ect: S                           | pecial Stud   | ies                          |                                |
| Sample                        | e Date:               | 03 May-24                       | Mat                | erial: 2                           | Zinc sulfate                                        |                                 |                |         | Sour                   | ce: So                           | olution mad   | le by NIWA                   |                                |
| Receip                        | t Date:               | 03 May-24                       | CAS                | 6 (PC):                            | kudastau Daas                                       |                                 |                |         | Stati                  | on: La                           | ab Solution   |                              |                                |
| Sample                        | e Age:                | 240                             | Cile               | nu: r                              | Hydroloxy Rese                                      | earch                           |                |         |                        |                                  |               |                              |                                |
| Linear                        | Interpo               | lation Options                  |                    |                                    |                                                     |                                 |                |         |                        |                                  |               |                              |                                |
| X Trans                       | sform                 | Y Transform                     | n See              | d                                  | Resamples                                           | Exp 95                          | %CL Me         | thod    |                        |                                  |               |                              |                                |
| Log(X+                        | 1)                    | Linear                          | 114                | 1069                               | 200                                                 | Yes                             | Tw             | o-Point | Interp                 | olation                          |               |                              |                                |
| Point E                       | stimate               | s                               |                    |                                    |                                                     |                                 |                |         |                        |                                  |               |                              |                                |
| Level                         | µg/L                  | 95% LCL                         | 95% UCL            |                                    |                                                     |                                 |                |         |                        |                                  |               |                              |                                |
| LC15                          | 180.2                 | 177.9                           | 182.6              |                                    |                                                     |                                 |                |         |                        |                                  |               |                              |                                |
| LC20                          | 191.1                 | 187.9                           | 194.5              |                                    |                                                     |                                 |                |         |                        |                                  |               |                              |                                |
| LC25                          | 202.6                 | 198.5                           | 207.1              |                                    |                                                     |                                 |                |         |                        |                                  |               |                              |                                |
| LC40                          | 241.7                 | 233.8                           | 250.3              |                                    |                                                     |                                 |                |         |                        |                                  |               |                              |                                |
| LCSU                          | 2/1.0                 | 200.8                           | 263.9              |                                    |                                                     |                                 |                |         |                        |                                  |               |                              |                                |
| 48h Su                        | rvival H              | late Summary                    |                    |                                    |                                                     | Calculate                       | ed Variate(    | A/B)    |                        |                                  | —             | Isoto                        | nic Variate                    |
| Conc-µ                        | ig/L                  | Code                            | Count              | Mean                               | Median                                              | Min                             | Max            | CV      | %                      | %Effect                          | ΣΑ/ΣΒ         | Mean                         | %Effect                        |
| 1.1                           |                       | D                               | 5                  | 1.0000                             | 1.0000                                              | 1.0000                          | 1.0000         | 0.0     | 0%                     | 0.00%                            | 50/50         | 1.0000                       | 0.00%                          |
| 24.5<br>53                    |                       |                                 | 3                  | 1.0000                             | 1.0000                                              | 1.0000                          | 1.0000         | 0.0     | 0%                     | 0.00%                            | 30/30         | 1.0000                       | 0.00%                          |
| 151                           |                       |                                 | 3                  | 1.0000                             | 1.0000                                              | 1.0000                          | 1.0000         | 0.0     | 0%                     | 0.00%                            | 30/30         | 1.0000                       | 0.00%                          |
| 470                           |                       |                                 | 3                  | 0.0333                             | 0.0000                                              | 0.0000                          | 0.1000         | 173     | 3.21%                  | 96.67%                           | 1/30          | 0.0333                       | 96.67%                         |
| 1320                          |                       |                                 | 3                  | 0.0000                             | 0.0000                                              | 0.0000                          | 0.0000         |         |                        | 100.009                          | 6 0/30        | 0.0000                       | 100.00%                        |
| 48h Su                        | rvival R              | ate Detail                      |                    |                                    |                                                     |                                 |                |         |                        |                                  |               |                              |                                |
| Conc-µ                        | ig/L                  | Code                            | Rep 1              | Rep 2                              | Rep 3                                               | Rep 4                           | Rep 5          |         |                        |                                  |               |                              |                                |
| 1.1                           |                       | D                               | 1.0000             | 1.0000                             | 1.0000                                              | 1.0000                          | 1.0000         |         |                        |                                  |               |                              |                                |
| 24.5                          |                       |                                 | 1.0000             | 1.0000                             | 1.0000                                              |                                 |                |         |                        |                                  |               |                              |                                |
| 53                            |                       |                                 | 1.0000             | 1.0000                             | 1.0000                                              |                                 |                |         |                        |                                  |               |                              |                                |
| 151                           |                       |                                 | 1.0000             | 1.0000                             | 1.0000                                              |                                 |                |         |                        |                                  |               |                              |                                |
| 470                           |                       |                                 | 0.0000             | 0.0000                             | 0.1000                                              |                                 |                |         |                        |                                  |               |                              |                                |
| 102.0                         | and the late          | te Dinemiele                    | 0.0000             | 0.0000                             | 0.0000                                              |                                 |                |         |                        |                                  |               |                              |                                |
| 48n Su                        | rvival H              | ate Binomials                   |                    |                                    |                                                     |                                 |                |         |                        |                                  |               |                              |                                |
| Conc-µ                        | Ig/L                  | Code                            | Rep 1              | 10/10                              | 10/10                                               | Kep 4                           | 10/10          |         |                        |                                  |               |                              |                                |
| 24.5                          |                       | U                               | 10/10              | 10/10                              | 10/10                                               | 10/10                           | 10/10          |         |                        |                                  |               |                              |                                |
| 53                            |                       |                                 | 10/10              | 10/10                              | 10/10                                               |                                 |                |         |                        |                                  |               |                              |                                |
| 151                           |                       |                                 | 10/10              | 10/10                              | 10/10                                               |                                 |                |         |                        |                                  |               |                              |                                |
| 470                           |                       |                                 | 0/10               | 0/10                               | 1/10                                                |                                 |                |         |                        |                                  |               |                              |                                |
| 1320                          |                       |                                 | 0/10               | 0/10                               | 0/10                                                |                                 |                |         |                        |                                  |               |                              |                                |
|                               |                       |                                 |                    |                                    |                                                     |                                 |                |         |                        |                                  |               |                              |                                |
|                               |                       |                                 |                    |                                    |                                                     |                                 |                |         |                        |                                  |               |                              |                                |
|                               |                       |                                 |                    |                                    |                                                     |                                 |                |         |                        |                                  |               |                              |                                |

CETIS™ v2.1.4.5 (009-951-268-0)

| CETIS An                                | alvtical Report                 |                                     |                                                                  |                           | Report Date:                                  | 27 May-24 14:15 (p 2  | of 2)  |
|-----------------------------------------|---------------------------------|-------------------------------------|------------------------------------------------------------------|---------------------------|-----------------------------------------------|-----------------------|--------|
|                                         |                                 |                                     |                                                                  |                           | Test Code/ID:                                 | 24.003.2 Cu / 11-1449 | 9-0779 |
| Daphnia tho                             | msoni 48-h Acute Su             | vival Test                          |                                                                  |                           |                                               | NIWA Ecotoxic         | ology  |
| Analysis ID:<br>Analyzed:<br>Edit Date: | 01-8576-5485<br>27 May-24 14:14 | Endpoint:<br>Analysis:<br>MD5 Hash: | 48h Survival Rate<br>Linear Interpolation (I<br>7540DE25745EA65E | CPIN)<br>B54EBC125F9B5243 | CETIS Version:<br>Status Level:<br>Editor ID: | CETISv2.1.4<br>1      |        |
| Graphics                                |                                 |                                     |                                                                  |                           |                                               |                       |        |
| 1.0                                     |                                 |                                     |                                                                  |                           |                                               |                       |        |

1200

Convergent Rounding (4 sf)

0

200

400

800

600

Conc-µg/L

1000

CETIS™ v2.1.4.5 (009-951-268-0)

# Appendix H CETIS statistical analyses – Okutua (pH adjusted)

#### Zinc

| CETIS Analytical Report Daphnia thomsoni 48-h Acute Survival Test |                                         |                                     |                  |                           |                                      |                                            |                                     |                     |      | eport<br>est Co               | Date:<br>ode/ID:              |                                 | 26 J<br>24.00                            | un-24 12:0<br>)3.3 Zn / 12 | 01 (p 1 of 3)<br>2-5207-5074 |
|-------------------------------------------------------------------|-----------------------------------------|-------------------------------------|------------------|---------------------------|--------------------------------------|--------------------------------------------|-------------------------------------|---------------------|------|-------------------------------|-------------------------------|---------------------------------|------------------------------------------|----------------------------|------------------------------|
| Daphnia thom                                                      | soni 4                                  | 48-h Acute                          | Surviva          | il Te                     | est                                  |                                            |                                     |                     |      |                               |                               |                                 |                                          | NIWA Eco                   | toxicology                   |
| Analysis ID:<br>Analyzed:<br>Edit Date:                           | 13-57<br>26 Ju<br>26 Ju                 | 20-1591<br>n-24 12:00<br>n-24 11:56 | E<br>A<br>M      | ndp<br>nal<br>ID5         | ooint: 4<br>ysis: P<br>Hash: 7       | 8h Survival F<br>arametric-M<br>64B00A97D1 | Rate<br>ultiple Compa<br>DBA7F034CE | arison<br>0818B89CF | 20D9 | CET<br>State<br>Edite         | IS Versi<br>us Leve<br>or ID: | ion:<br>I:                      | CETISv2.<br>1<br>008-408-4               | 1.4<br>107-6               |                              |
| Batch ID:<br>Start Date:<br>Ending Date:<br>Test Length:          | 21-12<br>29 Ma<br>31 Ma<br>48h          | 07-3831<br>ay-24<br>ay-24           | T<br>P<br>S<br>T | est<br>roto<br>pec<br>axo | Type: S<br>ocol: N<br>cies: D<br>on: | urvival (48h)<br>IWA SOP 1(<br>aphnia thom | ) (2022)<br>soni (Water f           | lea)                |      | Anal<br>Dilue<br>Brin<br>Sour | yst:<br>ent:<br>e:<br>rce:    | Ecoto<br>Okut<br>Not A<br>Field | ox Team<br>ua<br>Applicable<br>Collected |                            | Age:                         |
| Sample ID:<br>Sample Date:<br>Receipt Date:<br>Sample Age:        | 07-23<br>28 Ma<br>28 Ma<br>28 Ma<br>24h | 99-9627<br>ay-24<br>ay-24           | C<br>M<br>C<br>C | ode<br>late<br>AS<br>lier | e: 24<br>erial: Z<br>(PC):<br>nt: H  | 4.003.3 Zn<br>inc sulfate<br>ydrotoxy Re   | search                              |                     |      | Proj<br>Sou<br>Stati          | ect:<br>rce:<br>ion:          | Spec<br>Solut<br>Lab \$         | tial Studies<br>tion made b<br>Solution  | y NIWA                     |                              |
| Data Transform                                                    | m                                       |                                     | Alt Hyp          | р                         |                                      |                                            |                                     | NOEL                | LO   | EL                            | TOEL                          |                                 | Tox Units                                | MSDu                       | PMSD                         |
| Angular (Corre                                                    | cted)                                   |                                     | C > T            |                           |                                      |                                            |                                     | 109                 | 235  |                               | 160                           |                                 |                                          | 0.1552                     | 15.84%                       |
| Bonferroni Ad                                                     | j t Tes                                 | st                                  |                  |                           |                                      |                                            |                                     |                     |      |                               |                               |                                 |                                          |                            |                              |
| Control                                                           | vs                                      | Conc-µg/L                           |                  | df                        | Test Sta                             | t Critical                                 | MSD                                 | P-Type              | P-V  | alue                          | Decis                         | ion(d                           | a:5%)                                    |                            |                              |
| Dilution Water                                                    |                                         | 109                                 |                  | 6                         | 0.7077                               | 2.466                                      | 0.2405                              | CDF                 | 0.74 | 430                           | Non-S                         | Signifi                         | icant Effect                             |                            |                              |
|                                                                   |                                         | 235*                                |                  | 6                         | 3.817                                | 2.466                                      | 0.2405                              | CDF                 | 0.0  | 051                           | Signif                        | icant                           | Effect                                   |                            |                              |
|                                                                   |                                         | 485*                                |                  | 6                         | 7.84                                 | 2.466                                      | 0.2405                              | CDF                 | 2.1  | E-05                          | Signif                        | icant                           | Effect                                   |                            |                              |
| Auxiliary Tests                                                   | s                                       |                                     |                  |                           |                                      |                                            |                                     |                     |      |                               |                               |                                 |                                          |                            |                              |
| Attribute                                                         |                                         | Test                                |                  |                           |                                      |                                            | Test Stat                           | Critical            | P-V  | alue                          | Decis                         | ion(c                           | a:5%)                                    |                            |                              |
| Control Trend                                                     |                                         | Mann-Ken                            | dall Trer        | nd T                      | Test                                 |                                            | 0.395                               | 0.05                | 0.39 | 950                           | Non-S                         | Signifi                         | icant Contro                             | I Trend                    |                              |
| ANOVA Table                                                       |                                         |                                     |                  |                           |                                      |                                            |                                     |                     |      |                               |                               |                                 |                                          |                            |                              |
| Source                                                            |                                         | Sum Squa                            | res              |                           | Mean S                               | quare                                      | DF                                  | F Stat              | P-V  | P-Value Decision(α:5%)        |                               |                                 |                                          |                            |                              |
| Between                                                           |                                         | 1.24958                             |                  |                           | 0.41652                              | 8                                          | 3 23.35 7.8E-05 Significant Effect  |                     |      |                               |                               | Effect                          |                                          |                            |                              |
| Error                                                             |                                         | 0.178402                            |                  |                           | 0.01784                              | 02                                         | 10                                  | _                   |      |                               |                               |                                 |                                          |                            |                              |
| Total                                                             |                                         | 1.42799                             |                  |                           |                                      |                                            | 13                                  |                     |      |                               |                               |                                 |                                          |                            |                              |
| ANOVA Assun                                                       | nptior                                  | ns Tests                            |                  |                           |                                      |                                            |                                     |                     |      |                               |                               |                                 |                                          |                            |                              |
| Attribute                                                         |                                         | Test                                |                  |                           |                                      |                                            | Test Stat                           | Critical            | P-V  | alue                          | Decis                         | ion(c                           | a:1%)                                    |                            |                              |
| Variance                                                          |                                         | Bartlett Equ                        | ality of         | Var                       | iance Tes                            | st                                         | 4.308                               | 11.34               | 0.23 | 301                           | Equal                         | Varia                           | ances                                    |                            |                              |
|                                                                   |                                         | Levene Equ                          | ality of         | Var                       | iance Tes                            | st                                         | 4.538                               | 6.552               | 0.02 | 296                           | Equal                         | Varia                           | ances                                    |                            |                              |
|                                                                   |                                         | Mod Leven                           | e Equali         | ty o                      | of Varianc                           | e Test                                     | 0.5359                              | 9.78                | 0.67 | 746                           | Equal                         | Varia                           | ances                                    |                            |                              |
| Distribution                                                      |                                         | Anderson-D                          | arling A         | \2 T                      | est                                  |                                            | 0.4094                              | 3.878               | 0.34 | 493                           | Norma                         | al Dis                          | stribution                               |                            |                              |
|                                                                   |                                         | D'Agostino                          | Skewne           | ss                        | Test                                 |                                            | 0.2473                              | 2.576               | 0.80 | 047                           | Norma                         | al Dis                          | stribution                               |                            |                              |
|                                                                   |                                         | Kolmogorov<br>Shaniro Wil           | /-Smirno         | OV L                      | ) lest                               |                                            | 0.181                               | 0.262               | 0.2  | 526<br>740                    | Norma                         | al Dis<br>al Dis                | stribution                               |                            |                              |
|                                                                   |                                         | Shapiro-wi                          |                  | IIIIa                     | anty rest                            |                                            | 0.9571                              | 0.62.59             | 0.01 | 49                            | Norma                         |                                 | stribution                               |                            |                              |
| 48h Survival R                                                    | Rate S                                  | ummary                              |                  |                           |                                      |                                            |                                     |                     |      |                               |                               |                                 |                                          |                            |                              |
| Conc-µg/L                                                         |                                         | Code                                | Count            |                           | Mean                                 | 95% LCI                                    | . 95% UCL                           | Median              | Min  |                               | Мах                           |                                 | Std Err                                  | CV%                        | %Effect                      |
| 4.15                                                              |                                         | D                                   | 5                |                           | 0.9800                               | 0.9245                                     | 1.0000                              | 1.0000              | 0.90 | 000                           | 1.000                         | 0                               | 0.0200                                   | 4.56%                      | 0.00%                        |
| 109                                                               |                                         |                                     | 3                |                           | 0.9333                               | 0.6465                                     | 1.0000                              | 1.0000              | 0.80 | 000                           | 1.000                         | 0                               | 0.0667                                   | 12.37%                     | 4.76%                        |
| 235                                                               |                                         |                                     | 3                |                           | 0.7000                               | 0.2697                                     | 1.0000                              | 0.6000              | 0.60 | 000                           | 0.900                         | 0                               | 0.1000                                   | 24.74%                     | 28.57%                       |
| 485                                                               |                                         |                                     | 3                |                           | 0.3333                               | 0.1899                                     | 0.4768                              | 0.3000              | 0.30 | 000                           | 0.400                         | 0                               | 0.0333                                   | 17.32%                     | 65.99%                       |
| 1080                                                              |                                         |                                     | 3                |                           | 0.0000                               | 0.0000                                     | 0.0000                              | 0.0000              | 0.00 | 000                           | 0.000                         | 0                               | 0.0000                                   |                            | 100.00%                      |
| 2300                                                              |                                         |                                     | 3                |                           | 0.0000                               | 0.0000                                     | 0.0000                              | 0.0000              | 0.00 | 000                           | 0.000                         | U                               | 0.0000                                   |                            | 100.00%                      |

Convergent Rounding (4 sf)

CETIS™ v2.1.4.5 (008-408-407-6)

| CETIS Ana                 | alytical Repo                   | ort        |                          |                               |                     |           | Re<br>Te | eport E<br>est Co | )ate:<br>de/ID:      | 26<br>24.0   | Jun-24 12:0<br>003.3 Zn / 12 | )1 (p 2 of 3)<br>2-5207-5074 |
|---------------------------|---------------------------------|------------|--------------------------|-------------------------------|---------------------|-----------|----------|-------------------|----------------------|--------------|------------------------------|------------------------------|
| Daphnia thor              | nsoni 48-h Acute                | Survival 1 | Test                     |                               |                     |           |          |                   |                      |              | NIWA Eco                     | toxicology                   |
| Analysis ID:<br>Analyzed: | 13-5720-1591<br>26 Jun-24 12:00 | Enc<br>Ana | lpoint: 48<br>alysis: Pa | h Survival Ra<br>rametric-Mul | ate<br>Itiple Compa | irison    |          | CETIS<br>Status   | Version:<br>s Level: | CETISV.<br>1 | 2.1.4                        |                              |
| Edit Date:                | 26 Jun-24 11:56                 | MD         | 5 Hash: 76               | 4B00A97DD                     | BA7F034CD           | 0818B89CF | 20D9     | Edito             | r ID:                | 008-408      | -407-6                       |                              |
| Angular (Cor              | rected) Transforr               | ned Sumn   | nary                     |                               |                     |           |          |                   |                      |              |                              |                              |
| Conc-µg/L                 | Code                            | Count      | Mean                     | 95% LCL                       | 95% UCL             | Median    | Min      |                   | Мах                  | Std Err      | CV%                          | %Effect                      |
| 4.15                      | D                               | 5          | 1.3790                   | 1.2890                        | 1.4700              | 1.4120    | 1.24     | 90                | 1.4120               | 0.0326       | 5.28%                        | 0.00%                        |
| 109                       |                                 | 3          | 1.3100                   | 0.8731                        | 1.7480              | 1.4120    | 1.10     | 70<br>61          | 1.4120               | 0.1016       | 13.43%                       | 5.00%                        |
| 235                       |                                 | 3          | 0.6147                   | 0.4600                        | 0.7654              | 0.0001    | 0.00     | 96                | 0.6847               | 0.1210       | 9.87%                        | 20.99%<br>55.44%             |
| 1080                      |                                 | 3          | 0.1588                   | 0.1588                        | 0.1588              | 0.1588    | 0.15     | 88                | 0.1588               | 0.0000       | 0.00%                        | 88.49%                       |
| 2300                      |                                 | 3          | 0.1588                   | 0.1588                        | 0.1588              | 0.1588    | 0.15     | 88                | 0.1588               | 0.0000       | 0.00%                        | 88.49%                       |
| 48h Survival              | Rate Detail                     |            |                          |                               |                     |           |          |                   |                      |              |                              |                              |
| Conc-µg/L                 | Code                            | Rep 1      | Rep 2                    | Rep 3                         | Rep 4               | Rep 5     |          |                   |                      |              |                              |                              |
| 4.15                      | D                               | 1.0000     | 1.0000                   | 1.0000                        | 1.0000              | 0.9000    |          |                   |                      |              |                              |                              |
| 109                       |                                 | 1.0000     | 0.8000                   | 1.0000                        |                     |           |          |                   |                      |              |                              |                              |
| 235                       |                                 | 0.6000     | 0.6000                   | 0.9000                        |                     |           |          |                   |                      |              |                              |                              |
| 485                       |                                 | 0.4000     | 0.3000                   | 0.3000                        |                     |           |          |                   |                      |              |                              |                              |
| 1080                      |                                 | 0.0000     | 0.0000                   | 0.0000                        |                     |           |          |                   |                      |              |                              |                              |
| 2300                      |                                 | 0.0000     | 0.0000                   | 0.0000                        |                     |           |          |                   |                      |              |                              |                              |
| Angular (Cor              | rected) Transforr               | ned Detail |                          |                               |                     |           |          |                   |                      |              |                              |                              |
| Conc-µg/L                 | Code                            | Rep 1      | Rep 2                    | Rep 3                         | Rep 4               | Rep 5     |          |                   |                      |              |                              |                              |
| 4.15                      | D                               | 1.4120     | 1.4120                   | 1.4120                        | 1.4120              | 1.2490    |          |                   |                      |              |                              |                              |
| 109                       |                                 | 1.4120     | 1.1070                   | 1.4120                        |                     |           |          |                   |                      |              |                              |                              |
| 235                       |                                 | 0.8861     | 0.8861                   | 1.2490                        |                     |           |          |                   |                      |              |                              |                              |
| 485                       |                                 | 0.6847     | 0.5796                   | 0.5796                        |                     |           |          |                   |                      |              |                              |                              |
| 1080                      |                                 | 0.1588     | 0.1588                   | 0.1588                        |                     |           |          |                   |                      |              |                              |                              |
| 2300                      |                                 | 0.1500     | 0.1500                   | 0.1500                        |                     |           |          |                   |                      |              |                              |                              |
| 48h Survival              | Rate Binomials                  | -          | -                        | -                             |                     |           |          |                   |                      |              |                              |                              |
| Conc-µg/L                 | Code                            | Rep 1      | Rep 2                    | Rep 3                         | Rep 4               | Rep 5     |          |                   |                      |              |                              |                              |
| 4.15                      | D                               | 10/10      | 9/10                     | 10/10                         | 10/10               | 9/10      |          |                   |                      |              |                              |                              |
| 225                       |                                 | 6/10       | 6/10                     | 0/10                          |                     |           |          |                   |                      |              |                              |                              |
| 485                       |                                 | 4/10       | 3/10                     | 3/10                          |                     |           |          |                   |                      |              |                              |                              |
| 1080                      |                                 | 0/10       | 0/10                     | 0/10                          |                     |           |          |                   |                      |              |                              |                              |
| 2300                      |                                 | 0/10       | 0/10                     | 0/10                          |                     |           |          |                   |                      |              |                              |                              |
| Graphics                  |                                 |            |                          |                               |                     |           |          |                   |                      |              |                              |                              |
| 10.                       |                                 |            |                          |                               |                     | 0.25      |          |                   |                      |              |                              |                              |
| 0.0                       |                                 |            |                          |                               |                     | 0.20      |          |                   |                      |              |                              | -                            |
| 0.9-                      |                                 |            |                          |                               |                     | 0.20 -    |          |                   |                      |              |                              | /                            |
| 0.8 -                     |                                 |            |                          |                               |                     | 0.15 -    |          |                   |                      |              |                              |                              |
| - 7.0 <b>ge</b>           |                                 |            |                          |                               |                     | 0.10 -    |          |                   |                      |              |                              | •                            |
| 0.6-                      |                                 |            |                          |                               | ale                 | 0.05 -    |          |                   |                      |              | <b>_</b>                     |                              |
| . <mark>≥</mark> 0.5 –    |                                 |            |                          |                               | . Ai                | 0.00      |          |                   |                      |              | • •                          |                              |
| <b>3</b> 0.4 -            |                                 | г          |                          |                               | Co.                 | 0.00 -    |          |                   |                      |              |                              |                              |
| <b>48</b><br>0.3 -        |                                 |            | -                        |                               |                     | -0.05 -   |          |                   | /                    |              |                              |                              |
| 0.2 -                     |                                 |            |                          |                               |                     | -0.10 -   |          |                   |                      |              |                              |                              |
| 0.1                       |                                 |            |                          |                               |                     | -0.15 -   | -        |                   |                      |              |                              |                              |
| 0.1                       |                                 |            |                          | •                             |                     | 0.20      |          |                   |                      |              |                              |                              |
| 0.0 -                     |                                 |            |                          |                               |                     | -0.20 -   |          | 1                 |                      |              |                              |                              |
|                           | 4.15 D 109                      | 235        | 485 10                   | 80 2300                       |                     |           | -1.5     | -1.0              | -0.5                 | 0.0 0.       | .5 1.0                       | 1.5                          |
|                           |                                 | Conc-µ     | ig/L                     |                               |                     |           |          |                   | R                    | ankits       |                              |                              |

CETIS™ v2.1.4.5 (008-408-407-6)
| CETIS                                    | Analyti                                          | cal Repo                               | ort      |                               |                                            |                                           |                                 |                  | R    | eport<br>est Co                | Date:<br>ode/ID:              |                                 | 26<br>24.0                               | Jun-24 12:0<br>03.3 Zn / 12 | )2 (p 1 of 3)<br>2-5207-5074 |
|------------------------------------------|--------------------------------------------------|----------------------------------------|----------|-------------------------------|--------------------------------------------|-------------------------------------------|---------------------------------|------------------|------|--------------------------------|-------------------------------|---------------------------------|------------------------------------------|-----------------------------|------------------------------|
| Daphni                                   | a thomsoni                                       | i 48-h Acute                           | e Survi  | val T                         | est                                        |                                           |                                 |                  |      |                                |                               |                                 |                                          | NIWA Eco                    | toxicology                   |
| Analysi<br>Analyze<br>Edit Da            | sID: 15-2<br>ed: 26 J<br>te: 26 J                | 921-5324<br>un-24 12:00<br>un-24 11:56 |          | Endı<br>Anal<br>MD5           | ooint: 48h<br>ysis: Nor<br>Hash: 764       | Survival Ra<br>Ilinear Regro<br>B00A97DDI | ite<br>ession (NLF<br>BA7F034CI | R)<br>D818B89CF2 | 20D9 | CET<br>Statu<br>Edito          | IS Versi<br>us Leve<br>or ID: | on:<br>I:                       | CETISv2<br>1<br>008-408-                 | 1.4<br>407-6                |                              |
| Batch I<br>Start Da<br>Ending<br>Test Le | D: 21-1<br>ate: 29 M<br>Date: 31 M<br>ngth: 48h  | 207-3831<br>/lay-24<br>/lay-24         |          | Test<br>Prote<br>Spec<br>Taxo | Type: Sur<br>ocol: NIV<br>cies: Dap<br>on: | vival (48h)<br>/A SOP 10<br>ohnia thoms   | (2022)<br>oni (Water t          | flea)            |      | Anal<br>Dilue<br>Brine<br>Sour | yst:<br>ent:<br>e:<br>rce:    | Ecoto<br>Okut<br>Not A<br>Field | ox Team<br>ua<br>Applicable<br>Collected |                             | Age:                         |
| Sample<br>Sample<br>Receipt<br>Sample    | ID: 07-2<br>Date: 28 M<br>Date: 28 M<br>Age: 24h | 2399-9627<br>Nay-24<br>Nay-24          |          | Code<br>Mate<br>CAS<br>Clier  | e: 24.0<br>rial: Zino<br>(PC):<br>nt: Hyd  | 003.3 Zn<br>c sulfate<br>Irotoxy Rese     | earch                           |                  |      | Proje<br>Sour<br>Stati         | ect:<br>rce:<br>on:           | Spec<br>Solut<br>Lab \$         | ial Studies<br>tion made l<br>Solution   | by NIWA                     |                              |
| Non-Lir<br>Model I                       | near Regres                                      | ssion Optio<br>Function                | ns       |                               |                                            |                                           | Weightin                        | a Function       |      |                                | PTBS                          | Fun                             | ction                                    | X Trans                     | Y Trans                      |
| 3P Log-                                  | P Log-Logistic: μ=α/[1+[x/δ]^γ]                  |                                        |          |                               |                                            |                                           | Binomial                        | [ω=n/[p·q]]      |      |                                | Off [µ'                       | *=µ]                            |                                          | None                        | None                         |
| Regres                                   | sion Summ                                        | ary                                    | -        |                               |                                            |                                           |                                 |                  |      |                                |                               |                                 |                                          |                             |                              |
| Iters                                    | Ц                                                | AICc                                   | BIC      |                               | Adi R2                                     | PMSD                                      | Thresh                          | Optimize         | F S  | tat                            | P-Val                         | ue                              | Decision                                 | (a:5%)                      |                              |
| 7                                        | -17.28                                           | 42.07                                  | 43.55    | 5                             | 0.8442                                     | 3.99%                                     | 0.9766                          | Yes              | 0.87 | 779                            | 0.476                         | 1                               | Non-Signi                                | ficant Lack-                | of-Fit                       |
| Point E                                  | stimates                                         |                                        |          |                               |                                            |                                           |                                 |                  |      |                                |                               |                                 |                                          |                             |                              |
| Level                                    | µg/L                                             | 95% LCL                                | 95%      | UCL                           |                                            |                                           |                                 |                  |      |                                |                               |                                 |                                          |                             |                              |
| LC5                                      | 125.4                                            |                                        | 167.2    | )                             |                                            |                                           |                                 |                  |      |                                |                               |                                 |                                          |                             |                              |
| LC10                                     | 161.8                                            | 77.84                                  | 207.5    | 5                             |                                            |                                           |                                 |                  |      |                                |                               |                                 |                                          |                             |                              |
| LC15                                     | 189.5                                            | 118                                    | 238.8    | 3                             |                                            |                                           |                                 |                  |      |                                |                               |                                 |                                          |                             |                              |
| LC20                                     | 213.4                                            | 147.4                                  | 265.7    | ,                             |                                            |                                           |                                 |                  |      |                                |                               |                                 |                                          |                             |                              |
| LC25                                     | 235.5                                            | 172 7                                  | 290.5    | 5                             |                                            |                                           |                                 |                  |      |                                |                               |                                 |                                          |                             |                              |
| LC40                                     | 298.3                                            | 239.2                                  | 362.4    | i                             |                                            |                                           |                                 |                  |      |                                |                               |                                 |                                          |                             |                              |
| LC50                                     | 342.6                                            | 281.9                                  | 416.3    | 3                             |                                            |                                           |                                 |                  |      |                                |                               |                                 |                                          |                             |                              |
| Regres                                   | sion Param                                       | ieters                                 |          |                               |                                            |                                           |                                 |                  |      |                                |                               |                                 |                                          |                             |                              |
| Parame                                   | ter                                              | Estimate                               | Std E    | Frror                         | 95% LCL                                    | 95% UCL                                   | t Stat                          | P-Value          | Dec  | ision(                         | (α:5%)                        |                                 |                                          |                             |                              |
| α                                        |                                                  | 0.9766                                 | 0.018    | 346                           | 0.9376                                     | 1.016                                     | 52.89                           | <1.0E-05         | Sig  | nifican                        | t Param                       | eter                            |                                          |                             |                              |
| v                                        |                                                  | 2.93                                   | 0.487    | 7                             | 1.901                                      | 3.959                                     | 6.008                           | 1.4E-05          | Sig  | nifican                        | t Param                       | eter                            |                                          |                             |                              |
| ō                                        |                                                  | 342.6                                  | 31.78    | 3                             | 275.5                                      | 409.6                                     | 10.78                           | <1.0E-05         | Sig  | nifican                        | t Param                       | eter                            |                                          |                             |                              |
| ANOVA                                    | Table                                            |                                        |          |                               |                                            |                                           |                                 |                  |      |                                |                               |                                 |                                          |                             |                              |
| Source                                   |                                                  | Sum Squa                               | ares     | Mea                           | n Square                                   | DF                                        | F Stat                          | P-Value          | Dec  | ision(                         | (α:5%)                        |                                 |                                          |                             |                              |
| Model                                    |                                                  | 2679                                   |          | 892.9                         | )                                          | 3                                         | 1072                            | <1.0E-05         | Sigr | nifican                        | t Effect                      |                                 |                                          |                             |                              |
| Lack of                                  | Fit                                              | 2.243                                  |          | 0.74                          | 76                                         | 3                                         | 0.8779                          | 0.4761           | Nor  | -Signi                         | ficant La                     | ack-o                           | f-Fit                                    |                             |                              |
| Pure Er                                  | ror                                              | 11.92                                  |          | 0.85                          | 16                                         | 14                                        |                                 |                  |      |                                |                               |                                 |                                          |                             |                              |
| Residua                                  | il                                               | 14.17                                  |          | 0.83                          | 33                                         | 17                                        |                                 |                  |      |                                |                               |                                 |                                          |                             |                              |
| Residu                                   | al Analysis                                      |                                        |          |                               |                                            |                                           |                                 |                  |      |                                |                               |                                 |                                          |                             |                              |
| Attribut                                 | e                                                | Method                                 |          |                               |                                            | Test Stat                                 | Critical                        | P-Value          | Dec  | ision(                         | (α:5%)                        |                                 |                                          |                             |                              |
| Model F                                  | it                                               | Likelihood                             | Ratio (  | GOF                           | Test                                       | 14.8                                      | 27.59                           | 0.6102           | Nor  | -Signi                         | ficant H                      | etero                           | geneity                                  |                             |                              |
|                                          |                                                  | Pearson C                              | hi-Sq (  | GOF '                         | Fest                                       | 14.17                                     | 27.59                           | 0.6554           | Nor  | I-Signi                        | ficant H                      | etero                           | geneity                                  |                             |                              |
| Varianc                                  | е                                                | Mod Lever                              | ne Equ   | ality o                       | f Variance                                 | 0.5301                                    | 3.687                           | 0.7489           | Equ  | ial Var                        | iances                        |                                 |                                          |                             |                              |
| Distribu                                 | tion                                             | Anderson-                              | Darling  | ) A2 T                        | est                                        | 0.484                                     | 2.492                           | 0.2325           | Nor  | mal Di                         | istributio                    | n                               |                                          |                             |                              |
|                                          |                                                  | Shapiro-W                              | ilk W N  | Norma                         | ality Test                                 | 0.9468                                    | 0.9044                          | 0.3214           | Nor  | mal Di                         | istributio                    | n                               |                                          |                             |                              |
| Control                                  | Trend                                            | Mann-Ken                               | dall Tre | end T                         | est                                        | 0.395                                     | 0.05                            | 0.3950           | Nor  | I-Signi                        | ficant C                      | ontro                           | l Trend                                  |                             |                              |
| Overdis                                  | persion                                          | Tarone C(                              | α) Ove   | rdispe                        | ersion Test                                | 1.162                                     | 1.645                           | 0.1226           | Nor  | I-Signi                        | ficant O                      | verdi                           | spersion                                 |                             |                              |

| CETIS Ana                                 | alytical Repo                                      | ort                                                      |                                                          |                                                          |                                                          |                                                          | Report<br>Test Co                                        | Date:<br>ode/ID:                                         | 26<br>24.0                              | Jun-24 12:0<br>)03.3 Zn / 12                             | 2 (p 2 of 3)<br>-5207-5074                       |
|-------------------------------------------|----------------------------------------------------|----------------------------------------------------------|----------------------------------------------------------|----------------------------------------------------------|----------------------------------------------------------|----------------------------------------------------------|----------------------------------------------------------|----------------------------------------------------------|-----------------------------------------|----------------------------------------------------------|--------------------------------------------------|
| Daphnia thor                              | msoni 48-h Acute                                   | Survival T                                               | fest                                                     |                                                          |                                                          |                                                          |                                                          |                                                          |                                         | NIWA Ecot                                                | oxicology                                        |
| Analysis ID:<br>Analyzed:<br>Edit Date:   | 15-2921-5324<br>26 Jun-24 12:00<br>26 Jun-24 11:56 | End<br>Ana<br>MDS                                        | lpoint: 48<br>Iysis: No<br>5 Hash: 76                    | h Survival R<br>Ininear Regi<br>4B00A97DD                | ate<br>ression (NL<br>IBA7F034C                          | R)<br>D818B89CF                                          | CET<br>State<br>20D9 Edite                               | IS Version:<br>us Level:<br>or ID:                       | CETISv2<br>1<br>008-408-                | 2.1.4<br>-407-6                                          |                                                  |
| 48h Survival                              | Rate Summary                                       |                                                          |                                                          |                                                          |                                                          | Calculate                                                | d Variate(A/                                             | В)                                                       |                                         |                                                          |                                                  |
| Conc-µg/L                                 | Code                                               | Count                                                    | Mean                                                     | Median                                                   | Min                                                      | Мах                                                      | Std Err                                                  | Std Dev                                                  | CV%                                     | %Effect                                                  | ΣΑ/ΣΒ                                            |
| 4.15<br>109<br>235<br>485<br>1080<br>2300 | D<br>Rate Detail                                   | 5<br>3<br>3<br>3<br>3<br>3                               | 0.9800<br>0.9333<br>0.7000<br>0.3333<br>0.0000<br>0.0000 | 1.0000<br>1.0000<br>0.6000<br>0.3000<br>0.0000<br>0.0000 | 0.9000<br>0.8000<br>0.6000<br>0.3000<br>0.0000<br>0.0000 | 1.0000<br>1.0000<br>0.9000<br>0.4000<br>0.0000<br>0.0000 | 0.0200<br>0.0667<br>0.1000<br>0.0333<br>0.0000<br>0.0000 | 0.0447<br>0.1155<br>0.1732<br>0.0577<br>0.0000<br>0.0000 | 4.56%<br>12.37%<br>24.74%<br>17.32%<br> | 0.00%<br>4.76%<br>28.57%<br>65.99%<br>100.00%<br>100.00% | 49/50<br>28/30<br>21/30<br>10/30<br>0/30<br>0/30 |
|                                           | Code                                               | Ren 1                                                    | Ren 2                                                    | Ren 3                                                    | Rep 4                                                    | Ren 5                                                    |                                                          |                                                          |                                         |                                                          |                                                  |
| 4.15<br>109<br>235<br>485<br>1080<br>2300 | D                                                  | 1.0000<br>1.0000<br>0.6000<br>0.4000<br>0.0000<br>0.0000 | 1.0000<br>0.8000<br>0.6000<br>0.3000<br>0.0000<br>0.0000 | 1.0000<br>1.0000<br>0.9000<br>0.3000<br>0.0000<br>0.0000 | 1.0000                                                   | 0.9000                                                   |                                                          |                                                          |                                         |                                                          |                                                  |
| 48h Survival                              | Rate Binomials                                     |                                                          |                                                          |                                                          |                                                          |                                                          |                                                          |                                                          |                                         |                                                          |                                                  |
| Conc-µg/L                                 | Code                                               | Rep 1                                                    | Rep 2                                                    | Rep 3                                                    | Rep 4                                                    | Rep 5                                                    |                                                          |                                                          |                                         |                                                          |                                                  |
| 4.15<br>109<br>235<br>485<br>1080<br>2300 | D                                                  | 10/10<br>10/10<br>6/10<br>4/10<br>0/10<br>0/10           | 10/10<br>8/10<br>6/10<br>3/10<br>0/10<br>0/10            | 10/10<br>10/10<br>9/10<br>3/10<br>0/10<br>0/10           | 10/10                                                    | 9/10                                                     |                                                          |                                                          |                                         |                                                          |                                                  |



# Copper

| CETIS Anal                                                         | ytical                                  | Report                         |                              |                                |                    |                                        |                                  |                    | R    | eport<br>est Co                | Date:<br>ode/ID:              |                                 | 26 J<br>24.00                            | lun-24 11:4<br>3.3 Cu / 16 | 8 (p 1 of 2)<br>-2293-8617 |
|--------------------------------------------------------------------|-----------------------------------------|--------------------------------|------------------------------|--------------------------------|--------------------|----------------------------------------|----------------------------------|--------------------|------|--------------------------------|-------------------------------|---------------------------------|------------------------------------------|----------------------------|----------------------------|
| Daphnia thoms                                                      | soni 48-                                | h Acute Surv                   | vival T                      | est                            |                    |                                        |                                  |                    |      |                                |                               |                                 | I                                        | NIWA Ecot                  | oxicology                  |
| Analysis ID: 0<br>Analyzed: 2<br>Edit Date: 2                      | 08-9689<br>26 Jun-2<br>26 Jun-2         | -2974<br>24 11:47<br>24 11:46  | End<br>Anal<br>MD5           | point:<br>lysis:<br>Hash:      | 48h<br>Para<br>733 | Survival Ra<br>ametric-Mul<br>EADCD93E | ate<br>tiple Compa<br>:99B00DEDI | rison<br>E9048F1D8 | 118  | CETI<br>Statu<br>Edito         | IS Versi<br>Is Leve<br>or ID: | on:<br>I:                       | CETISv2.<br>1<br>008-408-4               | 1.4<br>107-6               |                            |
| Batch ID: 0<br>Start Date: 2<br>Ending Date: 3<br>Test Length: 4   | 01-3332<br>29 May-2<br>31 May-2<br>48h  | -2169<br>24<br>24              | Test<br>Prot<br>Spec<br>Taxo | Type:<br>ocol:<br>cies:<br>on: | Sun<br>NIW<br>Dap  | vival (48h)<br>/A SOP 10<br>hnia thoms | (2022)<br>oni (Water fl          | ea)                |      | Anal<br>Dilue<br>Brine<br>Sour | yst:<br>ent:<br>e:<br>rce:    | Ecoto<br>Okut<br>Not A<br>Field | ox Team<br>ua<br>Applicable<br>Collected |                            | Age:                       |
| Sample ID: 0<br>Sample Date: 2<br>Receipt Date: 2<br>Sample Age: 2 | 02-9373-<br>28 May-2<br>28 May-2<br>24h | -9603<br>24<br>24              | Cod<br>Mate<br>CAS<br>Clier  | e:<br>erial:<br>(PC):<br>nt:   | 24.0<br>Cop<br>Hyd | 03.3 Cu<br>per<br>rotoxy Rese          | earch                            |                    |      | Proje<br>Sour<br>Stati         | ect:<br>ce:<br>on:            | Spec<br>Solut<br>Lab (          | tial Studies<br>tion made by<br>Solution | y NIWA                     |                            |
| Data Transforn                                                     | n                                       | Alt                            | Нур                          |                                |                    |                                        |                                  | NOEL               | LO   | EL                             | TOEL                          |                                 | Tox Units                                | MSDu                       | PMSD                       |
| Angular (Correc                                                    | ted)                                    | C >                            | т                            |                                |                    |                                        |                                  | 59                 | 136  |                                | 89.58                         |                                 |                                          | 0.1873                     | 19.12%                     |
| Bonferroni Adj<br>Control                                          | t Test<br>vs Co                         | onc-µg/L                       | df                           | Test S                         | stat               | Critical                               | MSD                              | P-Type             | P-V  | alue                           | Decis                         | ion(c                           | a:5%)                                    |                            |                            |
| Dilution water                                                     | 59                                      | 6*                             | 6                            | 0.1781                         | 1                  | 2.306                                  | 0.2814                           | CDF                | 0.8  | 531<br>=_05                    | Non-S                         | signiti<br>icant                | Effect                                   |                            |                            |
|                                                                    | 15                                      | 0                              | 0                            | 0.000                          |                    | 2.300                                  | 0.2014                           | CDF                | 2.11 | 2-05                           | Signii                        | luarii                          | Ellect                                   |                            |                            |
| Auxiliary Tests                                                    |                                         |                                |                              |                                |                    |                                        |                                  |                    |      |                                |                               |                                 |                                          |                            |                            |
| Attribute                                                          | Te                                      | est                            |                              |                                |                    |                                        | Test Stat                        | Critical           | P-V  | alue                           | Decis                         | ion(d                           | a:5%)                                    |                            |                            |
| Control Trend                                                      | M                                       | ann-Kendall 1                  | Frend T                      | Test                           |                    |                                        | 0.395                            | 0.05               | 0.3  | 950                            | Non-S                         | Signifi                         | icant Contro                             | I Trend                    |                            |
| ANOVA Table                                                        |                                         |                                |                              |                                |                    |                                        |                                  |                    |      |                                |                               |                                 |                                          |                            |                            |
| Source                                                             | Su                                      | im Squares                     |                              | Mean                           | Squ                | are                                    | DF                               | F Stat             | P-V  | alue                           | Decis                         | ion(d                           | a:5%)                                    |                            |                            |
| Between                                                            | 2.3                                     | 34796                          |                              | 1.1739                         | 98                 |                                        | 2                                | 42.05              | 5.7  | E-05                           | Signif                        | icant                           | Effect                                   |                            |                            |
| Error                                                              | 0.2                                     | 223362                         |                              | 0.0279                         | 9202               |                                        | 8                                | _                  |      |                                |                               |                                 |                                          |                            |                            |
| Total                                                              | 2.5                                     | 57132                          |                              |                                |                    |                                        | 10                               |                    |      |                                |                               |                                 |                                          |                            |                            |
| ANOVA Assum                                                        | ptions                                  | Tests                          |                              |                                |                    |                                        |                                  |                    |      |                                |                               |                                 |                                          |                            |                            |
| Attribute                                                          | Te                                      | st                             |                              |                                |                    |                                        | Test Stat                        | Critical           | P-V  | alue                           | Decis                         | ion(d                           | x:1%)                                    |                            |                            |
| Variance                                                           | Ba                                      | rtlett Equality                | of Va                        | iance T                        | est                |                                        | 5.512                            | 9.21               | 0.0  | 635                            | Equal                         | Varia                           | ances                                    |                            |                            |
|                                                                    | Le                                      | vene Equality                  | of Va                        | riance T                       | est                | F                                      | 8.878                            | 8.649              | 0.0  | )93<br>)64                     | Unequ                         | ual Va                          | ariances                                 |                            |                            |
| Distribution                                                       | MC                                      | od Levene Eq<br>Idoraon Darlin |                              | or variar<br>Foot              | nce                | lest                                   | 0.9841                           | 13.27              | 0.4  | 301                            | Equal                         | varia<br>ol Dia                 | ances                                    |                            |                            |
| Distribution                                                       |                                         | Adostino Skev                  | NNess                        | Test                           |                    |                                        | 1.632                            | 2 576              | 0.0  | 126                            | Norm:                         | al Dis<br>al Dis                | stribution                               |                            |                            |
|                                                                    | Ko                                      | Imogorov-Sm                    | irnov l                      | D Test                         |                    |                                        | 0.2672                           | 0.2906             | 0.0  | 272                            | Norm                          | al Dis                          | stribution                               |                            |                            |
|                                                                    | Sh                                      | apiro-Wilk W                   | Norma                        | ality Tes                      | st                 |                                        | 0.838                            | 0.7725             | 0.0  | 298                            | Norma                         | al Dis                          | stribution                               |                            |                            |
| 48h Survival R                                                     | ate Sun                                 | nmary                          |                              |                                |                    |                                        |                                  |                    |      |                                |                               |                                 |                                          |                            |                            |
| Conc-µg/L                                                          | Co                                      | de Cou                         | nt                           | Mean                           |                    | 95% LCL                                | 95% UCL                          | Median             | Min  |                                | Мах                           |                                 | Std Err                                  | CV%                        | %Effect                    |
| 1.3                                                                | D                                       | 5                              |                              | 0.9800                         | )                  | 0.9245                                 | 1.0000                           | 1.0000             | 0.9  | 000                            | 1.000                         | 0                               | 0.0200                                   | 4.56%                      | 0.00%                      |
| 59                                                                 |                                         | 3                              |                              | 0.9667                         | 7                  | 0.8232                                 | 1.0000                           | 1.0000             | 0.9  | 000                            | 1.000                         | 0                               | 0.0333                                   | 5.97%                      | 1.36%                      |
| 136                                                                |                                         | 3                              |                              | 0.1333                         | 3                  | 0.0000                                 | 0.7070                           | 0.0000             | 0.0  | 000                            | 0.400                         | 0                               | 0.1333                                   | 173.21%                    | 86.39%                     |
| 280                                                                |                                         | 3                              |                              | 0.0000                         | )                  | 0.0000                                 | 0.0000                           | 0.0000             | 0.0  | 000                            | 0.000                         | 0                               | 0.0000                                   |                            | 100.00%                    |
| Angular (Corre                                                     | cted) Tr                                | ransformed §                   | Summ                         | ary                            |                    |                                        |                                  |                    |      |                                |                               |                                 |                                          |                            |                            |
| Conc-µg/L                                                          | Co                                      | de Cou                         | nt                           | Mean                           |                    | 95% LCL                                | 95% UCL                          | Median             | Min  |                                | Мах                           |                                 | Std Err                                  | CV%                        | %Effect                    |
| 1.3                                                                | D                                       | 5                              |                              | 1.3790                         | )                  | 1.2890                                 | 1.4700                           | 1.4120             | 1.24 | 490                            | 1.412                         | 0                               | 0.0326                                   | 5.28%                      | 0.00%                      |
| 59                                                                 |                                         | 3                              |                              | 1.3580                         |                    | 1.1240                                 | 1.5910                           | 1.4120             | 1.24 | 190                            | 1.412                         | 0                               | 0.0543                                   | 6.93%                      | 1.58%                      |
| 280                                                                |                                         | 3                              |                              | 0.3341                         | 3                  | -0.4202                                | 0.1588                           | 0.1588             | 0.1  | 588<br>588                     | 0.684                         | /<br>8                          | 0.1753                                   | 90.89%                     | /5./8%<br>88.49%           |

Convergent Rounding (4 sf)

| CETIS An                                                                      | alytical Repo                                      | ort                                  |                                         |                                          |                                  |                                           | Report Date:<br>Test Code/ID:                 | 26 Jun-24 11:48 (p 2 of 2)<br>24.003.3 Cu / 16-2293-8617 |
|-------------------------------------------------------------------------------|----------------------------------------------------|--------------------------------------|-----------------------------------------|------------------------------------------|----------------------------------|-------------------------------------------|-----------------------------------------------|----------------------------------------------------------|
| Daphnia tho                                                                   | msoni 48-h Acute                                   | Survival                             | Test                                    |                                          |                                  |                                           |                                               | NIWA Ecotoxicology                                       |
| Analysis ID:<br>Analyzed:<br>Edit Date:                                       | 08-9689-2974<br>26 Jun-24 11:47<br>26 Jun-24 11:46 | En<br>An<br>MD                       | dpoint: 48<br>alysis: Pa<br>95 Hash: 73 | h Survival F<br>arametric-Mu<br>3EADCD93 | Rate<br>ultiple Comp<br>E99B00DE | parison<br>DE9048F1D8118                  | CETIS Version:<br>Status Level:<br>Editor ID: | CETISv2.1.4<br>1<br>008-408-407-6                        |
| 48h Survival                                                                  | Rate Detail                                        |                                      |                                         |                                          |                                  |                                           |                                               |                                                          |
| Conc-µg/L                                                                     | Code                                               | Rep 1                                | Rep 2                                   | Rep 3                                    | Rep 4                            | Rep 5                                     |                                               |                                                          |
| 1.3<br>59<br>136<br>280                                                       | D                                                  | 1.0000<br>1.0000<br>0.0000<br>0.0000 | 1.0000<br>1.0000<br>0.4000<br>0.0000    | 1.0000<br>0.9000<br>0.0000<br>0.0000     | 1.0000                           | 0.9000                                    |                                               |                                                          |
| Angular (Cor                                                                  | rrected) Transforr                                 | ned Detai                            | I                                       |                                          |                                  |                                           |                                               |                                                          |
| Conc-µg/L                                                                     | Code                                               | Rep 1                                | Rep 2                                   | Rep 3                                    | Rep 4                            | Rep 5                                     |                                               |                                                          |
| 1.3<br>59<br>136<br>280                                                       | D                                                  | 1.4120<br>1.4120<br>0.1588<br>0.1588 | 1.4120<br>1.4120<br>0.6847<br>0.1588    | 1.4120<br>1.2490<br>0.1588<br>0.1588     | 1.4120                           | 1.2490                                    |                                               |                                                          |
| 48h Survival                                                                  | Rate Binomials                                     |                                      |                                         |                                          |                                  |                                           |                                               |                                                          |
| Conc-µg/L                                                                     | Code                                               | Rep 1                                | Rep 2                                   | Rep 3                                    | Rep 4                            | Rep 5                                     |                                               |                                                          |
| 1.3<br>59<br>136<br>280                                                       | D                                                  | 10/10<br>10/10<br>0/10<br>0/10       | 10/10<br>10/10<br>4/10<br>0/10          | 10/10<br>9/10<br>0/10<br>0/10            | 10/10                            | 9/10                                      |                                               |                                                          |
| Graphics                                                                      |                                                    |                                      |                                         |                                          |                                  |                                           |                                               |                                                          |
| 1.0 -<br>0.9 -<br>0.8 -<br>0.7 -<br>0.6 -<br>0.5 -<br>0.4 -<br>0.3 -<br>0.3 - |                                                    |                                      |                                         |                                          |                                  | 0.3 -<br>0.2 -<br>0.1 -<br>0.1 -<br>0.0 - | •••                                           |                                                          |

0.1 0.0 -

1.3 D

59

Conc-µg/L

136

280

CETIS™ v2.1.4.5 (008-408-407-6)

-0.1

-0.2

-1.5

-1.0

-0.5

0.0

Rankits

0.5

1.0

1.5

| CETIS                                    | S Analyt                                           | tical Repo                                 | ort     |                              |                                            |                                             |                               |                            | R    | eport Da<br>est Code                   | ite:<br>e/ID:           | 26<br>24.00                                            | Jun-24 11:4<br>03.3 Cu / 16 | 19 (p 1 of 3)<br>5-2293-8617 |
|------------------------------------------|----------------------------------------------------|--------------------------------------------|---------|------------------------------|--------------------------------------------|---------------------------------------------|-------------------------------|----------------------------|------|----------------------------------------|-------------------------|--------------------------------------------------------|-----------------------------|------------------------------|
| Daphni                                   | a thomso                                           | ni 48-h Acute                              | Surv    | ival T                       | est                                        |                                             |                               |                            |      |                                        |                         |                                                        | NIWA Eco                    | toxicology                   |
| Analysi<br>Analyze<br>Edit Da            | is ID: 16<br>ed: 26<br>ite: 26                     | -0302-2229<br>Jun-24 11:48<br>Jun-24 11:46 |         | End<br>Anal<br>MD5           | point: 48ł<br>lysis: No<br>i Hash: 2F(     | h Survival Ra<br>nlinear Regr<br>6FF92B610D | ate<br>ession (NL<br>06BE0CFE | R)<br>8F75A74FEF           | -8CB | CETIS<br>Status<br>Editor I            | Versio<br>Level:<br>D:  | n: CETISv2<br>1<br>008-408-                            | .1.4<br>407-6               |                              |
| Batch I<br>Start Da<br>Ending<br>Test Le | D: 01-<br>ate: 29<br>Date: 31<br>ength: 48         | -3332-2169<br>May-24<br>May-24<br>h        |         | Test<br>Prot<br>Spec<br>Taxo | Type: Sur<br>ocol: NIV<br>cies: Dap<br>on: | rvival (48h)<br>NA SOP 10<br>phnia thoms    | (2022)<br>oni (Water          | flea)                      |      | Analyst<br>Diluent<br>Brine:<br>Source | : E<br>: O<br>N<br>: Fi | cotox Team<br>kutua<br>ot Applicable<br>ield Collected |                             | Age:                         |
| Sample<br>Sample<br>Receipt<br>Sample    | e ID: 02-<br>e Date: 28<br>t Date: 28<br>e Age: 24 | -9373-9603<br>May-24<br>May-24<br>h        |         | Code<br>Mate<br>CAS<br>Clier | e: 24.<br>erial: Co<br>(PC):<br>nt: Hyd    | 003.3 Cu<br>pper<br>drotoxy Rese            | earch                         |                            |      | Project<br>Source<br>Station           | : S <br>: S(<br>: La    | pecial Studies<br>olution made I:<br>ab Solution       | 99 NIWA                     |                              |
| Non-Li                                   | near Regro                                         | ession Optio                               | ns      |                              |                                            |                                             | Weightin                      | a Function                 |      |                                        | TDEF                    | unotion                                                | V Trana                     | V Trana                      |
| 3P Log-                                  | Logistic: u                                        | =α/[1+[x/δ]^v]                             |         |                              |                                            |                                             | Binomial                      | ig Function<br>[ω=n/[p·a]] |      | ۲<br>(                                 | )ff [u*=                | uncuon                                                 | None                        | None                         |
| Pouroe                                   | sion Sum                                           | many                                       |         |                              |                                            |                                             | 2e                            | (                          |      |                                        | (p                      |                                                        |                             |                              |
| Itore                                    |                                                    |                                            | BIC     |                              | Adi R2                                     | DMSD                                        | Threeh                        | Ontimize                   | FS   | tat D                                  | Value                   | Decision/                                              | a:5%)                       |                              |
| 3                                        | -11.95                                             | 31.4                                       | 32.89   | 9                            | 0.8992                                     | 2.19%                                       | 0.9908                        | Yes                        | 0.28 | 343 0                                  | .8359                   | Non-Signi                                              | ficant Lack-                | of-Fit                       |
| Point F                                  | stimates                                           |                                            |         |                              |                                            |                                             |                               |                            |      |                                        |                         |                                                        |                             |                              |
| Level                                    | µg/L                                               | 95% LCL                                    | 95%     | UCL                          |                                            |                                             |                               |                            |      |                                        |                         |                                                        |                             |                              |
| LC5                                      | 66.66                                              |                                            | 83.00   | 6                            |                                            |                                             |                               |                            |      |                                        |                         |                                                        |                             |                              |
| LC10                                     | 74.44                                              |                                            | 92.61   | 1                            |                                            |                                             |                               |                            |      |                                        |                         |                                                        |                             |                              |
| LC15                                     | 79.71                                              |                                            | 99.40   | 6                            |                                            |                                             |                               |                            |      |                                        |                         |                                                        |                             |                              |
| LC20                                     | 83.92                                              |                                            | 105.2   | 2                            |                                            |                                             |                               |                            |      |                                        |                         |                                                        |                             |                              |
| LC25                                     | 87.56                                              | <br>E1 06                                  | 110.    | 5                            |                                            |                                             |                               |                            |      |                                        |                         |                                                        |                             |                              |
| LC50                                     | 103                                                | 78.09                                      | 125.4   | 4<br>R                       |                                            |                                             |                               |                            |      |                                        |                         |                                                        |                             |                              |
| Degree                                   | oion Doro                                          | motoro                                     | 100.    |                              |                                            |                                             |                               |                            |      |                                        |                         |                                                        |                             |                              |
| Regres                                   | SION Para                                          | Estimate                                   | C 4 4   |                              | 05% 1.01                                   |                                             | 4.54-4                        | Divelue                    |      |                                        | 50/3                    |                                                        |                             |                              |
| Parame                                   | eter                                               | Estimate                                   | Std     | Error                        | 95% LCL                                    | 95% UCL                                     | t Stat                        | P-Value                    | Dec  | ision(a:                               | 5%)                     |                                                        |                             |                              |
| α                                        |                                                    | 0.9908                                     | 0.010   | 03                           | 0.909                                      | 1.012                                       | 90.21                         | <1.0E-05                   | Sigi | nilicant Pa                            | aramet                  | ler                                                    |                             |                              |
| δ                                        |                                                    | 103                                        | 10.6    | 5                            | 2.556                                      | 125.5                                       | 9.667                         | <1.0E-05                   | Sig  | nificant P                             | aramet                  | er                                                     |                             |                              |
|                                          | Table                                              |                                            |         |                              |                                            |                                             |                               |                            |      |                                        |                         |                                                        |                             |                              |
| Source                                   | Tubic                                              | Sum Sau                                    | ares    | Mea                          | n Square                                   | DF                                          | E Stat                        | P-Value                    | Dec  | ision(a:                               | 5%)                     |                                                        |                             |                              |
| Model                                    |                                                    | 12680                                      |         | 4228                         | 3                                          | 3                                           | 3338                          | <1.0E-05                   | Sia  | nificant Et                            | ffect                   |                                                        |                             |                              |
| Lack of                                  | Fit                                                | 1.236                                      |         | 0.41                         | 22                                         | 3                                           | 0.2843                        | 0.8359                     | Nor  | -Significa                             | ant Lac                 | k-of-Fit                                               |                             |                              |
| Pure Er                                  | ror                                                | 20.3                                       |         | 1.45                         |                                            | 14                                          |                               |                            |      |                                        |                         |                                                        |                             |                              |
| Residua                                  | al                                                 | 21.53                                      |         | 1.26                         | 7                                          | 17                                          |                               |                            |      |                                        |                         |                                                        |                             |                              |
| Residu                                   | al Analysi                                         | s                                          |         |                              |                                            |                                             |                               |                            |      |                                        |                         |                                                        |                             |                              |
| Attribut                                 | te                                                 | Method                                     |         |                              |                                            | Test Stat                                   | Critical                      | P-Value                    | Dec  | ision(α:                               | 5%)                     |                                                        |                             |                              |
| Model F                                  | it                                                 | Likelihood                                 | Ratio   | GOF                          | Test                                       | 17.34                                       | 27.59                         | 0.4316                     | Nor  | -Significa                             | ant Het                 | erogeneity                                             |                             |                              |
|                                          |                                                    | Pearson C                                  | hi-Sq   | GOF                          | Test                                       | 21.53                                       | 27.59                         | 0.2034                     | Nor  | -Significa                             | ant Het                 | erogeneity                                             |                             |                              |
| Varianc                                  | e                                                  | Mod Lever                                  | ne Equ  | ality o                      | of Variance                                | 0.5486                                      | 3.687                         | 0.7365                     | Equ  | al Varian                              | ces                     |                                                        |                             |                              |
| Distribu                                 | tion                                               | Anderson-                                  | Darling | g A2 1                       | est<br>I est                               | 2.284                                       | 2.492                         | <1.0E-05                   | Nor  | I-Normal                               | Distrib                 | ution                                                  |                             |                              |
| Control                                  | Trand                                              | Snapiro-W                                  | dolUT-  | Norma                        | anty rest                                  | 0.7972                                      | 0.9044                        | 0.0008                     | Nor  | I-Normal                               | Distribi                | ution<br>strol Trend                                   |                             |                              |
| Overdia                                  | noreion                                            | Tarono C/                                  |         | ena l                        | est<br>areion Tect                         | 0.395                                       | 1.645                         | 0.3950                     | NOP  | i-Signinca                             | ant COP                 | nuor menu                                              |                             |                              |
| overuls                                  | persion                                            | raione C(                                  | u) Ove  | auspe                        | eraion rest                                | 2.001                                       | 1.040                         | 0.0037                     | Jugi | inicant O                              | veruist                 | Jer SIUT                                               |                             |                              |
|                                          |                                                    |                                            |         |                              |                                            |                                             |                               |                            |      |                                        |                         |                                                        |                             |                              |

| CETIS Ana                               | alytical Repo                                      | rt                                                       |                                                          |                                                          |                                                          |                                                          | Report<br>Test C                                         | Date:<br>ode/ID:                                         | 26 -<br>24.00                               | Jun-24 11:4<br>)3.3 Cu / 16                             | 9 (p 2 of 3)<br>-2293-8617                       |
|-----------------------------------------|----------------------------------------------------|----------------------------------------------------------|----------------------------------------------------------|----------------------------------------------------------|----------------------------------------------------------|----------------------------------------------------------|----------------------------------------------------------|----------------------------------------------------------|---------------------------------------------|---------------------------------------------------------|--------------------------------------------------|
| Daphnia thor                            | nsoni 48-h Acute                                   | Survival T                                               | est                                                      |                                                          |                                                          |                                                          |                                                          |                                                          |                                             | NIWA Ecot                                               | oxicology                                        |
| Analysis ID:<br>Analyzed:<br>Edit Date: | 16-0302-2229<br>26 Jun-24 11:48<br>26 Jun-24 11:46 | End<br>Ana<br>MD                                         | point: 48<br>lysis: No<br>5 Hash: 2F                     | h Survival R<br>nlinear Reg<br>6FF92B610                 | ate<br>ression (NL<br>D6BE0CFE                           | R)<br>8F75A74FE                                          | CET<br>Stat<br>F8CB Edit                                 | IS Version:<br>us Level:<br>or ID:                       | CETISv2<br>1<br>008-408-4                   | .1.4<br>407-6                                           |                                                  |
| 48h Survival                            | Rate Summary                                       |                                                          |                                                          |                                                          |                                                          | Calculate                                                | d Variate(A                                              | В)                                                       |                                             |                                                         |                                                  |
| Conc-µg/L                               | Code                                               | Count                                                    | Mean                                                     | Median                                                   | Min                                                      | Мах                                                      | Std Err                                                  | Std Dev                                                  | CV%                                         | %Effect                                                 | ΣΑ/ΣΒ                                            |
| 1.3<br>14<br>28<br>59<br>136<br>280     | D                                                  | 5<br>3<br>3<br>3<br>3<br>3<br>3                          | 0.9800<br>1.0000<br>1.0000<br>0.9667<br>0.1333<br>0.0000 | 1.0000<br>1.0000<br>1.0000<br>1.0000<br>0.0000<br>0.0000 | 0.9000<br>1.0000<br>1.0000<br>0.9000<br>0.0000<br>0.0000 | 1.0000<br>1.0000<br>1.0000<br>1.0000<br>0.4000<br>0.0000 | 0.0200<br>0.0000<br>0.0000<br>0.0333<br>0.1333<br>0.0000 | 0.0447<br>0.0000<br>0.0000<br>0.0577<br>0.2309<br>0.0000 | 4.56%<br>0.00%<br>0.00%<br>5.97%<br>173.21% | 0.00%<br>-2.04%<br>-2.04%<br>1.36%<br>86.39%<br>100.00% | 49/50<br>30/30<br>30/30<br>29/30<br>4/30<br>0/30 |
| 48h Survival                            | Rate Detail                                        |                                                          |                                                          |                                                          |                                                          |                                                          |                                                          |                                                          |                                             |                                                         |                                                  |
| Conc-µg/L                               | Code                                               | Rep 1                                                    | Rep 2                                                    | Rep 3                                                    | Rep 4                                                    | Rep 5                                                    |                                                          |                                                          |                                             |                                                         |                                                  |
| 1.3<br>14<br>28<br>59<br>136<br>280     | D                                                  | 1.0000<br>1.0000<br>1.0000<br>0.0000<br>0.0000<br>0.0000 | 1.0000<br>1.0000<br>1.0000<br>1.0000<br>0.4000<br>0.0000 | 1.0000<br>1.0000<br>1.0000<br>0.9000<br>0.0000<br>0.0000 | 1.0000                                                   | 0.9000                                                   |                                                          |                                                          |                                             |                                                         |                                                  |
| 48h Survival                            | Rate Binomials                                     |                                                          |                                                          |                                                          |                                                          |                                                          |                                                          |                                                          |                                             |                                                         |                                                  |
| Conc-µg/L                               | Code                                               | Rep 1                                                    | Rep 2                                                    | Rep 3                                                    | Rep 4                                                    | Rep 5                                                    |                                                          |                                                          |                                             |                                                         |                                                  |
| 1.3<br>14<br>28<br>59<br>136<br>280     | D                                                  | 10/10<br>10/10<br>10/10<br>10/10<br>0/10<br>0/10         | 10/10<br>10/10<br>10/10<br>10/10<br>4/10<br>0/10         | 10/10<br>10/10<br>10/10<br>9/10<br>0/10<br>0/10          | 10/10                                                    | 9/10                                                     |                                                          |                                                          |                                             |                                                         |                                                  |



# Appendix I CETIS statistical analyses – Clutha

## Zinc

| CETIS Analy                                    | ytical Rep                          | oort        |                      |                          |                    |                                          |                                  |                    | R<br>T | eport<br>est Co         | Date:<br>de/ID:              |                        | 24 M<br>24.00                     | lay-24 13:4<br>)3.4 Zn / 02 | 3 (p 1 of 2)<br>2-6719-5256 |
|------------------------------------------------|-------------------------------------|-------------|----------------------|--------------------------|--------------------|------------------------------------------|----------------------------------|--------------------|--------|-------------------------|------------------------------|------------------------|-----------------------------------|-----------------------------|-----------------------------|
| Daphnia thoms                                  | oni 48-h Acu                        | ite Surviv  | al T                 | est                      |                    |                                          |                                  |                    |        |                         |                              |                        | l                                 | NIWA Eco                    | toxicology                  |
| Analysis ID: 0<br>Analyzed: 2<br>Edit Date:    | 95-4485-8179<br>24 May-24 13:       | 41 /        | End<br>Anal<br>MD5   | point:<br>ysis:<br>Hash: | 48h<br>Para<br>A16 | Survival Ra<br>ametric-Mul<br>iB6493E9BF | ite<br>tiple Compa<br>F68A2A8531 | rison<br>143B3283F | DFA    | CETI<br>Statu<br>Edito  | S Versi<br>Is Leve<br>or ID: | ion:<br>I:             | CETISv2.<br>1                     | 1.4                         |                             |
| Batch ID: 1<br>Start Date: 0<br>Ending Date: 0 | 3-2989-6792<br>7 May-24<br>9 May-24 | 1           | Test<br>Prot<br>Spec | Type:<br>ocol:<br>cies:  | Sur<br>NIW<br>Dap  | vival (48h)<br>/A SOP 10<br>ohnia thoms  | (2022)<br>oni (Water f           | lea)               |        | Analy<br>Dilue<br>Brine | yst:<br>ent:<br>e:           | Ecot<br>Cluth<br>Not / | ox Team<br>ha river<br>Applicable |                             | A                           |
| Test Length: 4                                 |                                     |             | Taxo                 | on:                      |                    |                                          |                                  |                    |        | Sour                    | ce:                          | Field                  | Collected                         |                             | Age:                        |
| Sample ID: 1                                   | 6-8019-3246<br>6 May 24             |             | Cod                  | e:<br>vrial:             | 24.0<br>Zin/       | JU3.4 Zn                                 |                                  |                    |        | Proje                   | ect:                         | Spec                   | tion made by                      |                             |                             |
| Receipt Date: 0                                | 6 May-24                            |             | CAS                  | (PC):                    | 200                | sunate                                   |                                  |                    |        | Stati                   | on:                          | Lab                    | Solution                          |                             |                             |
| Sample Age: 2                                  | 4h                                  | (           | Clier                | nt:                      | Hyd                | Irotoxy Rese                             | earch                            |                    |        |                         |                              |                        |                                   |                             |                             |
| Data Transform                                 | 1                                   | Alt Hy      | /p                   |                          |                    |                                          |                                  | NOEL               | LO     | EL                      | TOEL                         |                        | Tox Units                         | MSDu                        | PMSD                        |
| Angular (Correct                               | ted)                                | C > T       |                      |                          |                    |                                          |                                  | 225                | 505    |                         | 337.1                        |                        |                                   | 0.1328                      | 13.55%                      |
| Bonferroni Adj                                 | t Test                              |             |                      |                          |                    |                                          |                                  |                    |        |                         |                              |                        |                                   |                             |                             |
| Control v                                      | s Conc-µg                           | J/L         | df                   | Test \$                  | Stat               | Critical                                 | MSD                              | P-Type             | P-V    | alue                    | Decis                        | ion(                   | a:5%)                             |                             |                             |
| Dilution Water                                 | 119                                 |             | 6                    | -0.396                   | 69                 | 2.56                                     | 0.2103                           | CDF                | 1.0    | 000                     | Non-S                        | Signif                 | icant Effect                      |                             |                             |
|                                                | 225                                 |             | 6                    | 2.163                    |                    | 2.56                                     | 0.2103                           | CDF                | 0.1    | 028                     | Non-S                        | Signif                 | icant Effect                      |                             |                             |
|                                                | 505°<br>1080*                       |             | 6<br>6               | 6.824<br>12.49           |                    | 2.56                                     | 0.2103                           | CDF                | 3.7    | E-05<br>DE-05           | Signif                       | icant<br>icant         | Effect                            |                             |                             |
| ANOVA Table                                    |                                     |             | -                    |                          |                    |                                          |                                  |                    |        |                         |                              |                        |                                   |                             |                             |
| Source                                         | Sum Sq                              | uares       |                      | Mean                     | Squ                | are                                      | DF                               | F Stat             | P-V    | alue                    | Decis                        | ion(                   | a:5%)                             |                             |                             |
| Between                                        | 2.61111                             |             |                      | 0.652                    | 778                |                                          | 4                                | 51.62              | <1.    | DE-05                   | Signif                       | icant                  | Effect                            |                             |                             |
| Error                                          | 0.15176                             | 4           |                      | 0.012                    | 647                |                                          | 12                               | _                  |        |                         | -                            |                        |                                   |                             |                             |
| Total                                          | 2.76287                             |             |                      |                          |                    |                                          | 16                               |                    |        |                         |                              |                        |                                   |                             |                             |
| ANOVA Assum                                    | ptions Tests                        |             |                      |                          |                    |                                          |                                  |                    |        |                         |                              |                        |                                   |                             |                             |
| Attribute                                      | Test                                |             |                      |                          |                    |                                          | Test Stat                        | Critical           | P-V    | alue                    | Decis                        | ion(                   | a:1%)                             |                             |                             |
| Variance                                       | Bartlett I                          | Equality of | f Var                | iance T                  | est                |                                          |                                  |                    |        |                         | Indete                       | ermin                  | ate                               |                             |                             |
|                                                | Levene I<br>Mod Lov                 | Equality of | f Vai                | nance 1                  | rest               | Tost                                     | 3.283                            | 5.412              | 0.0    | 190<br>195              | Equal                        | Varia                  | ances                             |                             |                             |
| Distribution                                   | Anderso                             | n-Darling   | A2 1                 | lest                     | nce                | Test                                     | 0.8802                           | 3.878              | 0.0    | 242                     | Norm                         | al Dis                 | stribution                        |                             |                             |
|                                                | D'Agosti                            | no Skewn    | ess                  | Test                     |                    |                                          | 0.05141                          | 2.576              | 0.9    | 590                     | Norm                         | al Dis                 | stribution                        |                             |                             |
|                                                | Kolmogo                             | prov-Smirr  | nov [                | D Test                   |                    |                                          | 0.2059                           | 0.2405             | 0.0    | 538                     | Norm                         | al Dis                 | stribution                        |                             |                             |
|                                                | Shapiro-                            | Wilk W N    | orma                 | ality Te                 | st                 |                                          | 0.9142                           | 0.848              | 0.1    | 178                     | Norm                         | al Dis                 | stribution                        |                             |                             |
| 48h Survival Ra                                | ate Summary                         | 1           |                      |                          |                    |                                          |                                  |                    |        |                         |                              |                        |                                   |                             |                             |
| Conc-µg/L                                      | Code                                | Count       |                      | Mean                     | _                  | 95% LCL                                  | 95% UCL                          | Median             | Min    |                         | Max                          |                        | Std Err                           | CV%                         | %Effect                     |
| 2.9                                            | D                                   | 5           |                      | 0.980                    | 0                  | 0.9245                                   | 1.0000                           | 1.0000             | 0.9    | 000                     | 1.000                        | 0                      | 0.0200                            | 4.56%                       | 0.00%                       |
| 119                                            |                                     | 3           |                      | 1.000                    | U<br>7             | 1.0000                                   | 1.0000                           | 1.0000             | 1.0    | 000                     | 1.000                        | 0                      | 0.0000                            | 0.00%                       | -2.04%                      |
| 505                                            |                                     | 3           |                      | 0.533                    | 3                  | 0.7252                                   | 0.8202                           | 0.6000             | 0.0    | 000                     | 0.600                        | 0                      | 0.0555                            | 21.65%                      | 45.58%                      |
| 1080                                           |                                     | 3           |                      | 0.133                    | 3                  | 0.0000                                   | 0.5128                           | 0.1000             | 0.0    | 000                     | 0.300                        | 0                      | 0.0882                            | 114.56%                     | 86.39%                      |
| 2400                                           |                                     | 3           |                      | 0.000                    | 0                  | 0.0000                                   | 0.0000                           | 0.0000             | 0.0    | 000                     | 0.000                        | 0                      | 0.0000                            |                             | 100.00%                     |
| Angular (Correc                                | cted) Transfo                       | ormed Su    | mm                   | ary                      |                    |                                          |                                  |                    |        |                         |                              |                        |                                   |                             |                             |
| Conc-µg/L                                      | Code                                | Count       |                      | Mean                     |                    | 95% LCL                                  | 95% UCL                          | Median             | Min    | <u> </u>                | Max                          |                        | Std Err                           | CV%                         | %Effect                     |
| 2.9                                            | D                                   | 5           |                      | 1.379                    | 0                  | 1.2890                                   | 1.4700                           | 1.4120             | 1.2    | 490                     | 1.412                        | 0                      | 0.0326                            | 5.28%                       | 0.00%                       |
| 119                                            |                                     | 3           |                      | 1.412                    | 0                  | 1.4110                                   | 1.4130                           | 1.4120             | 1.4    | 120                     | 1.412                        | 0                      | 0.0000                            | 0.00%                       | -2.36%                      |
| 220                                            |                                     | 3           |                      | 0.810                    | 0                  | 0.9982                                   | 1.4050                           | 0.8861             | 0.6    | 570<br>R47              | 0.886                        | 0<br>1                 | 0.0473                            | 0.62%                       | 40.63%                      |
| 1080                                           |                                     | 3           |                      | 0.353                    | 4                  | -0.1738                                  | 0.8805                           | 0.3218             | 0.1    | 588                     | 0.579                        | 6                      | 0.1225                            | 60.05%                      | 74.38%                      |
| 2400                                           |                                     | 3           |                      | 0.158                    | 8                  | 0.1588                                   | 0.1588                           | 0.1588             | 0.1    | 588                     | 0.158                        | 8                      | 0.0000                            | 0.00%                       | 88.49%                      |
|                                                |                                     |             |                      |                          |                    |                                          |                                  |                    |        |                         |                              |                        |                                   |                             |                             |

Convergent Rounding (4 sf)

CETIS™ v2.1.4.5 (009-951-268-0)

| CETIS Ana                               | alytical Repo                  | ort                |                                        |                                           |                               |                          | Report Date:<br>Test Code/ID:                   | 24 May-24 13:43 (p 2 of 2)<br>24.003.4 Zn / 02-6719-5256 |
|-----------------------------------------|--------------------------------|--------------------|----------------------------------------|-------------------------------------------|-------------------------------|--------------------------|-------------------------------------------------|----------------------------------------------------------|
| Daphnia thor                            | nsoni 48-h Acut                | e Survival         | Test                                   |                                           |                               |                          |                                                 | NIWA Ecotoxicology                                       |
| Analysis ID:<br>Analyzed:<br>Edit Date: | 05-4485-8179<br>24 May-24 13:4 | End<br>1 And<br>MD | dpoint: 48<br>alysis: Pa<br>5 Hash: A1 | h Survival Ra<br>rametric-Mu<br>6B6493E9B | ate<br>Itiple Com<br>F68A2A85 | parison<br>3143B3283FDF/ | CETIS Version:<br>Status Level:<br>A Editor ID: | CETISv2.1.4<br>1                                         |
| 48h Survival                            | Rate Detail                    |                    |                                        |                                           |                               |                          |                                                 |                                                          |
| Conc-µg/L                               | Code                           | Rep 1              | Rep 2                                  | Rep 3                                     | Rep 4                         | Rep 5                    |                                                 |                                                          |
| 2.9                                     | D                              | 1.0000             | 1.0000                                 | 1.0000                                    | 0.9000                        | 1.0000                   |                                                 |                                                          |
| 119                                     |                                | 1.0000             | 1.0000                                 | 1.0000                                    |                               |                          |                                                 |                                                          |
| 225                                     |                                | 0.9000             | 0.9000                                 | 0.8000                                    |                               |                          |                                                 |                                                          |
| 505                                     |                                | 0.6000             | 0.6000                                 | 0.4000                                    |                               |                          |                                                 |                                                          |
| 1080                                    |                                | 0.0000             | 0.1000                                 | 0.3000                                    |                               |                          |                                                 |                                                          |
| 2400                                    |                                | 0.0000             | 0.0000                                 | 0.0000                                    |                               |                          |                                                 |                                                          |
| Angular (Cor                            | rected) Transfor               | med Detail         | <b>D</b>                               | <b>D</b> 0                                |                               | <b>D C</b>               |                                                 |                                                          |
| Conc-µg/L                               | Code                           | Rep 1              | Rep 2                                  | Rep 3                                     | 1 2490                        | Rep 5                    |                                                 |                                                          |
| 119                                     | U                              | 1.4120             | 1.4120                                 | 1.4120                                    | 1.2450                        | 1.4120                   |                                                 |                                                          |
| 225                                     |                                | 1.2490             | 1.2490                                 | 1,1070                                    |                               |                          |                                                 |                                                          |
| 505                                     |                                | 0.8861             | 0.8861                                 | 0.6847                                    |                               |                          |                                                 |                                                          |
| 1080                                    |                                | 0.1588             | 0.3218                                 | 0.5796                                    |                               |                          |                                                 |                                                          |
| 2400                                    |                                | 0.1588             | 0.1588                                 | 0.1588                                    |                               |                          |                                                 |                                                          |
| 48h Survival                            | Rate Binomials                 |                    |                                        |                                           |                               |                          |                                                 |                                                          |
| Conc-µg/L                               | Code                           | Rep 1              | Rep 2                                  | Rep 3                                     | Rep 4                         | Rep 5                    |                                                 |                                                          |
| 2.9                                     | D                              | 10/10              | 10/10                                  | 10/10                                     | 9/10                          | 10/10                    |                                                 |                                                          |
| 119                                     |                                | 10/10              | 10/10                                  | 10/10                                     |                               |                          |                                                 |                                                          |
| 225                                     |                                | 9/10               | 9/10                                   | 8/10                                      |                               |                          |                                                 |                                                          |
| 505                                     |                                | 6/10               | 6/10                                   | 4/10                                      |                               |                          |                                                 |                                                          |
| 1080                                    |                                | 0/10               | 1/10                                   | 3/10                                      |                               |                          |                                                 |                                                          |
| 2400                                    |                                | 0/10               | 0/10                                   | 0/10                                      |                               |                          |                                                 |                                                          |
| Graphics                                |                                |                    |                                        |                                           |                               |                          |                                                 |                                                          |
| 1.0 T F                                 |                                |                    |                                        |                                           |                               |                          |                                                 | ŧ                                                        |
| 0.9 -                                   | •                              |                    |                                        |                                           |                               | 0.20 -                   |                                                 |                                                          |
| 0.8 -                                   |                                |                    |                                        |                                           | •                             | 0.15 -                   |                                                 |                                                          |
| <b>2</b> 0.7 -                          |                                |                    |                                        |                                           |                               | 0.10 -                   |                                                 |                                                          |
| 0.6 -                                   |                                |                    |                                        |                                           |                               | <b>8</b> 0.05 -          |                                                 |                                                          |
| 0.5 -                                   |                                |                    | •                                      |                                           |                               | Y NO                     |                                                 |                                                          |
| S 0.4 -                                 |                                |                    |                                        |                                           |                               | 5 0.00 -                 | /                                               |                                                          |
| <b>6</b> 0.3 -                          |                                |                    | г                                      |                                           |                               | -0.05 -                  |                                                 |                                                          |
| 0.2 -                                   |                                |                    |                                        |                                           |                               | -0.10 -                  |                                                 |                                                          |
| 0.1 -                                   |                                |                    |                                        | •                                         |                               | -0.15 -                  | • •                                             |                                                          |
| 0.0 -                                   |                                |                    |                                        | <u> </u>                                  | _                             | -0.20 -                  |                                                 |                                                          |
| 2                                       | .9 D 119                       | 225                | 505                                    | 1080 240                                  | 00                            | -1                       | .5 -1.0 -0.5                                    | 0.0 0.5 1.0 1.5                                          |
|                                         |                                | Conc-µ             | ig/L                                   |                                           |                               |                          | R                                               | ankits                                                   |
|                                         |                                |                    |                                        |                                           |                               |                          |                                                 |                                                          |

CETIS™ v2.1.4.5 (009-951-268-0)

| CETIS                                     | Analyti                                         | cal Repo                     | ort                  |                                                   |                                             |                                 |                   | R<br>T | eport<br>est Co                | Date:<br>ode/ID:                       | 24<br>24.                                                  | May-24 13:4<br>003.4 Zn / 0 | 43 (p 1 of 3)<br>2-6719-5256 |
|-------------------------------------------|-------------------------------------------------|------------------------------|----------------------|---------------------------------------------------|---------------------------------------------|---------------------------------|-------------------|--------|--------------------------------|----------------------------------------|------------------------------------------------------------|-----------------------------|------------------------------|
| Daphni                                    | a thomsoni                                      | i 48-h Acute                 | Surviva              | Test                                              |                                             |                                 |                   |        |                                |                                        |                                                            | NIWA Eco                    | toxicology                   |
| Analysi<br>Analyze<br>Edit Da             | sID: 16-3<br>ed: 24 M<br>te:                    | 085-5703<br>May-24 13:41     | Er<br>I Ar<br>M      | ndpoint: 48h<br>nalysis: Nor<br>D5 Hash: A10      | n Survival Ra<br>nlinear Regr<br>6B6493E9BI | ate<br>ession (NLI<br>F68A2A853 | R)<br>3143B3283FI | DFA    | CET<br>State<br>Edite          | IS Version<br>us Level:<br>or ID:      | n: CETISv<br>1                                             | 2.1.4                       |                              |
| Batch II<br>Start Da<br>Ending<br>Test Le | D: 13-2<br>ate: 07 M<br>Date: 09 M<br>ngth: 48h | 989-6792<br>Nay-24<br>Nay-24 | Te<br>Pr<br>St<br>Ta | stType:Su<br>otocol:NIV<br>pecies:Da<br>xon:      | rvival (48h)<br>VA SOP 10<br>phnia thoms    | (2022)<br>oni (Water            | flea)             |        | Anal<br>Dilue<br>Brine<br>Sour | yst: Ec<br>ent: Cl<br>e: No<br>rce: Fi | cotox Team<br>utha river<br>ot Applicable<br>eld Collected | 1                           | Age:                         |
| Sample<br>Sample<br>Receipt<br>Sample     | D: 16-8<br>Date: 06 M<br>Date: 06 M<br>Age: 24h | 019-3246<br>Nay-24<br>Nay-24 | Co<br>Mi<br>Ci       | ode: 24.<br>aterial: Zin<br>AS (PC):<br>ient: Hyd | 003.4 Zn<br>c sulfate<br>drotoxy Rese       | earch                           |                   |        | Proje<br>Sour<br>Stati         | ect: Sp<br>rce: So<br>on: La           | becial Studie<br>blution made<br>ab Solution               | s<br>by NIWA                |                              |
| Non-Lir                                   | near Regres                                     | ssion Optio                  | ns                   |                                                   |                                             |                                 |                   |        |                                |                                        |                                                            |                             |                              |
| Model                                     | Name and F                                      | unction                      |                      |                                                   |                                             | Weightin                        | g Function        |        |                                | PTBS F                                 | unction                                                    | X Trans                     | Y Trans                      |
| 3P Log-                                   | Logistic: µ=                                    | α/[1+[x/δ]^γ]                |                      |                                                   |                                             | Binomial                        | [ω=n/[p·q]]       |        |                                | Off [µ*=                               | μ]                                                         | None                        | None                         |
| Regres                                    | sion Summ                                       | ary                          |                      |                                                   |                                             |                                 |                   |        |                                |                                        |                                                            |                             |                              |
| Iters                                     | LL                                              | AICc                         | BIC                  | Adj R2                                            | PMSD                                        | Thresh                          | Optimize          | F St   | tat                            | P-Value                                | Decision                                                   | η(α:5%)                     |                              |
| 10                                        | -16.95                                          | 41.4                         | 42.89                | 0.8282                                            | 3.01%                                       | 0.9855                          | Yes               | 0.78   | 313                            | 0.5238                                 | Non-Sigr                                                   | hificant Lack               | -of-Fit                      |
| Point E                                   | stimates                                        |                              |                      |                                                   |                                             |                                 |                   |        |                                |                                        |                                                            |                             |                              |
| Level                                     | µg/L                                            | 95% LCL                      | 95% UC               | L                                                 |                                             |                                 |                   |        |                                |                                        |                                                            |                             |                              |
| LC5                                       | 186.5                                           |                              | 246.8                |                                                   |                                             |                                 |                   |        |                                |                                        |                                                            |                             |                              |
| LC10                                      | 242.7                                           | 124.4                        | 311.2                |                                                   |                                             |                                 |                   |        |                                |                                        |                                                            |                             |                              |
| LC15                                      | 285.7                                           | 180.5                        | 360.3                |                                                   |                                             |                                 |                   |        |                                |                                        |                                                            |                             |                              |
| 1.025                                     | 323                                             | 224.3                        | 402.0                |                                                   |                                             |                                 |                   |        |                                |                                        |                                                            |                             |                              |
| LC20                                      | 456.3                                           | 365.5                        | 555.4                |                                                   |                                             |                                 |                   |        |                                |                                        |                                                            |                             |                              |
| LC50                                      | 526.4                                           | 432.1                        | 641.3                |                                                   |                                             |                                 |                   |        |                                |                                        |                                                            |                             |                              |
| Regres                                    | sion Param                                      | eters                        |                      |                                                   |                                             |                                 |                   |        |                                |                                        |                                                            |                             |                              |
| Parame                                    | ter                                             | Estimate                     | Std Erro             | or 95% LCL                                        | 95% UCL                                     | t Stat                          | P-Value           | Dec    | ision                          | (a:5%)                                 |                                                            |                             |                              |
| a                                         |                                                 | 0.9855                       | 0.01405              | 0.9559                                            | 1 0 1 5                                     | 70.13                           | <1.0E-05          | Siar   | nifican                        | t Paramet                              | er                                                         |                             |                              |
| v                                         |                                                 | 2.838                        | 0.4606               | 1.866                                             | 3.81                                        | 6.161                           | 1.0E-05           | Siar   | nifican                        | t Paramet                              | er                                                         |                             |                              |
| ō                                         |                                                 | 526.4                        | 49.1                 | 422.8                                             | 630                                         | 10.72                           | <1.0E-05          | Sigr   | nifican                        | t Paramet                              | er                                                         |                             |                              |
| ANOVA                                     | Table                                           |                              |                      |                                                   |                                             |                                 |                   |        |                                |                                        |                                                            |                             |                              |
| Source                                    |                                                 | Sum Squa                     | ares M               | ean Square                                        | DF                                          | F Stat                          | P-Value           | Dec    | ision                          | (α:5%)                                 |                                                            |                             |                              |
| Model                                     |                                                 | 4741                         | 15                   | 80                                                | 3                                           | 1903                            | <1.0E-05          | Sigr   | nifican                        | t Effect                               |                                                            |                             |                              |
| Lack of                                   | Fit                                             | 2.024                        | 0.                   | 6748                                              | 3                                           | 0.7813                          | 0.5238            | Non    | -Signi                         | ficant Lac                             | k-of-Fit                                                   |                             |                              |
| Pure Er                                   | ror                                             | 12.09                        | 0.                   | 3636                                              | 14                                          |                                 |                   |        |                                |                                        |                                                            |                             |                              |
| Residua                                   | al                                              | 14.11                        | 0.                   | 3303                                              | 17                                          |                                 |                   |        |                                |                                        |                                                            |                             |                              |
| Residu                                    | al Analysis                                     |                              |                      |                                                   |                                             |                                 |                   |        |                                |                                        |                                                            |                             |                              |
| Attribut                                  | e                                               | Method                       |                      |                                                   | Test Stat                                   | Critical                        | P-Value           | Dec    | ision                          | (α:5%)                                 |                                                            |                             |                              |
| Model F                                   | it                                              | Likelihood                   | Ratio GO             | F Test                                            | 12.98                                       | 27.59                           | 0.7374            | Non    | -Signi                         | ficant Het                             | erogeneity                                                 |                             |                              |
| Varian                                    |                                                 | Pearson C                    | ni-Sq GO             | F Test                                            | 14.11                                       | 27.59                           | 0.6590            | Non    | -Signi                         | Ticant Hete                            | erogeneity                                                 |                             |                              |
| Variano                                   | e                                               | Mod Lever                    | ne Equalit           | y or variance                                     | 0.6852                                      | 3.087                           | 0.6481            | Equ    | al var                         | Iances                                 | tion                                                       |                             |                              |
| Distribu                                  | uun                                             | Shapire W                    | Daning A.            | z rest<br>mality Test                             | 0.098                                       | 2.492                           | 0.0219            | Non    | mal Di                         | iai Distribution                       | non                                                        |                             |                              |
| Overdis                                   | persion                                         | Tarone C(                    | a) Overdis           | spersion Test                                     | 1.043                                       | 1.645                           | 0.1485            | Non    | -Siani                         | ficant Ove                             | rdispersion                                                |                             |                              |
|                                           |                                                 |                              | ,                    |                                                   |                                             |                                 |                   |        | 2.1                            |                                        |                                                            |                             |                              |
|                                           |                                                 |                              |                      |                                                   |                                             |                                 |                   |        |                                |                                        |                                                            |                             |                              |

CETIS™ v2.1.4.5 (009-951-268-0)

| CETIS And                                                                                  | alytical Repo                   | ort                                                                      |                                                                                                 |                                                                                                        |                                                                             |                                                                             | Report<br>Test C                                         | Date:<br>ode/ID:                                         | 24 I<br>24.0                                 | May-24 13:4<br>03.4 Zn / 02                              | 3 (p 2 of 3)<br>-6719-5256                       |
|--------------------------------------------------------------------------------------------|---------------------------------|--------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------|-----------------------------------------------------------------------------|----------------------------------------------------------|----------------------------------------------------------|----------------------------------------------|----------------------------------------------------------|--------------------------------------------------|
| Daphnia thor                                                                               | nsoni 48-h Acute                | Survival                                                                 | Test                                                                                            |                                                                                                        |                                                                             |                                                                             |                                                          |                                                          |                                              | NIWA Ecot                                                | toxicology                                       |
| Analysis ID:<br>Analyzed:<br>Edit Date:                                                    | 16-3085-5703<br>24 May-24 13:41 | En<br>An<br>MD                                                           | dpoint: 48<br>alysis: No<br>05 Hash: A1                                                         | h Survival R<br>onlinear Reg<br>6B6493E9B                                                              | ate<br>ression (NL<br>F68A2A85                                              | R)<br>3143B3283F                                                            | CET<br>Stat<br>DFA Edit                                  | IS Version:<br>us Level:<br>or ID:                       | CETISv2<br>1                                 | .1.4                                                     |                                                  |
| 48h Survival                                                                               | Rate Summary                    |                                                                          |                                                                                                 |                                                                                                        |                                                                             | Calculate                                                                   | d Variate(A                                              | /B)                                                      |                                              |                                                          |                                                  |
| Conc-µg/L                                                                                  | Code                            | Count                                                                    | Mean                                                                                            | Median                                                                                                 | Min                                                                         | Мах                                                                         | Std Err                                                  | Std Dev                                                  | CV%                                          | %Effect                                                  | ΣΑ/ΣΒ                                            |
| 2.9<br>119<br>225<br>505<br>1080<br>2400<br>48h Survival<br>Conc-µg/L<br>2.9<br>119<br>225 | D<br>Rate Detail<br>Code<br>D   | 5<br>3<br>3<br>3<br>3<br>3<br><b>Rep 1</b><br>1.0000<br>1.0000<br>0.9000 | 0.9800<br>1.0000<br>0.8667<br>0.5333<br>0.1333<br>0.0000<br>Rep 2<br>1.0000<br>1.0000<br>0.9000 | 1.0000<br>1.0000<br>0.9000<br>0.6000<br>0.1000<br>0.0000<br><b>Rep 3</b><br>1.0000<br>1.0000<br>0.9000 | 0.9000<br>1.0000<br>0.8000<br>0.4000<br>0.0000<br>0.0000<br>Rep 4<br>0.9000 | 1.0000<br>1.0000<br>0.9000<br>0.6000<br>0.3000<br>0.0000<br>Rep 5<br>1.0000 | 0.0200<br>0.0000<br>0.0333<br>0.0667<br>0.0882<br>0.0000 | 0.0447<br>0.0000<br>0.0577<br>0.1155<br>0.1528<br>0.0000 | 4.56%<br>0.00%<br>6.66%<br>21.65%<br>114.56% | 0.00%<br>-2.04%<br>11.56%<br>45.58%<br>86.39%<br>100.00% | 49/50<br>30/30<br>26/30<br>16/30<br>4/30<br>0/30 |
| 505<br>1080<br>2400                                                                        |                                 | 0.6000<br>0.0000<br>0.0000                                               | 0.6000<br>0.1000<br>0.0000                                                                      | 0.4000<br>0.3000<br>0.0000                                                                             |                                                                             |                                                                             |                                                          |                                                          |                                              |                                                          |                                                  |
| 48h Survival                                                                               | Rate Binomials                  |                                                                          |                                                                                                 |                                                                                                        |                                                                             |                                                                             |                                                          |                                                          |                                              |                                                          |                                                  |
| Conc-µg/L                                                                                  | Code                            | Rep 1                                                                    | Rep 2                                                                                           | Rep 3                                                                                                  | Rep 4                                                                       | Rep 5                                                                       |                                                          |                                                          |                                              |                                                          |                                                  |
| 2.9<br>119<br>225<br>505<br>1080<br>2400                                                   | D                               | 10/10<br>10/10<br>9/10<br>6/10<br>0/10<br>0/10                           | 10/10<br>10/10<br>9/10<br>6/10<br>1/10<br>0/10                                                  | 10/10<br>10/10<br>8/10<br>4/10<br>3/10<br>0/10                                                         | 9/10                                                                        | 10/10                                                                       |                                                          |                                                          |                                              |                                                          |                                                  |

CETIS™ v2.1.4.5 (009-951-268-0)



Convergent Rounding (4 sf)

CETIS™ v2.1.4.5 (009-951-268-0)

# Copper

| CETIS Anal                                                 | yti                         | cal Report                   |                              |                                            |                                         |                                  |                     | Re<br>Te     | port l<br>st Co                  | Date:<br>de/ID:                         | 27 N<br>24.00                                           | 1ay-24 13:5<br>)3.4 Cu / 0 | 55 (p 1 of 3)<br>6-7607-7132 |
|------------------------------------------------------------|-----------------------------|------------------------------|------------------------------|--------------------------------------------|-----------------------------------------|----------------------------------|---------------------|--------------|----------------------------------|-----------------------------------------|---------------------------------------------------------|----------------------------|------------------------------|
| Daphnia thoms                                              | soni                        | 48-h Acute Surv              | vival T                      | est                                        |                                         |                                  |                     |              |                                  |                                         |                                                         | NIWA Eco                   | toxicology                   |
| Analysis ID:<br>Analyzed:<br>Edit Date:                    | 14-2<br>27 N                | 862-3054<br>lay-24 13:55     | End<br>Anal<br>MD5           | point: 48h<br>lysis: Par<br>i Hash: 685    | Survival Ra<br>ametric-Mul<br>60BC405F8 | ate<br>tiple Compa<br>35A2458FD7 | irison<br>72874CB5B | 6A9          | CETI<br>Statu<br>Edito           | S Version<br>s Level:<br>r ID:          | : CETISv2.<br>1                                         | 1.4                        |                              |
| Batch ID:<br>Start Date:<br>Ending Date:<br>Test Length:   | 17-3<br>02 N<br>04 N<br>48h | 956-0696<br>lay-24<br>lay-24 | Test<br>Prot<br>Spec<br>Taxo | Type: Sur<br>ocol: NIV<br>cies: Dap<br>on: | vival (48h)<br>VA SOP 10<br>ohnia thoms | (2022)<br>oni (Water fi          | lea)                |              | Analy<br>Dilue<br>Brine<br>Sourc | rst: Eco<br>nt: Clu<br>: Noi<br>ce: Fie | otox Team<br>itha river<br>t Applicable<br>Id Collected |                            | Age:                         |
| Sample ID:<br>Sample Date:<br>Receipt Date:<br>Sample Age: | 10-6<br>01 M<br>01 M<br>24h | 877-4232<br>lay-24<br>lay-24 | Cod<br>Mate<br>CAS<br>Clier  | e: 24.0<br>erial: Cop<br>(PC):<br>nt: Hyd  | 003.4 Cu<br>oper<br>Irotoxy Rese        | earch                            |                     |              | Proje<br>Soure<br>Static         | ct: Spo<br>ce: Sol<br>on: Lat           | ecial Studies<br>lution made b<br>o Solution            | y NIWA                     |                              |
| Data Transform                                             | n                           | Alt                          | Нур                          |                                            |                                         |                                  | NOEL                | LOE          | L                                | TOEL                                    | Tox Units                                               | MSDu                       | PMSD                         |
| Angular (Correc                                            | cted)                       | C >                          | т                            |                                            |                                         |                                  | 22.5                | 50.5         |                                  | 33.71                                   |                                                         | 0.1229                     | 12.54%                       |
| Bonferroni Adj                                             | j t Te                      | st                           |                              |                                            |                                         |                                  |                     |              |                                  |                                         |                                                         |                            |                              |
| Control                                                    | vs                          | Conc-µg/L                    | df                           | Test Stat                                  | Critical                                | MSD                              | P-Type              | P-Va         | lue                              | Decision                                | (α:5%)                                                  |                            |                              |
| Dilution Water                                             |                             | 2.2                          | 6                            | 0.2906                                     | 2.624                                   | 0.1962                           | CDF                 | 1.000        | 00                               | Non-Sign                                | ificant Effect                                          |                            |                              |
|                                                            |                             | 4.4                          | 6                            | -0.436                                     | 2.624                                   | 0.1962                           | CDF                 | 1.000        | 00                               | Non-Sign                                | ificant Effect                                          |                            |                              |
|                                                            |                             | 10.3                         | 6                            | -0.430                                     | 2.024                                   | 0.1902                           | CDF                 | 0.110        | 0                                | Non-Sign                                | ifficant Effect                                         |                            |                              |
|                                                            |                             | 50.5*                        | 6                            | 14.87                                      | 2.624                                   | 0.1962                           | CDF                 | <1.0         | 5-05                             | Significar                              | nt Effect                                               |                            |                              |
|                                                            |                             |                              | -                            |                                            |                                         |                                  |                     |              |                                  |                                         |                                                         |                            |                              |
| ANOVA Table                                                |                             |                              |                              |                                            |                                         |                                  | E 61-1              | <b>D</b> 1/- |                                  |                                         |                                                         |                            |                              |
| Source                                                     |                             | Sum Squares                  |                              | Mean Squ                                   | lare                                    |                                  | F Stat              | P-Va         | Tue                              | Decision                                | i(α:5%)                                                 |                            |                              |
| Between                                                    |                             | 3.11472                      |                              | 0.022944                                   | ,                                       | 5                                | 59.44               | <1.0         | 2-05                             | Significal                              | IT Effect                                               |                            |                              |
| Total                                                      |                             | 3.26144                      |                              | 0.0104602                                  |                                         | 19                               | _                   |              |                                  |                                         |                                                         |                            |                              |
| ANOVA Assum                                                | nptio                       | ns Tests                     |                              |                                            |                                         |                                  |                     |              |                                  |                                         |                                                         |                            |                              |
| Attribute                                                  |                             | Test                         |                              |                                            |                                         | Test Stat                        | Critical            | P-Va         | lue                              | Decision                                | ı(α:1%)                                                 |                            |                              |
| Variance                                                   |                             | Bartlett Equality            | of Va                        | iance Test                                 |                                         |                                  |                     |              |                                  | Indeterm                                | inate                                                   |                            |                              |
|                                                            |                             | Levene Equality              | of Va                        | riance Test                                |                                         | 3.979                            | 4.695               | 0.018        | 37                               | Equal Va                                | riances                                                 |                            |                              |
|                                                            |                             | Mod Levene Eq                | uality o                     | of Variance                                | Test                                    | 1.966                            | 6.632               | 0.188        | 36                               | Equal Va                                | riances                                                 |                            |                              |
| Distribution                                               |                             | Anderson-Darlin              | ig A2 1                      | Fest                                       |                                         | 1.608                            | 3.878               | 1.2E-        | -05                              | Non-Norr                                | nal Distributio                                         | on                         |                              |
|                                                            |                             | D'Agostino Kurt              | osis Te                      | est                                        |                                         | 1.78                             | 2.576               | 0.075        | 51                               | Normal D                                | Distribution                                            |                            |                              |
|                                                            |                             | D'Agostino Skev              | whess<br>rean K              | 1 est<br>2 Omnibue 1                       | Teet                                    | 1.407                            | 2.570               | 0.155        | 94<br>30                         | Normal L                                | Distribution                                            |                            |                              |
|                                                            |                             | Kolmogorov-Sm                | irnov [                      | ) Test                                     | rest                                    | 0.3                              | 0.2235              | 5.0E         | -05                              | Non-Norr                                | nal Distributio                                         | on                         |                              |
|                                                            |                             | Shapiro-Wilk W               | Norma                        | ality Test                                 |                                         | 0.86                             | 0.866               | 0.007        | 79                               | Non-Norr                                | mal Distributio                                         | on                         |                              |
| 48h Survival R                                             | ate                         | Summary                      |                              |                                            |                                         |                                  |                     |              |                                  |                                         |                                                         |                            |                              |
| Conc-µg/L                                                  |                             | Code Cou                     | int                          | Mean                                       | 95% LCL                                 | 95% UCL                          | Median              | Min          |                                  | Мах                                     | Std Err                                                 | CV%                        | %Effect                      |
| 0.25                                                       |                             | D 5                          |                              | 0.9800                                     | 0.9245                                  | 1.0000                           | 1.0000              | 0.900        | 00                               | 1.0000                                  | 0.0200                                                  | 4.56%                      | 0.00%                        |
| 2.2                                                        |                             | 3                            |                              | 0.9667                                     | 0.8232                                  | 1.0000                           | 1.0000              | 0.900        | 00                               | 1.0000                                  | 0.0333                                                  | 5.97%                      | 1.36%                        |
| 4.4                                                        |                             | 3                            |                              | 1.0000                                     | 1.0000                                  | 1.0000                           | 1.0000              | 1.000        | 00                               | 1.0000                                  | 0.0000                                                  | 0.00%                      | -2.04%                       |
| 10.3                                                       |                             | 3                            |                              | 1.0000                                     | 1.0000                                  | 1.0000                           | 1.0000              | 1.000        | 00                               | 1.0000                                  | 0.0000                                                  | 0.00%                      | -2.04%                       |
| 22.5                                                       |                             | 3                            |                              | 0.8667                                     | 0.4872                                  | 1.0000                           | 0.9000              | 0.700        | 00                               | 1.0000                                  | 0.0882                                                  | 17.63%                     | 11.56%                       |
| 50.5                                                       |                             | 3                            |                              | 0.0667                                     | 0.0000                                  | 0.2101                           | 0.1000              | 0.000        | 00                               | 0.1000                                  | 0.0333                                                  | 86.60%                     | 93.20%                       |
|                                                            |                             |                              |                              |                                            |                                         |                                  |                     |              |                                  |                                         |                                                         |                            |                              |

Convergent Rounding (4 sf)

CETIS™ v2.1.4.5 (009-951-268-0)

| CETIS Ana                               | alytical Rep                   | ort                |                                         |                                              |                                  |                     | Repor<br>Test C       | t Date:<br>Code/ID:                   | 27<br>24.0   | May-24 13:5<br>03.4 Cu / 0 | 56 (p 2 of 3)<br>6-7607-7132 |
|-----------------------------------------|--------------------------------|--------------------|-----------------------------------------|----------------------------------------------|----------------------------------|---------------------|-----------------------|---------------------------------------|--------------|----------------------------|------------------------------|
| Daphnia thor                            | msoni 48-h Acut                | e Survival         | Test                                    |                                              |                                  |                     |                       |                                       |              | NIWA Eco                   | toxicology                   |
| Analysis ID:<br>Analyzed:<br>Edit Date: | 14-2862-3054<br>27 May-24 13:5 | Eno<br>5 Ana<br>MD | dpoint: 48<br>alysis: Pa<br>95 Hash: 68 | h Survival Ra<br>arametric-Mul<br>560BC405F8 | ate<br>tiple Compa<br>35A2458FD7 | irison<br>72874CB5E | CE<br>Sta<br>16A9 Edi | TIS Version:<br>tus Level:<br>tor ID: | CETISV2<br>1 | 2.1.4                      |                              |
| Angular (Cor                            | rected) Transfor               | med Summ           | nary                                    |                                              |                                  |                     |                       |                                       |              |                            |                              |
| Conc-µg/L                               | Code                           | Count              | Mean                                    | 95% LCL                                      | 95% UCL                          | Median              | Min                   | Max                                   | Std Err      | CV%                        | %Effect                      |
| 0.25                                    | D                              | 5                  | 1.3790                                  | 1.2890                                       | 1.4700                           | 1.4120              | 1.2490                | 1.4120                                | 0.0326       | 5.28%                      | 0.00%                        |
| 2.2                                     |                                | 3                  | 1.3580                                  | 1.1240                                       | 1.5910                           | 1.4120              | 1.2490                | 1.4120                                | 0.0543       | 6.93%                      | 1.58%                        |
| 4.4                                     |                                | 3                  | 1.4120                                  | 1.4110                                       | 1.4130                           | 1.4120              | 1.4120                | 1.4120                                | 0.0000       | 0.00%                      | -2.36%                       |
| 10.3                                    |                                | 3                  | 1.4120                                  | 1.4110                                       | 1.4130                           | 1.4120              | 1.4120                | 1.4120                                | 0.0000       | 0.00%                      | -2.36%                       |
| 22.0<br>50.5                            |                                | 3                  | 0.2674                                  | 0.0903                                       | 0.5012                           | 0.3218              | 0.9912                | 0.3218                                | 0.1225       | 17.43%<br>35.18%           | 11.75%<br>80.61%             |
| 48h Survival                            | Rate Detail                    | -                  | 0.2014                                  | 0.0007                                       | 0.0012                           | 0.0210              | 0.1000                | 0.0210                                | 0.0040       | 00.1070                    | 00.0170                      |
| Conc-ua/L                               | Code                           | Rep 1              | Rep 2                                   | Rep 3                                        | Rep 4                            | Rep 5               |                       |                                       |              |                            |                              |
| 0.25                                    | D                              | 1.0000             | 1.0000                                  | 1.0000                                       | 0.9000                           | 1.0000              |                       |                                       |              |                            |                              |
| 2.2                                     | 2                              | 1.0000             | 0.9000                                  | 1.0000                                       | 0.0000                           |                     |                       |                                       |              |                            |                              |
| 4.4                                     |                                | 1 0000             | 1 0000                                  | 1 0000                                       |                                  |                     |                       |                                       |              |                            |                              |
| 10.3                                    |                                | 1 0000             | 1 0000                                  | 1 0000                                       |                                  |                     |                       |                                       |              |                            |                              |
| 22.5                                    |                                | 0.7000             | 1.0000                                  | 0.9000                                       |                                  |                     |                       |                                       |              |                            |                              |
| 50.5                                    |                                | 0.1000             | 0.1000                                  | 0.0000                                       |                                  |                     |                       |                                       |              |                            |                              |
| Angular (Cor                            | rected) Transfor               | med Detai          |                                         |                                              |                                  |                     |                       |                                       |              |                            |                              |
| Conc-ug/l                               | Code                           | Rep 1              | Rep 2                                   | Rep 3                                        | Ren 4                            | Rep 5               |                       |                                       |              |                            |                              |
| 0.25                                    | D                              | 1 4120             | 1 4120                                  | 1 4120                                       | 1 2490                           | 1 4120              |                       |                                       |              |                            |                              |
| 22                                      | 0                              | 1 4120             | 1 2490                                  | 1 4120                                       | 1.2400                           | 1.4120              |                       |                                       |              |                            |                              |
| 4.4                                     |                                | 1 4120             | 1 4120                                  | 1 4120                                       |                                  |                     |                       |                                       |              |                            |                              |
| 10.3                                    |                                | 1 4120             | 1 4120                                  | 1 4120                                       |                                  |                     |                       |                                       |              |                            |                              |
| 22.5                                    |                                | 0.9912             | 1 4120                                  | 1 2490                                       |                                  |                     |                       |                                       |              |                            |                              |
| 50.5                                    |                                | 0.3218             | 0.3218                                  | 0.1588                                       |                                  |                     |                       |                                       |              |                            |                              |
| 48h Survival                            | Rate Binomials                 |                    |                                         |                                              |                                  |                     |                       |                                       |              |                            |                              |
| Conc-µg/L                               | Code                           | Rep 1              | Rep 2                                   | Rep 3                                        | Rep 4                            | Rep 5               |                       |                                       |              |                            |                              |
| 0.25                                    | D                              | 10/10              | 10/10                                   | 10/10                                        | 9/10                             | 10/10               |                       |                                       |              |                            |                              |
| 2.2                                     |                                | 10/10              | 9/10                                    | 10/10                                        |                                  |                     |                       |                                       |              |                            |                              |
| 4.4                                     |                                | 10/10              | 10/10                                   | 10/10                                        |                                  |                     |                       |                                       |              |                            |                              |
| 10.3                                    |                                | 10/10              | 10/10                                   | 10/10                                        |                                  |                     |                       |                                       |              |                            |                              |
| 22.5                                    |                                | 7/10               | 10/10                                   | 9/10                                         |                                  |                     |                       |                                       |              |                            |                              |
| 50.5                                    |                                | 1/10               | 1/10                                    | 0/10                                         |                                  |                     |                       |                                       |              |                            |                              |
| Graphics                                |                                |                    |                                         |                                              |                                  |                     |                       |                                       |              |                            |                              |
| 1.0                                     |                                |                    | _                                       |                                              |                                  | 0.20 -              |                       |                                       |              |                            | ٠                            |
| 0.9 -                                   | •                              | •                  | Ľ                                       |                                              |                                  | 0.15 -              |                       |                                       |              |                            | /                            |
| 0.8-                                    |                                |                    |                                         |                                              | _ ▼                              |                     |                       |                                       |              |                            |                              |
| 0.07                                    |                                |                    |                                         |                                              |                                  | 0.10 -              |                       |                                       |              |                            |                              |
| ate                                     |                                |                    |                                         |                                              |                                  | 0.05 -              |                       |                                       |              | <b>~••</b>                 | •                            |
| 0.6-                                    |                                |                    |                                         |                                              |                                  | 0.00                |                       |                                       |              | •                          |                              |
| · <u>2</u> 0.5 -                        |                                |                    |                                         |                                              | Ā                                | 0.00 -              |                       |                                       |              |                            |                              |
| <b>S</b> 0.4 -                          |                                |                    |                                         |                                              |                                  | -0.05 -             |                       |                                       |              |                            |                              |
| <b>6</b> 03                             |                                |                    |                                         |                                              | 0                                | 0.10                | /                     |                                       |              |                            |                              |
| <b>T</b> 0.5-                           |                                |                    |                                         |                                              |                                  | -0.10               | <u> </u>              | •                                     |              |                            |                              |
| 0.2 -                                   |                                |                    |                                         |                                              |                                  | -0.15 - 🦯           |                       |                                       |              |                            |                              |
| 0.1 -                                   |                                |                    |                                         |                                              |                                  | -0.20 -             |                       |                                       |              |                            |                              |
| 0.0 -                                   |                                |                    |                                         | ,                                            |                                  | ۲                   |                       | , <u>,</u>                            |              |                            |                              |
|                                         | 0.25 D 2.2                     | 4.4                | 10.3 2                                  | 2.5 50.5                                     |                                  |                     | -1.5 -1               | 1.0 -0.5                              | 0.0 0.       | 5 1.0                      | 1.5                          |
|                                         |                                | Conc-µ             | ıg/L                                    |                                              |                                  |                     |                       | R                                     | ankits       |                            |                              |
| Convergent Pr                           | ounding (4 sf)                 |                    |                                         | CETIST                                       | V21450                           | 09-951-269          | 8-01                  |                                       | Analyst:     | 0                          | A-                           |
| - shiring on the                        | (+ or)                         |                    |                                         | 0L110                                        | Jan                              | 25 051 200          |                       |                                       |              |                            | · · ·                        |

| CETIS                                    | Analy                                     | tical Rep                           | ort        |                             |                                 |                       |                                        |                                 |                  | F<br>T | Report<br>Fest Co               | Date:<br>de/ID:             |                                  | 27<br>24.0                                     | May-24 13:5<br>003.4 Cu / 06 | 56 (p 1 of 3)<br>6-7607-7132 |
|------------------------------------------|-------------------------------------------|-------------------------------------|------------|-----------------------------|---------------------------------|-----------------------|----------------------------------------|---------------------------------|------------------|--------|---------------------------------|-----------------------------|----------------------------------|------------------------------------------------|------------------------------|------------------------------|
| Daphni                                   | a thomso                                  | ni 48-h Acut                        | e Surv     | ival T                      | est                             |                       |                                        |                                 |                  |        |                                 |                             |                                  |                                                | NIWA Eco                     | toxicology                   |
| Analysi<br>Analyze<br>Edit Da            | sID: 15<br>ed: 27<br>te:                  | -7079-1881<br>' May-24 13:5         | 5          | End<br>Ana<br>MD5           | point:<br>lysis:<br>6 Hash:     | 48h (<br>Noni<br>6856 | Survival Ra<br>inear Regr<br>i0BC405F8 | ate<br>ession (NLI<br>15A2458FD | R)<br>)72874CB5B | 6A9    | CETI<br>Statu<br>Edito          | S Vers<br>Is Leve<br>or ID: | sion:<br>el:                     | CETISv<br>1                                    | 2.1.4                        |                              |
| Batch I<br>Start Da<br>Ending<br>Test Le | D: 17<br>ate: 02<br>Date: 04<br>ngth: 48  | -3956-0696<br>May-24<br>May-24<br>h |            | Test<br>Prot<br>Spe<br>Taxe | Type:<br>cocol:<br>cies:<br>on: | Surv<br>NIW<br>Dapt   | ival (48h)<br>A SOP 10<br>nnia thoms   | (2022)<br>oni (Water            | flea)            |        | Analy<br>Dilue<br>Brine<br>Sour | yst:<br>ent:<br>e:<br>ce:   | Ecoto<br>Cluth<br>Not A<br>Field | ox Team<br>na river<br>Applicable<br>Collected | 1                            | Age:                         |
| Sample<br>Sample<br>Receipt<br>Sample    | ID: 10<br>Date: 01<br>Date: 01<br>Age: 24 | -6877-4232<br>May-24<br>May-24<br>h |            | Cod<br>Mate<br>CAS<br>Clie  | e:<br>erial:<br>(PC):<br>nt:    | 24.00<br>Copp<br>Hydr | 03.4 Cu<br>ber<br>otoxy Rese           | earch                           |                  |        | Proje<br>Sour<br>Stati          | ect:<br>ce:<br>on:          | Spec<br>Solut<br>Lab \$          | ial Studie:<br>tion made<br>Solution           | s<br>by NIWA                 |                              |
| Non-Lir                                  | near Regr                                 | ession Opti                         | ons        |                             |                                 |                       |                                        |                                 |                  |        |                                 |                             |                                  |                                                |                              |                              |
| Model                                    | Name and                                  | I Function                          |            |                             |                                 |                       |                                        | Weightin                        | g Function       |        |                                 | PTB                         | S Fun                            | ction                                          | X Trans                      | Y Trans                      |
| 3P Log-                                  | Logistic:                                 | u=α/[1+[x/δ]^                       | <b>v</b> ] |                             |                                 |                       |                                        | Binomial                        | [ω=n/[p·q]]      |        |                                 | Off [l                      | 1*=h]                            |                                                | None                         | None                         |
| Regres                                   | sion Sum                                  | mary                                |            |                             |                                 |                       |                                        |                                 |                  |        |                                 |                             |                                  |                                                |                              |                              |
| Iters                                    | LL                                        | AICc                                | BIC        |                             | Adj R2                          | 2                     | PMSD                                   | Thresh                          | Optimize         | FS     | itat                            | P-Va                        | lue                              | Decision                                       | n(α:5%)                      |                              |
| 5                                        | -13.36                                    | 34.21                               | 35.7       |                             | 0.8309                          |                       | 2.21%                                  | 0.9856                          | Yes              | 0.5    | 387                             | 0.663                       | 35                               | Non-Sigr                                       | nificant Lack-               | -of-Fit                      |
| Point E                                  | stimates                                  |                                     |            |                             |                                 |                       |                                        |                                 |                  |        |                                 |                             |                                  |                                                |                              |                              |
| Level                                    | µg/L                                      | 95% LCL                             | . 95%      | UCL                         |                                 |                       |                                        |                                 |                  |        |                                 |                             |                                  |                                                |                              |                              |
| LC5                                      | 19.16                                     |                                     | 22.7       | 7                           |                                 |                       |                                        |                                 |                  |        |                                 |                             |                                  |                                                |                              |                              |
| LC10                                     | 21.81                                     |                                     | 25.6       | 2                           |                                 |                       |                                        |                                 |                  |        |                                 |                             |                                  |                                                |                              |                              |
| LC15                                     | 23.63                                     |                                     | 27.6       | 5                           |                                 |                       |                                        |                                 |                  |        |                                 |                             |                                  |                                                |                              |                              |
| LC20                                     | 25.1                                      | 16.13                               | 29.3       | 4                           |                                 |                       |                                        |                                 |                  |        |                                 |                             |                                  |                                                |                              |                              |
| LC25                                     | 26.38                                     | 19                                  | 30.8       | 7                           |                                 |                       |                                        |                                 |                  |        |                                 |                             |                                  |                                                |                              |                              |
| LC40                                     | 29.75                                     | 23.91                               | 35.2       | 9                           |                                 |                       |                                        |                                 |                  |        |                                 |                             |                                  |                                                |                              |                              |
| -                                        | 51.52                                     | 20.30                               | 50.0       | 2                           |                                 |                       |                                        |                                 |                  |        |                                 |                             |                                  |                                                |                              |                              |
| Regres                                   | sion Para                                 | meters                              |            |                             |                                 |                       |                                        |                                 |                  |        |                                 |                             |                                  |                                                |                              |                              |
| Parame                                   | eter                                      | Estimate                            | Std        | Error                       | 95% L(                          | CL                    | 95% UCL                                | t Stat                          | P-Value          | Dee    | cision(                         | α:5%)                       |                                  |                                                |                              |                              |
| α                                        |                                           | 0.9856                              | 0.01       | 032                         | 0.9639                          |                       | 1.007                                  | 95.47                           | <1.0E-05         | Sig    | nificant                        | t Paran                     | neter                            |                                                |                              |                              |
| Ŷ                                        |                                           | 5.769                               | 1.19       | 0                           | 3.244                           |                       | 8.294                                  | 4.82                            | 0.0002           | Sig    | nificant                        | t Paran                     | neter                            |                                                |                              |                              |
| 0                                        |                                           | 31.92                               | 2.03       | 8                           | 20.30                           |                       | 37.48                                  | 12.1                            | <1.0E-05         | Sig    | niicani                         | Paran                       | neter                            |                                                |                              |                              |
| ANOVA                                    | Table                                     |                                     |            |                             |                                 |                       |                                        |                                 |                  | _      |                                 |                             |                                  |                                                |                              |                              |
| Source                                   |                                           | Sum Squ                             | lares      | Mea                         | n Squar                         | e                     | DF                                     | F Stat                          | P-Value          | Dee    | cision(                         | α:5%)                       |                                  |                                                |                              |                              |
| Model                                    | <b>F</b> #                                | 9621                                |            | 3201                        | 05                              |                       | 3                                      | 3137                            | <1.0E-05         | Sig    | nificani                        | Effect                      |                                  | 6 F.H                                          |                              |                              |
| Lack of<br>Pure Er                       |                                           | 1.799                               |            | 0.59                        | 95<br>2                         |                       | 3                                      | 0.5387                          | 0.0030           | NO     | n-Signii                        | iicant L                    | аск-о                            | 11-FIL                                         |                              |                              |
| Residua                                  | al                                        | 17.38                               |            | 1.02                        | 2                               |                       | 17                                     |                                 |                  |        |                                 |                             |                                  |                                                |                              |                              |
| Residu                                   | al Analysi                                | ie                                  |            |                             |                                 |                       |                                        |                                 |                  |        |                                 |                             |                                  |                                                |                              |                              |
| Attribut                                 |                                           | Method                              |            |                             |                                 |                       | Toet Stat                              | Critical                        | D Value          | Dec    | cision(                         | a.2%)                       |                                  |                                                |                              |                              |
| Model F                                  | ie<br>iit                                 | Likelihoo                           | d Ratio    | GOE                         | Test                            |                       | 14.50                                  | 27.50                           | 0.6251           | Nor    | n-Signit                        | ticant F                    | letero                           | neneity                                        |                              |                              |
| moderr                                   |                                           | Pearson                             | Chi-Sa     | GOF                         | Test                            |                       | 17.38                                  | 27.59                           | 0.4290           | Nor    | n-Sianit                        | ficant F                    | letero                           | geneity                                        |                              |                              |
| Varianc                                  | е                                         | Mod Leve                            | ene Eq     | uality (                    | of Varian                       | ce                    | 0.5962                                 | 3.687                           | 0.7051           | Equ    | ual Vari                        | iances                      |                                  | ,                                              |                              |                              |
| Distribu                                 | Distribution Anderson-Darling A2 Test     |                                     |            |                             |                                 |                       | 4.186                                  | 2.492                           | <1.0E-05         | Nor    | n-Norm                          | al Dist                     | ributio                          | n                                              |                              |                              |
|                                          |                                           | Shapiro-V                           | Vilk W     | Norm                        | ality Tes                       | t                     | 0.6397                                 | 0.9044                          | <1.0E-05         | Nor    | n-Norm                          | al Dist                     | ributio                          | n                                              |                              |                              |
| Overdis                                  | persion                                   | Tarone C                            | (α) Ov     | erdisp                      | ersion Te                       | est                   | 0.8299                                 | 1.645                           | 0.2033           | Nor    | n-Signit                        | ficant (                    | Overdi                           | spersion                                       |                              |                              |
|                                          |                                           |                                     |            |                             |                                 |                       |                                        |                                 |                  |        |                                 |                             |                                  |                                                |                              |                              |
|                                          |                                           |                                     |            |                             |                                 |                       |                                        |                                 |                  |        |                                 |                             |                                  |                                                |                              |                              |

CETIS™ v2.1.4.5 (009-951-268-0)

| CETIS An                                | alytical Repo                   | ort              |                                         |                                             | Report<br>Test C                | Date:<br>ode/ID: | 27<br>24.0               | May-24 13:5<br>003.4 Cu / 06       | 6 (p 2 of 3)<br>-7607-7132 |          |            |
|-----------------------------------------|---------------------------------|------------------|-----------------------------------------|---------------------------------------------|---------------------------------|------------------|--------------------------|------------------------------------|----------------------------|----------|------------|
| Daphnia tho                             | msoni 48-h Acute                | e Survival       | Test                                    |                                             |                                 |                  |                          |                                    |                            | NIWA Eco | toxicology |
| Analysis ID:<br>Analyzed:<br>Edit Date: | 15-7079-1881<br>27 May-24 13:55 | En<br>5 An<br>MC | dpoint: 48<br>alysis: No<br>05 Hash: 68 | 8h Survival R<br>onlinear Reg<br>9560BC405F | ate<br>ression (NL<br>85A2458FE | R)<br>072874CB58 | CET<br>Stat<br>B6A9 Edit | IS Version:<br>us Level:<br>or ID: | CETISv2<br>1               | 2.1.4    |            |
| 48h Survival                            | Rate Summary                    |                  |                                         |                                             |                                 | Calculate        | d Variate(A              | /B)                                |                            |          |            |
| Conc-µg/L                               | Code                            | Count            | Mean                                    | Median                                      | Min                             | Мах              | Std Err                  | Std Dev                            | CV%                        | %Effect  | ΣΑ/ΣΒ      |
| 0.25                                    | D                               | 5                | 0.9800                                  | 1.0000                                      | 0.9000                          | 1.0000           | 0.0200                   | 0.0447                             | 4.56%                      | 0.00%    | 49/50      |
| 2.2                                     |                                 | 3                | 0.9667                                  | 1.0000                                      | 0.9000                          | 1.0000           | 0.0333                   | 0.0577                             | 5.97%                      | 1.36%    | 29/30      |
| 4.4                                     |                                 | 3                | 1.0000                                  | 1.0000                                      | 1.0000                          | 1.0000           | 0.0000                   | 0.0000                             | 0.00%                      | -2.04%   | 30/30      |
| 10.3                                    |                                 | 3                | 1.0000                                  | 1.0000                                      | 1.0000                          | 1.0000           | 0.0000                   | 0.0000                             | 0.00%                      | -2.04%   | 30/30      |
| 22.5                                    |                                 | 3                | 0.8667                                  | 0.9000                                      | 0.7000                          | 1.0000           | 0.0882                   | 0.1528                             | 17.63%                     | 11.56%   | 26/30      |
| 50.5                                    |                                 | 3                | 0.0667                                  | 0.1000                                      | 0.0000                          | 0.1000           | 0.0333                   | 0.0577                             | 86.60%                     | 93.20%   | 2/30       |
| 48h Survival                            | Rate Detail                     |                  |                                         |                                             |                                 |                  |                          |                                    |                            |          |            |
| Conc-µg/L                               | Code                            | Rep 1            | Rep 2                                   | Rep 3                                       | Rep 4                           | Rep 5            |                          |                                    |                            |          |            |
| 0.25                                    | D                               | 1.0000           | 1.0000                                  | 1.0000                                      | 0.9000                          | 1.0000           |                          |                                    |                            |          |            |
| 2.2                                     |                                 | 1.0000           | 0.9000                                  | 1.0000                                      |                                 |                  |                          |                                    |                            |          |            |
| 4.4                                     |                                 | 1.0000           | 1.0000                                  | 1.0000                                      |                                 |                  |                          |                                    |                            |          |            |
| 10.3                                    |                                 | 1.0000           | 1.0000                                  | 1.0000                                      |                                 |                  |                          |                                    |                            |          |            |
| 22.5                                    |                                 | 0.7000           | 1.0000                                  | 0.9000                                      |                                 |                  |                          |                                    |                            |          |            |
| 50.5                                    |                                 | 0.1000           | 0.1000                                  | 0.0000                                      |                                 |                  |                          |                                    |                            |          |            |
| 48h Survival                            | Rate Binomials                  |                  |                                         |                                             |                                 |                  |                          |                                    |                            |          |            |
| Conc-µg/L                               | Code                            | Rep 1            | Rep 2                                   | Rep 3                                       | Rep 4                           | Rep 5            |                          |                                    |                            |          |            |
| 0.25                                    | D                               | 10/10            | 10/10                                   | 10/10                                       | 9/10                            | 10/10            |                          |                                    |                            |          |            |
| 2.2                                     |                                 | 10/10            | 9/10                                    | 10/10                                       |                                 |                  |                          |                                    |                            |          |            |
| 4.4                                     |                                 | 10/10            | 10/10                                   | 10/10                                       |                                 |                  |                          |                                    |                            |          |            |
| 10.3                                    |                                 | 10/10            | 10/10                                   | 10/10                                       |                                 |                  |                          |                                    |                            |          |            |
| 22.5                                    |                                 | 7/10             | 10/10                                   | 9/10                                        |                                 |                  |                          |                                    |                            |          |            |

50.5

1/10

1/10

0/10

CETIS™ v2.1.4.5 (009-951-268-0)

Analyst:\_\_\_\_\_ QA:\_\_\_\_



CETIS™ v2.1.4.5 (009-951-268-0)

# Appendix J CETIS statistical analyses – Waihou

## Zinc

| CETIS Analyti                                              | cal Report                   | :                  |                             |                                                   | Re<br>Te                        | eport<br>est Co   | Date:<br>de/ID: |                        | 27 M<br>24.00                  | lay-24 13:3<br>)3.5 Zn / 1 | 35 (p 1 of 2)<br>6-7680-7646           |                |             |
|------------------------------------------------------------|------------------------------|--------------------|-----------------------------|---------------------------------------------------|---------------------------------|-------------------|-----------------|------------------------|--------------------------------|----------------------------|----------------------------------------|----------------|-------------|
| Daphnia thomson                                            | i 48-h Acute S               | urvival T          | est                         |                                                   |                                 |                   |                 |                        |                                |                            | I                                      | NIWA Eco       | otoxicology |
| Analysis ID: 20-4<br>Analyzed: 27 M<br>Edit Date:          | 181-6750<br>Nay-24 13:34     | End<br>Ana<br>MDS  | point:<br>lysis:<br>5 Hash: | 48h Survival Ra<br>Parametric-Mul<br>1A253C1D48Bl | ate<br>tiple Compa<br>DA445832E | rison<br>D5DA447D | 9A7B            | CETI<br>Statu<br>Edito | S Versio<br>Is Level<br>or ID: | on:<br>:                   | CETISv2.<br>1                          | 1.4            |             |
| Batch ID: 11-2<br>Start Date: 07 M                         | 219-0889<br>May-24           | Test<br>Prot       | Type:<br>ocol:              | Survival (48h)<br>NIWA SOP 10                     | (2022)                          |                   |                 | Analy<br>Dilue         | yst: E<br>ent: \               | Ecoto<br>Waih              | ox Team<br>ou                          |                |             |
| Ending Date: 09 M<br>Test Length: 48h                      | lay-24                       | Spe<br>Tax         | cies:<br>on:                | Daphnia thoms                                     | oni (Water f                    | lea)              |                 | Brine<br>Sour          | e: N<br>ce: F                  | Not A<br>Field             | pplicable<br>Collected                 |                | Age:        |
| Sample ID: 06-1<br>Sample Date: 06 M<br>Receipt Date: 06 M | 101-1726<br>1ay-24<br>1ay-24 | Cod<br>Mate<br>CAS | e:<br>erial:<br>(PC):       | 24.003.5 Zn<br>Zinc sulfate                       | arab                            |                   |                 | Proje<br>Sour<br>Stati | ect: S<br>ce: S<br>on: L       | Speci<br>Solut<br>Lab S    | ial Studies<br>ion made by<br>Solution | y NIWA         |             |
| Sample Age: 241                                            |                              | Cile               | nt:                         | Hydrotoxy Rese                                    | earch                           |                   |                 |                        |                                |                            |                                        |                |             |
| Data Transform                                             | A                            | lt Hyp             |                             |                                                   |                                 | NOEL              | LOE             | L                      | TOEL                           |                            | Tox Units                              | MSDu<br>0.1242 | PMSD        |
| Angular (Corrected)                                        |                              | ~1                 |                             |                                                   |                                 | 110               | 230             |                        | 103.5                          |                            |                                        | 0.1242         | 12.93%      |
| Bonterroni Adj t li                                        | est                          | -16                | Test C                      | tat Critical                                      | MED                             | Dime              | DV              | -                      | Decisi                         |                            | -E9()                                  |                |             |
| Dilution Water                                             | 116                          | 6                  | 0.5547                      | 2 466                                             | 0.1932                          | CDF               | 0.88            | nue<br>69              | Non-Si                         | ianifi                     | cant Effect                            |                |             |
|                                                            | 230*<br>500*                 | 6<br>6             | 3.443<br>8.47               | 2.466<br>2.466                                    | 0.1932<br>0.1932                | CDF               | 0.00<br>1.1E    | 95<br>-05              | Signifi<br>Signifi             | cant<br>cant               | Effect<br>Effect                       |                |             |
| ANOVA Table                                                |                              |                    |                             |                                                   |                                 |                   |                 |                        |                                |                            |                                        |                |             |
| Source                                                     | Sum Square                   | s                  | Mean                        | Square                                            | DF                              | F Stat            | P-Va            | alue                   | Decisi                         | ion(a                      | :5%)                                   |                |             |
| Between                                                    | Between 0.931589             |                    |                             | 3                                                 | 3                               | 26.98             | 4.1E            | -05                    | Signifi                        | cant                       | Effect                                 |                |             |
| Total                                                      |                              | 0.0115             | 087                         | 10                                                | _                               |                   |                 |                        |                                |                            |                                        |                |             |
| ANOVA Assumptio                                            | ons Tests                    |                    |                             |                                                   |                                 |                   |                 |                        |                                |                            |                                        |                |             |
| Attribute                                                  | Test                         |                    |                             |                                                   | Test Stat                       | Critical          | P-Va            | alue                   | Decisi                         | ion(a                      | (:1%)                                  |                |             |
| Variance                                                   | Bartlett Equa                | lity of Va         | riance Te                   | est                                               | 0.7195                          | 11.34             | 0.86            | 86                     | Equal                          | Varia                      | inces                                  |                |             |
|                                                            | Levene Equa                  | lity of Va         | riance Te                   | est<br>es Test                                    | 0.8939                          | 6.552             | 0.47            | 76                     | Equal                          | Varia                      | inces                                  |                |             |
| Distribution                                               | Anderson-Da                  | rling A2           | or variari<br>Test          | ce rest                                           | 0.09641                         | 9.78<br>3.878     | 0.95            | 92<br>49               | Norma                          | vana<br>al Dis             | tribution                              |                |             |
|                                                            | D'Agostino S                 | kewness            | Test                        |                                                   | 0.6961                          | 2.576             | 0.48            | 64                     | Norma                          | al Dis                     | tribution                              |                |             |
|                                                            | Kolmogorov-                  | Smirnov            | D Test                      |                                                   | 0.2182                          | 0.262             | 0.06            | 96                     | Norma                          | al Dis                     | tribution                              |                |             |
|                                                            | Shapiro-Wilk                 | W Norm             | ality Tes                   | t                                                 | 0.8807                          | 0.8239            | 0.05            | 95                     | Norma                          | al Dis                     | tribution                              |                |             |
| 48h Survival Rate                                          | Summary                      |                    |                             |                                                   |                                 |                   |                 |                        |                                |                            |                                        |                |             |
| Conc-µg/L                                                  | Code C                       | ount               | Mean                        | 95% LCL                                           | 95% UCL                         | Median            | Min             |                        | Max                            |                            | Std Err                                | CV%            | %Effect     |
| 3.25                                                       | D 5                          |                    | 0.9600                      | 0.8920                                            | 1.0000                          | 1.0000            | 0.90            | 00                     | 1.0000                         | )                          | 0.0245                                 | 5.71%          | 0.00%       |
| 230                                                        | 3                            |                    | 0.9333                      | 0.7699                                            | 1.0000                          | 0.9000            | 0.90            | 00                     | 0.9000                         | ,<br>)                     | 0.0333                                 | 0.19%          | 2.76%       |
| 500                                                        | 3                            |                    | 0 4000                      | 0.1516                                            | 0.6484                          | 0 4000            | 0.30            | 00                     | 0.5000                         | ,<br>)                     | 0.0577                                 | 25.00%         | 58.33%      |
| 1110                                                       | 3                            |                    | 0.0000                      | 0.0000                                            | 0.0000                          | 0.0000            | 0.00            | 00                     | 0.0000                         | )                          | 0.0000                                 |                | 100.00%     |
| 2450                                                       | 3                            |                    | 0.0000                      | 0.0000                                            | 0.0000                          | 0.0000            | 0.00            | 00                     | 0.0000                         | )                          | 0.0000                                 |                | 100.00%     |
| Angular (Correcte                                          | d) Transforme                | d Summ             | ary                         |                                                   |                                 |                   |                 |                        |                                |                            |                                        |                |             |
| Conc-µg/L                                                  | Code C                       | ount               | Mean                        | 95% LCL                                           | 95% UCL                         | Median            | Min             |                        | Мах                            |                            | Std Err                                | CV%            | %Effect     |
| 3.25                                                       | D 5                          |                    | 1.3470                      | 1.2360                                            | 1.4580                          | 1.4120            | 1.24            | 90                     | 1.4120                         | )                          | 0.0399                                 | 6.63%          | 0.00%       |
| 116                                                        | 3                            |                    | 1.3030                      | 1.0700                                            | 1.5370                          | 1.2490            | 1.24            | 90                     | 1.4120                         | )                          | 0.0543                                 | 7.22%          | 3.23%       |
| ∠30<br>500                                                 | 3                            |                    | 1.0770                      | 0./0/3                                            | 1.44/0                          | 0.9912            | 0.99            | 12                     | 1.2490                         | ,                          | 0.0860                                 | 13.82%         | 20.03%      |
| 1110                                                       | 3                            |                    | 0.0833                      | 0.4277                                            | 0.9588                          | 0.0047            | 0.57            | 90<br>88               | 0.7804                         | •                          | 0.0094                                 | 0.00%          | 49.27%      |
| 2450                                                       | 2450 3                       |                    | 0.1588                      | 0.1588                                            | 0.1588                          | 0.1588            | 0 15            | 88                     | 0.1588                         | 3                          | 0.0000                                 | 0.00%          | 88.21%      |
|                                                            | -                            |                    |                             |                                                   |                                 |                   |                 |                        |                                |                            |                                        |                |             |

Convergent Rounding (4 sf)

CETIS™ v2.1.4.5 (009-951-268-0)

| CETIS And                               | alytical Repo                   | ort                |                                          |                                           |                                 | 1                       | Report Date:<br>Test Code/ID:                   | 27 May-24 13:36 (p 2 of 2)<br>24.003.5 Zn / 16-7680-7646 |
|-----------------------------------------|---------------------------------|--------------------|------------------------------------------|-------------------------------------------|---------------------------------|-------------------------|-------------------------------------------------|----------------------------------------------------------|
| Daphnia thor                            | msoni 48-h Acute                | Survival 1         | est                                      |                                           |                                 |                         |                                                 | NIWA Ecotoxicology                                       |
| Analysis ID:<br>Analyzed:<br>Edit Date: | 20-4181-6750<br>27 May-24 13:34 | End<br>4 Ana<br>MD | lpoint: 48h<br>lysis: Par<br>5 Hash: 1A2 | n Survival Ra<br>rametric-Mu<br>253C1D48B | ate<br>Itiple Comp<br>DA4458328 | arison<br>ED5DA447D9A7E | CETIS Version:<br>Status Level:<br>B Editor ID: | CETISv2.1.4<br>1                                         |
| 48h Survival                            | Rate Detail                     |                    |                                          |                                           |                                 |                         |                                                 |                                                          |
| Conc-µg/L                               | Code                            | Rep 1              | Rep 2                                    | Rep 3                                     | Rep 4                           | Rep 5                   |                                                 |                                                          |
| 3.25                                    | D                               | 1.0000             | 0.9000                                   | 1.0000                                    | 0.9000                          | 1.0000                  |                                                 |                                                          |
| 116                                     |                                 | 0.9000             | 1.0000                                   | 0.9000                                    |                                 |                         |                                                 |                                                          |
| 230                                     |                                 | 0.9000             | 0.7000                                   | 0.7000                                    |                                 |                         |                                                 |                                                          |
| 500                                     |                                 | 0.5000             | 0.4000                                   | 0.3000                                    |                                 |                         |                                                 |                                                          |
| 1110                                    |                                 | 0.0000             | 0.0000                                   | 0.0000                                    |                                 |                         |                                                 |                                                          |
| 2450                                    |                                 | 0.0000             | 0.0000                                   | 0.0000                                    |                                 |                         |                                                 |                                                          |
| Angular (Cor                            | rected) Transfor                | med Detail         |                                          |                                           |                                 |                         |                                                 |                                                          |
| Conc-µg/L                               | Code                            | Rep 1              | Rep 2                                    | Rep 3                                     | Rep 4                           | Rep 5                   |                                                 |                                                          |
| 3.25                                    | D                               | 1.4120             | 1.2490                                   | 1.4120                                    | 1.2490                          | 1.4120                  |                                                 |                                                          |
| 116                                     |                                 | 1.2490             | 1.4120                                   | 1.2490                                    |                                 |                         |                                                 |                                                          |
| 230                                     |                                 | 1.2490             | 0.9912                                   | 0.9912                                    |                                 |                         |                                                 |                                                          |
| 500                                     |                                 | 0.7854             | 0.6847                                   | 0.5796                                    |                                 |                         |                                                 |                                                          |
| 2450                                    |                                 | 0.1588             | 0.1588                                   | 0.1588                                    |                                 |                         |                                                 |                                                          |
| 2430                                    |                                 | 0.1500             | 0.1300                                   | 0.1300                                    |                                 |                         |                                                 |                                                          |
| 48h Survival                            | Rate Binomials                  |                    |                                          |                                           |                                 |                         |                                                 |                                                          |
| Conc-µg/L                               | Code                            | Rep 1              | Rep 2                                    | Rep 3                                     | Rep 4                           | Rep 5                   |                                                 |                                                          |
| 3.25                                    | D                               | 10/10              | 9/10                                     | 10/10                                     | 9/10                            | 10/10                   |                                                 |                                                          |
| 116                                     |                                 | 9/10               | 10/10                                    | 9/10                                      |                                 |                         |                                                 |                                                          |
| 230                                     |                                 | 9/10               | //10                                     | //10                                      |                                 |                         |                                                 |                                                          |
| 1110                                    |                                 | 0/10               | 4/10                                     | 3/10                                      |                                 |                         |                                                 |                                                          |
| 2450                                    |                                 | 0/10               | 0/10                                     | 0/10                                      |                                 |                         |                                                 |                                                          |
| Graphice                                |                                 | 0/10               | 0,10                                     | 0,10                                      |                                 |                         |                                                 |                                                          |
|                                         |                                 |                    |                                          |                                           |                                 |                         |                                                 |                                                          |
| 0.9 -                                   | •                               |                    |                                          |                                           |                                 | 0.15 -                  |                                                 | •                                                        |
| 0.8-                                    |                                 |                    |                                          |                                           | _ ▼                             |                         |                                                 |                                                          |
| <b>0</b> 07                             |                                 |                    |                                          |                                           |                                 | 0.10 -                  |                                                 | •                                                        |
| Rat                                     |                                 |                    |                                          |                                           |                                 | 0.05-                   |                                                 | • • •                                                    |
| a                                       |                                 |                    |                                          |                                           |                                 | 6.00                    |                                                 |                                                          |
| 0.5-                                    |                                 | Г                  |                                          |                                           |                                 | 0.00 -                  | ••                                              | ••••                                                     |
| <u>v</u> 0.4 –                          |                                 |                    | •                                        |                                           | 6                               | 3                       |                                                 |                                                          |
| <b>6</b> 0.3 -                          |                                 | L                  |                                          |                                           |                                 | -0.05 -                 | <b>.</b> .                                      |                                                          |
| 0.2 -                                   |                                 |                    |                                          |                                           |                                 |                         | <b>.</b> .                                      |                                                          |
| 0.1 -                                   |                                 |                    |                                          |                                           |                                 | -0.10 -                 |                                                 |                                                          |
| 0.0 -                                   |                                 |                    |                                          | <u> </u>                                  |                                 | -0.15 -                 |                                                 |                                                          |
|                                         | 3.25 D 116                      | 230                | 500 11                                   | 10 2450                                   |                                 | -1.5                    | -1.0 -0.5                                       | 0.0 0.5 1.0 1.5                                          |
|                                         |                                 | Conc-u             | g/L                                      |                                           |                                 |                         | R                                               | ankits                                                   |
|                                         |                                 |                    | -                                        |                                           |                                 |                         |                                                 |                                                          |
|                                         |                                 |                    |                                          |                                           |                                 |                         |                                                 |                                                          |

CETIS™ v2.1.4.5 (009-951-268-0)

| CETIS                                | S Analyt                                                               | ical Repo                          |        |                            |                                          |                                            | R                              | eport E<br>est Cod | )ate:<br>de/ID: |                           | 27<br>24.0                   | May-24 13:3<br>)03.5 Zn / 10 | 36 (p 1 of 3)<br>5-7680-7646           |               |            |
|--------------------------------------|------------------------------------------------------------------------|------------------------------------|--------|----------------------------|------------------------------------------|--------------------------------------------|--------------------------------|--------------------|-----------------|---------------------------|------------------------------|------------------------------|----------------------------------------|---------------|------------|
| Daphni                               | a thomsor                                                              | ni 48-h Acute                      | Surv   | ival T                     | est                                      |                                            |                                |                    |                 |                           |                              |                              |                                        | NIWA Eco      | toxicology |
| Analysi<br>Analyzo<br>Edit Da        | is ID: 02-<br>ed: 27<br>ite:                                           | 3974-0228<br>May-24 13:35          | j      | End<br>Ana<br>MD5          | point: 48h<br>Iysis: Nor<br>5 Hash: 1A2  | n Survival Ra<br>nlinear Regr<br>253C1D48B | ate<br>ession (NL<br>DA4458321 | R)<br>ED5DA447D    | 9 <b>A7B</b>    | CETIS<br>Status<br>Editor | 6 Versio<br>s Level<br>r ID: | on:<br>:                     | CETISv2<br>1                           | 2.1.4         |            |
| Batch I<br>Start D                   | D: 11-<br>ate: 07                                                      | 2219-0889<br>May-24                |        | Test<br>Prot               | Type: Sur                                | vival (48h)<br>VA SOP 10                   | (2022)                         |                    |                 | Analy:<br>Diluer          | st: E<br>nt: \               | Ecoto<br>Naih                | ox Team<br>Iou                         |               |            |
| Ending<br>Test Le                    | Date: 09<br>ength: 48h                                                 | May-24<br>า                        |        | Spe<br>Taxe                | cies: Dap<br>on:                         | phnia thoms                                | oni (Water                     | flea)              |                 | Brine:<br>Sourc           | : N<br>:e: F                 | Not A<br>Field               | Applicable<br>Collected                |               | Age:       |
| Sample<br>Sample<br>Receip<br>Sample | e ID: 06-<br>e Date: 06<br>t Date: 06<br>e Age: 24h                    | 1101-1726<br>May-24<br>May-24<br>า |        | Cod<br>Mate<br>CAS<br>Clie | e: 24.<br>erial: Zin<br>(PC):<br>nt: Hyd | 003.5 Zn<br>c sulfate<br>drotoxy Rese      | earch                          |                    |                 | Projec<br>Sourc<br>Statio | ct: S<br>ce: S<br>n: L       | Spec<br>Solut<br>Lab \$      | ial Studies<br>tion made l<br>Solution | by NIWA       |            |
| Non-Li                               | near Regre<br>Name and                                                 | ession Option                      | ns     |                            |                                          |                                            | Weightin                       | a Function         |                 |                           | DTRS                         | Fun                          | ction                                  | ¥ Trans       | V Trans    |
| 3P Log                               | Logistic: µ                                                            | =α/[1+[x/δ]^v]                     |        |                            |                                          |                                            | Binomial                       | [ω=n/[p·q]]        |                 |                           | Off [µ*                      | =µ]                          | cuon                                   | None          | None       |
| Regree                               | sion Sum                                                               | mary                               |        |                            |                                          |                                            |                                |                    |                 |                           |                              |                              |                                        |               |            |
| Iters                                | 11                                                                     | AICo                               | BIC    |                            | Adi R2                                   | PMSD                                       | Thresh                         | Ontimize           | E St            | tat                       | D.Valu                       | 10                           | Decision                               | (a:5%)        |            |
| 9                                    | -17.38                                                                 | 42.26                              | 43.7   | 5                          | 0.8533                                   | 4.30%                                      | 0.9529                         | Yes                | 1.94            | 19                        | 0.1682                       | 2                            | Non-Sign                               | ificant Lack- | of-Fit     |
| Point E                              | stimates                                                               |                                    |        |                            |                                          |                                            |                                |                    |                 |                           |                              |                              |                                        |               |            |
| Level                                | µg/L                                                                   | 95% LCL                            | 95%    | UCL                        |                                          |                                            |                                |                    |                 |                           |                              |                              |                                        |               |            |
| LC5                                  | 161.8                                                                  |                                    | 206.   | 9                          |                                          |                                            |                                |                    |                 |                           |                              |                              |                                        |               |            |
| LC10                                 | 204.1                                                                  | 121.3                              | 251.   | 9                          |                                          |                                            |                                |                    |                 |                           |                              |                              |                                        |               |            |
| LC15                                 | 235.6                                                                  | 162.8                              | 286.   | 6                          |                                          |                                            |                                |                    |                 |                           |                              |                              |                                        |               |            |
| LC20                                 | 262.5                                                                  | 194.8                              | 316.   | 1                          |                                          |                                            |                                |                    |                 |                           |                              |                              |                                        |               |            |
| LC25                                 | 287                                                                    | 222.6                              | 343    |                            |                                          |                                            |                                |                    |                 |                           |                              |                              |                                        |               |            |
| LC40                                 | 356                                                                    | 296.5                              | 419.   | 1<br>0                     |                                          |                                            |                                |                    |                 |                           |                              |                              |                                        |               |            |
| LCOU                                 | 403.7                                                                  | 344                                | 413.   | 0                          |                                          |                                            |                                |                    |                 |                           |                              |                              |                                        |               |            |
| Regres                               | sion Parar                                                             | neters                             |        |                            |                                          |                                            |                                |                    |                 |                           |                              |                              |                                        |               |            |
| Parame                               | eter                                                                   | Estimate                           | Std    | Error                      | 95% LCL                                  | 95% UCL                                    | t Stat                         | P-Value            | Dec             | ision(a                   | :5%)                         |                              |                                        |               |            |
| α                                    |                                                                        | 0.9529                             | 0.01   | 943                        | 0.9119                                   | 0.9939                                     | 49.05                          | <1.0E-05           | Sigr            | nificant                  | Parame                       | eter                         |                                        |               |            |
| Ŷ                                    |                                                                        | 3.22                               | 0.48   | 4                          | 2.199                                    | 4.241                                      | 0.053                          | <1.0E-05           | Sigr            | nificant                  | Parame                       | eter                         |                                        |               |            |
| -                                    | Table                                                                  | 403.1                              | 51.4   |                            | 331.3                                    | 470                                        | 12.00                          | <1.0L-03           | Jigi            | incan                     | raiaine                      | etei                         |                                        |               |            |
| Source                               | Table                                                                  | Sum Saus                           | roe    | Моз                        | n Square                                 | DE                                         | E Stat                         | D Value            | Dec             | ision(a                   |                              |                              |                                        |               |            |
| Model                                |                                                                        | 1601                               | 1105   | 533                        | 7                                        | 3                                          | 083.6                          | <1.0E-05           | Sigr            | nificant                  | Effect                       |                              |                                        |               |            |
| Lack of                              | Fit                                                                    | 2 717                              |        | 0.00                       | ,<br>58                                  | 3                                          | 1 0/10                         | 0.1682             | Non             | -Signifi                  | cant La                      | ick-o                        | f_Fit                                  |               |            |
| Pure Er                              | TOF                                                                    | 6.507                              |        | 0.46                       | 48                                       | 14                                         | 1.040                          | 0.1002             | 1401            | , orginin                 | oant Ea                      |                              |                                        |               |            |
| Residua                              | al                                                                     | 9.224                              |        | 0.54                       | 26                                       | 17                                         |                                |                    |                 |                           |                              |                              |                                        |               |            |
| Residu                               | al Analysis                                                            | 8                                  |        |                            |                                          |                                            |                                |                    |                 |                           |                              |                              |                                        |               |            |
| Attribu                              | te                                                                     | Method                             |        |                            |                                          | Test Stat                                  | Critical                       | P-Value            | Dec             | ision(a                   | 1:5%)                        |                              |                                        |               |            |
| Model F                              | it                                                                     | Likelihood                         | Ratio  | GOF                        | Test                                     | 11.78                                      | 27.59                          | 0.8134             | Non             | -Signifi                  | cant He                      | etero                        | geneity                                |               |            |
|                                      |                                                                        | Pearson C                          | hi-Sq  | GOF                        | Test                                     | 9.224                                      | 27.59                          | 0.9330             | Non             | -Signifi                  | cant He                      | etero                        | geneity                                |               |            |
| variand                              | e                                                                      | Mod Lever                          | ie Equ | ality (                    | or variance                              | 0.5622                                     | 3.687                          | 0.7275             | Equ             | ial Varia                 | Inces                        | hu di c                      |                                        |               |            |
| Distribu                             | Distribution Anderson-Darling A2 Test<br>Shapiro-Wilk W Normality Test |                                    |        |                            |                                          | 0.9058                                     | 2.492                          | 0.0150             | Non             | Noma                      | II DISTII                    | DUTIO<br>butic               | 11<br>12                               |               |            |
| Overdis                              | persion                                                                | Tarone C(                          | a) Ove | erdisp                     | ersion Test                              | 0.9324                                     | 1.645                          | 0.0420             | Non             | -Norma<br>I-Signifi       | cant Ov                      | verdi                        | spersion                               |               |            |
|                                      |                                                                        |                                    |        |                            |                                          |                                            |                                |                    |                 |                           |                              |                              |                                        |               |            |

CETIS™ v2.1.4.5 (009-951-268-0)

| CETIS Ana                               | alytical Repo                   | ort              |                                        |                                           |                                 |                 | Report<br>Test Co | Date:<br>ode/ID:                   | 27<br>24.0   | May-24 13:3<br>)03.5 Zn / 16 | 6 (p 2 of 3)<br>-7680-7646 |
|-----------------------------------------|---------------------------------|------------------|----------------------------------------|-------------------------------------------|---------------------------------|-----------------|-------------------|------------------------------------|--------------|------------------------------|----------------------------|
| Daphnia thor                            | nsoni 48-h Acute                | Survival         | Test                                   |                                           |                                 |                 |                   |                                    |              | NIWA Ecot                    | oxicology                  |
| Analysis ID:<br>Analyzed:<br>Edit Date: | 02-3974-0228<br>27 May-24 13:35 | Enc<br>Ana<br>MD | dpoint: 48<br>alysis: No<br>5 Hash: 1A | h Survival R<br>onlinear Reg<br>253C1D48B | ate<br>ression (NL<br>DA4458321 | R)<br>ED5DA447[ | CET<br>Stat       | IS Version:<br>us Level:<br>or ID: | CETISv2<br>1 | 2.1.4                        |                            |
| 48h Survival                            | Rate Summary                    |                  |                                        |                                           |                                 | Calculate       | d Variate(A       | /B)                                |              |                              |                            |
| Conc-µg/L                               | Code                            | Count            | Mean                                   | Median                                    | Min                             | Мах             | Std Err           | Std Dev                            | CV%          | %Effect                      | ΣΑ/ΣΒ                      |
| 3.25                                    | D                               | 5                | 0.9600                                 | 1.0000                                    | 0.9000                          | 1.0000          | 0.0245            | 0.0548                             | 5.71%        | 0.00%                        | 48/50                      |
| 116                                     |                                 | 3                | 0.9333                                 | 0.9000                                    | 0.9000                          | 1.0000          | 0.0333            | 0.0577                             | 6.19%        | 2.78%                        | 28/30                      |
| 230                                     |                                 | 3                | 0.7667                                 | 0.7000                                    | 0.7000                          | 0.9000          | 0.0667            | 0.1155                             | 15.06%       | 20.14%                       | 23/30                      |
| 500                                     |                                 | 3                | 0.4000                                 | 0.4000                                    | 0.3000                          | 0.5000          | 0.0577            | 0.1000                             | 25.00%       | 58.33%                       | 12/30                      |
| 1110                                    |                                 | 3                | 0.0000                                 | 0.0000                                    | 0.0000                          | 0.0000          | 0.0000            | 0.0000                             |              | 100.00%                      | 0/30                       |
| 2450                                    |                                 | 3                | 0.0000                                 | 0.0000                                    | 0.0000                          | 0.0000          | 0.0000            | 0.0000                             |              | 100.00%                      | 0/30                       |
| 48h Survival                            | Rate Detail                     |                  |                                        |                                           |                                 |                 |                   |                                    |              |                              |                            |
| Conc-µg/L                               | Code                            | Rep 1            | Rep 2                                  | Rep 3                                     | Rep 4                           | Rep 5           |                   |                                    |              |                              |                            |
| 3.25                                    | D                               | 1.0000           | 0.9000                                 | 1.0000                                    | 0.9000                          | 1.0000          |                   |                                    |              |                              |                            |
| 116                                     |                                 | 0.9000           | 1.0000                                 | 0.9000                                    |                                 |                 |                   |                                    |              |                              |                            |
| 230                                     |                                 | 0.9000           | 0.7000                                 | 0.7000                                    |                                 |                 |                   |                                    |              |                              |                            |
| 500                                     |                                 | 0.5000           | 0.4000                                 | 0.3000                                    |                                 |                 |                   |                                    |              |                              |                            |
| 1110                                    |                                 | 0.0000           | 0.0000                                 | 0.0000                                    |                                 |                 |                   |                                    |              |                              |                            |
| 2450                                    |                                 | 0.0000           | 0.0000                                 | 0.0000                                    |                                 |                 |                   |                                    |              |                              |                            |
| 48h Survival                            | Rate Binomials                  |                  |                                        |                                           |                                 |                 |                   |                                    |              |                              |                            |
| Conc-µg/L                               | Code                            | Rep 1            | Rep 2                                  | Rep 3                                     | Rep 4                           | Rep 5           |                   |                                    |              |                              |                            |
| 3.25                                    | D                               | 10/10            | 9/10                                   | 10/10                                     | 9/10                            | 10/10           |                   |                                    |              |                              |                            |
| 116                                     |                                 | 9/10             | 10/10                                  | 9/10                                      |                                 |                 |                   |                                    |              |                              |                            |
| 230                                     |                                 | 9/10             | 7/10                                   | 7/10                                      |                                 |                 |                   |                                    |              |                              |                            |
| 500                                     |                                 | 5/10             | 4/10                                   | 3/10                                      |                                 |                 |                   |                                    |              |                              |                            |
| 1110                                    |                                 | 0/10             | 0/10                                   | 0/10                                      |                                 |                 |                   |                                    |              |                              |                            |

2450

0/10

0/10

0/10

CETIS™ v2.1.4.5 (009-951-268-0)



Convergent Rounding (4 sf)

CETIS™ v2.1.4.5 (009-951-268-0)

# Copper

| CETIS Ana                                                                    | lyti                        | cal Repo                                                                     | ort                                                              |                                                           |                                                             |                    | R                                        | eport<br>est Co                                        | Date:<br>de/ID:                                    |                                              | 27 M<br>24.00                   | ay-24 14:0<br>3.5 Cu / 1                           | )2 (p 1 of 2)<br>5-1536-4540                       |                                                                            |                  |            |
|------------------------------------------------------------------------------|-----------------------------|------------------------------------------------------------------------------|------------------------------------------------------------------|-----------------------------------------------------------|-------------------------------------------------------------|--------------------|------------------------------------------|--------------------------------------------------------|----------------------------------------------------|----------------------------------------------|---------------------------------|----------------------------------------------------|----------------------------------------------------|----------------------------------------------------------------------------|------------------|------------|
| Daphnia thom                                                                 | soni                        | 48-h Acute                                                                   | Survi                                                            | ival T                                                    | est                                                         |                    |                                          |                                                        |                                                    |                                              |                                 |                                                    |                                                    | I                                                                          | NIWA Eco         | toxicology |
| Analysis ID:<br>Analyzed:<br>Edit Date:                                      | 18-8<br>27 M                | 837-2322<br> ay-24 14:01                                                     |                                                                  | End<br>Anal<br>MD5                                        | point:<br>lysis:<br>Hash:                                   | 48h<br>Par<br>0B0  | Survival Ra<br>ametric-Mul<br>7C0191126  | ite<br>tiple Compa<br>9DEBFC61:                        | rison<br>2C1A53753                                 | B59                                          | CETI<br>Statu<br>Edito          | S Versi<br>Is Leve<br>or ID:                       | on:<br>I:                                          | CETISv2.<br>1                                                              | 1.4              |            |
| Batch ID:<br>Start Date:<br>Ending Date:<br>Test Length:                     | 20-8<br>04 M<br>06 M<br>48h | 394-3851<br>ay-24<br>ay-24                                                   |                                                                  | Test<br>Prot<br>Spec<br>Taxo                              | Type:<br>ocol:<br>cies:<br>on:                              | Sun<br>NIW<br>Dap  | vival (48h)<br>/A SOP 10<br>ohnia thomso | (2022)<br>oni (Water fl                                | ea)                                                |                                              | Analy<br>Dilue<br>Brine<br>Sour | yst:<br>ent:<br>e:<br>ce:                          | Ecot<br>Waił<br>Not /<br>Field                     | ox Team<br>nou<br>Applicable<br>I Collected                                |                  | Age:       |
| Sample ID:<br>Sample Date:<br>Receipt Date:<br>Sample Age:                   | 02-5<br>03 M<br>03 M<br>24h | 559-2325<br> ay-24<br> ay-24                                                 |                                                                  | Cod<br>Mate<br>CAS<br>Clier                               | e:<br>erial:<br>(PC):<br>nt:                                | 24.0<br>Cop<br>Hyd | 003.5 Cu<br>oper<br>irotoxy Rese         | arch                                                   |                                                    |                                              | Proje<br>Sour<br>Stati          | ect:<br>ce:<br>on:                                 | Spec<br>Solu<br>Lab                                | cial Studies<br>tion made by<br>Solution                                   | y NIWA           |            |
| Data Transfor                                                                | m                           |                                                                              | Alt H                                                            | Нур                                                       |                                                             |                    |                                          |                                                        | NOEL                                               | LOE                                          | EL                              | TOEL                                               |                                                    | Tox Units                                                                  | MSDu             | PMSD       |
| Angular (Corrected) C > T                                                    |                             |                                                                              |                                                                  |                                                           |                                                             |                    |                                          |                                                        | 21.1                                               | 48                                           |                                 | 31.82                                              |                                                    |                                                                            | 0.2037           | 21.22%     |
| Bonferroni Ad                                                                | lj t Te                     | st                                                                           |                                                                  |                                                           |                                                             |                    |                                          |                                                        |                                                    |                                              |                                 |                                                    |                                                    |                                                                            |                  |            |
| Control vs Conc-µg/L df Test Stat Critical MSD P-Type P-Value Decision(α:5%) |                             |                                                                              |                                                                  |                                                           |                                                             |                    |                                          |                                                        |                                                    |                                              |                                 |                                                    |                                                    |                                                                            |                  |            |
| Dilution Water                                                               |                             | 9.75                                                                         |                                                                  | 6                                                         | -0.091                                                      | 64                 | 2.466                                    | 0.2924                                                 | CDF                                                | 1.00                                         | 000                             | Non-S                                              | Signif                                             | icant Effect                                                               |                  |            |
|                                                                              | 21.1                        |                                                                              | 6                                                                | 1.387                                                     |                                                             | 2.466              | 0.2924                                   | CDF                                                    | 0.29                                               | 934                                          | Non-S                           | Signif                                             | icant Effect                                       |                                                                            |                  |            |
|                                                                              |                             | 48.                                                                          |                                                                  | 0                                                         | 5.04                                                        |                    | 2.400                                    | 0.2924                                                 | CDF                                                | 0.00                                         | 103                             | Signili                                            | cant                                               | Ellect                                                                     |                  |            |
| ANOVA Table                                                                  |                             |                                                                              |                                                                  |                                                           |                                                             |                    |                                          |                                                        |                                                    |                                              |                                 |                                                    |                                                    |                                                                            |                  |            |
| Source                                                                       |                             | Sum Squa                                                                     | res                                                              |                                                           | Mean                                                        | Squ                | are                                      | DF                                                     | F Stat                                             | P-V                                          | alue                            | Decis                                              | ion(                                               | α:5%)                                                                      |                  |            |
| Between                                                                      |                             | 0.988236                                                                     | 988236 0.329412                                                  |                                                           |                                                             |                    |                                          |                                                        | 12.5                                               | 0.00                                         | 010                             | Signif                                             | icant                                              | Effect                                                                     |                  |            |
| Error 0.263566<br>Total 1.2518                                               |                             |                                                                              |                                                                  |                                                           | 0.020                                                       | 3000               |                                          | 10                                                     | _                                                  |                                              |                                 |                                                    |                                                    |                                                                            |                  |            |
|                                                                              | nntio                       | ne Toete                                                                     |                                                                  |                                                           |                                                             |                    |                                          |                                                        |                                                    |                                              |                                 |                                                    |                                                    |                                                                            |                  |            |
| Attribute                                                                    | npuo                        | Toot                                                                         |                                                                  |                                                           |                                                             |                    |                                          | Toot Stat                                              | Critical                                           | рv                                           | alua                            | Desis                                              |                                                    |                                                                            |                  |            |
| Variance                                                                     |                             | Bartlett En                                                                  | uality                                                           | of Va                                                     | iance T                                                     | oet                |                                          | 3 722                                                  | 11.34                                              | 0.20                                         | 330                             | Equal                                              | Vari                                               | ances                                                                      |                  |            |
| Distribution                                                                 |                             | Levene Eq<br>Mod Leven<br>Anderson-I<br>D'Agostino<br>Kolmogoro<br>Shapiro-W | uality<br>ne Equ<br>Darlin <u>c</u><br>Skew<br>ov-Smi<br>ilk W I | of Vai<br>iality o<br>g A2 T<br>iness<br>irnov [<br>Norm: | riance T<br>of Varia<br>Test<br>Test<br>D Test<br>ality Tes | iest<br>nce i      | Test                                     | 3.001<br>0.9186<br>0.9171<br>1.231<br>0.2914<br>0.8995 | 6.552<br>9.78<br>3.878<br>2.576<br>0.262<br>0.8239 | 0.08<br>0.48<br>0.01<br>0.21<br>0.00<br>0.11 | 317<br>365<br>197<br>184<br>021 | Equal<br>Equal<br>Norma<br>Norma<br>Non-N<br>Norma | Vari<br>Vari<br>al Dis<br>al Dis<br>lorm<br>al Dis | ances<br>ances<br>stribution<br>stribution<br>al Distributio<br>stribution | 'n               |            |
| 48h Survival F                                                               | Rate                        | Summary                                                                      |                                                                  |                                                           |                                                             |                    |                                          |                                                        |                                                    |                                              |                                 |                                                    |                                                    |                                                                            |                  |            |
| Conc-µg/L                                                                    |                             | Code                                                                         | Cour                                                             | nt                                                        | Mean                                                        |                    | 95% LCL                                  | 95% UCL                                                | Median                                             | Min                                          |                                 | Мах                                                |                                                    | Std Err                                                                    | CV%              | %Effect    |
| 0.8                                                                          |                             | D                                                                            | 5                                                                |                                                           | 0.960                                                       | D                  | 0.8920                                   | 1.0000                                                 | 1.0000                                             | 0.90                                         | 000                             | 1.000                                              | D                                                  | 0.0245                                                                     | 5.71%            | 0.00%      |
| 9.75                                                                         |                             |                                                                              | 3                                                                |                                                           | 0.966                                                       | 7                  | 0.8232                                   | 1.0000                                                 | 1.0000                                             | 0.90                                         | 000                             | 1.000                                              | 0                                                  | 0.0333                                                                     | 5.97%            | -0.69%     |
| 21.1                                                                         |                             |                                                                              | 3                                                                |                                                           | 0.833                                                       | 3<br>N             | 0.3162                                   | 1.0000                                                 | 0.9000                                             | 0.00                                         | 000                             | 0.500                                              | n                                                  | 0.1202                                                                     | 24.98%<br>42.20% | 13.19%     |
| 40<br>97                                                                     |                             |                                                                              | 3                                                                |                                                           | 0.400                                                       | 0                  | 0.0000                                   | 0.0000                                                 | 0.0000                                             | 0.20                                         | 000                             | 0.000                                              | D                                                  | 0.0000                                                                     | 43.30%           | 100 00%    |
| 211                                                                          |                             |                                                                              | 3                                                                |                                                           | 0.000                                                       | D                  | 0.0000                                   | 0.0000                                                 | 0.0000                                             | 0.00                                         | 000                             | 0.000                                              | D                                                  | 0.0000                                                                     |                  | 100.00%    |
| Angular (Corr                                                                | ecter                       | I) Transform                                                                 | ned S                                                            | umm                                                       | arv                                                         |                    |                                          |                                                        |                                                    |                                              |                                 |                                                    |                                                    |                                                                            |                  |            |
| Conc-ua/L                                                                    |                             | Code                                                                         | Cour                                                             | nt                                                        | Mean                                                        |                    | 95% LCL                                  | 95% UCL                                                | Median                                             | Min                                          |                                 | Мах                                                |                                                    | Std Err                                                                    | CV%              | %Effect    |
| 0.8                                                                          |                             | D                                                                            | 5                                                                | -                                                         | 1.347                                                       | 0                  | 1.2360                                   | 1.4580                                                 | 1.4120                                             | 1.24                                         | 190                             | 1.412                                              | D                                                  | 0.0399                                                                     | 6.63%            | 0.00%      |
| 9.75                                                                         |                             |                                                                              | 3                                                                |                                                           | 1.358                                                       | D                  | 1.1240                                   | 1.5910                                                 | 1.4120                                             | 1.24                                         | 190                             | 1.412                                              | D                                                  | 0.0543                                                                     | 6.93%            | -0.81%     |
| 21.1                                                                         |                             |                                                                              | 3                                                                |                                                           | 1.182                                                       | D                  | 0.5136                                   | 1.8510                                                 | 1.2490                                             | 0.88                                         | 361                             | 1.412                                              | D                                                  | 0.1554                                                                     | 22.77%           | 12.21%     |
| 48                                                                           |                             |                                                                              | 3 0.6781 0.2167                                                  |                                                           |                                                             |                    |                                          |                                                        | 0.7854                                             | 0.46                                         | 636                             | 0.785                                              | 4                                                  | 0.1073                                                                     | 27.39%           | 49.65%     |
| 97<br>211                                                                    |                             |                                                                              | 3 0.1588 0.1588                                                  |                                                           |                                                             |                    |                                          |                                                        | 0.1588                                             | 0.15                                         | 88<br>588                       | 0.158                                              | D<br>R                                             | 0.0000                                                                     | 0.00%            | 88.21%     |
| 211                                                                          |                             |                                                                              |                                                                  |                                                           | 0.100                                                       | -                  | 0.1000                                   | 5.1500                                                 | 3.1000                                             | 0.10                                         |                                 | 0.100                                              | -                                                  | 5.0000                                                                     | 5.0070           | 50.2170    |

Convergent Rounding (4 sf)

CETIS™ v2.1.4.5 (009-951-268-0)

| CETIS Ana                               | alytical Repo                   | ort                |                                        |                                          |                                | Report Date:<br>Test Code/ID: | 27 May-24 14:02 (p 2 of 2)<br>24.003.5 Cu / 15-1536-4540 |                    |
|-----------------------------------------|---------------------------------|--------------------|----------------------------------------|------------------------------------------|--------------------------------|-------------------------------|----------------------------------------------------------|--------------------|
| Daphnia thor                            | nsoni 48-h Acute                | • Survival         | Fest                                   |                                          |                                |                               |                                                          | NIWA Ecotoxicology |
| Analysis ID:<br>Analyzed:<br>Edit Date: | 18-8837-2322<br>27 May-24 14:01 | Enc<br>I Ana<br>MD | lpoint: 48<br>Ilysis: Pa<br>5 Hash: 0B | h Survival R<br>rametric-Mu<br>07C019112 | ate<br>Itiple Comp<br>69DEBFC6 | oarison<br>312C1A53753B5      | CETIS Version:<br>Status Level:<br>9 Editor ID:          | CETISv2.1.4<br>1   |
| 48h Survival                            | Rate Detail                     |                    |                                        |                                          |                                |                               |                                                          |                    |
| Conc-µg/L                               | Code                            | Rep 1              | Rep 2                                  | Rep 3                                    | Rep 4                          | Rep 5                         |                                                          |                    |
| 0.8                                     | D                               | 1.0000             | 0.9000                                 | 1.0000                                   | 0.9000                         | 1.0000                        |                                                          |                    |
| 9.75                                    |                                 | 1.0000             | 0.9000                                 | 1.0000                                   |                                |                               |                                                          |                    |
| 21.1                                    |                                 | 1.0000             | 0.9000                                 | 0.6000                                   |                                |                               |                                                          |                    |
| 48                                      |                                 | 0.5000             | 0.2000                                 | 0.5000                                   |                                |                               |                                                          |                    |
| 97<br>211                               |                                 | 0.0000             | 0.0000                                 | 0.0000                                   |                                |                               |                                                          |                    |
| Angular (Cor                            | rected) Transfor                | med Detail         |                                        |                                          |                                |                               |                                                          |                    |
| Conc-µg/L                               | Code                            | Rep 1              | Rep 2                                  | Rep 3                                    | Rep 4                          | Rep 5                         |                                                          |                    |
| 0.8                                     | D                               | 1.4120             | 1.2490                                 | 1.4120                                   | 1.2490                         | 1.4120                        |                                                          |                    |
| 9.75                                    |                                 | 1.4120             | 1.2490                                 | 1.4120                                   |                                |                               |                                                          |                    |
| 21.1                                    |                                 | 1.4120             | 1.2490                                 | 0.8861                                   |                                |                               |                                                          |                    |
| 48                                      |                                 | 0.7854             | 0.4636                                 | 0.7854                                   |                                |                               |                                                          |                    |
| 97<br>211                               |                                 | 0.1588             | 0.1588                                 | 0.1588                                   |                                |                               |                                                          |                    |
| 48h Survival                            | Rate Binomials                  |                    |                                        |                                          |                                |                               |                                                          |                    |
| Conc.ua/l                               | Code                            | Rep 1              | Ren 2                                  | Rep 3                                    | Ren 4                          | Ren 5                         |                                                          |                    |
| 0.8                                     | D                               | 10/10              | 9/10                                   | 10/10                                    | 9/10                           | 10/10                         |                                                          |                    |
| 9.75                                    | 2                               | 10/10              | 9/10                                   | 10/10                                    | 0.10                           | 10/10                         |                                                          |                    |
| 21.1                                    |                                 | 10/10              | 9/10                                   | 6/10                                     |                                |                               |                                                          |                    |
| 48                                      |                                 | 5/10               | 2/10                                   | 5/10                                     |                                |                               |                                                          |                    |
| 97                                      |                                 | 0/10               | 0/10                                   | 0/10                                     |                                |                               |                                                          |                    |
| 211                                     |                                 | 0/10               | 0/10                                   | 0/10                                     |                                |                               |                                                          |                    |
| Graphics                                |                                 |                    |                                        |                                          |                                |                               |                                                          |                    |
| 1.0-                                    | -                               |                    |                                        |                                          |                                | 0.2 -                         |                                                          | -                  |
| 0.9 -                                   |                                 | •                  |                                        |                                          |                                |                               |                                                          |                    |
| 0.8 -                                   |                                 |                    |                                        |                                          | <b>— •</b>                     | 0.1 -                         |                                                          | ••                 |
| - 7.0 gt                                |                                 |                    |                                        |                                          |                                |                               |                                                          |                    |
| 0.6-                                    |                                 |                    |                                        |                                          |                                | 0.0 -                         |                                                          |                    |
| € 0.5-                                  |                                 | ſ                  |                                        |                                          |                                | A .                           |                                                          |                    |
| 0.4 -                                   |                                 |                    |                                        |                                          |                                | 0.1 -                         |                                                          |                    |
| <b>6</b> 0.3 -                          |                                 |                    |                                        |                                          |                                | -                             | /                                                        |                    |
| 0.2 -                                   |                                 | l                  |                                        |                                          |                                |                               |                                                          |                    |
| 0.1 -                                   |                                 |                    |                                        |                                          |                                |                               | •                                                        |                    |
| 0.0 -                                   |                                 |                    | _                                      |                                          |                                | .03.                          |                                                          |                    |
| 0.0                                     | 0.8 D 9.75                      | 21.1               | 48 9                                   | 97 211                                   |                                | -1.5                          | 5 -1.0 -0.5                                              | 0.0 0.5 1.0 1.5    |
|                                         |                                 | Conc-              | a/I                                    |                                          |                                |                               | R                                                        | ankits             |
|                                         |                                 | conc-p             | 9 L                                    |                                          |                                |                               | K                                                        |                    |
|                                         |                                 |                    |                                        |                                          |                                |                               |                                                          |                    |

CETIS™ v2.1.4.5 (009-951-268-0)

| CETIS                                   | S Analyt                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | ical Repo                     | ort              |                                           |                                                   |                                | R                | leport<br>est Co | Date:<br>de/ID:                 |                             | 27<br>24.0                   | May-24 14:0<br>003.5 Cu / 15                 | 04 (p 1 of 3)<br>5-1536-4540 |            |
|-----------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------|------------------|-------------------------------------------|---------------------------------------------------|--------------------------------|------------------|------------------|---------------------------------|-----------------------------|------------------------------|----------------------------------------------|------------------------------|------------|
| Daphn                                   | ia thomson                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | ii 48-h Acute                 | Surviva          | al Test                                   |                                                   |                                |                  |                  |                                 |                             |                              |                                              | NIWA Eco                     | toxicology |
| Analys<br>Analyz<br>Edit Da             | is ID: 15⊰<br>ed: 27 I<br>nte:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 5899-0665<br>May-24 14:02     | E<br>2 A<br>M    | ndpoint:<br>nalysis:<br>1D5 Hash:         | 48h Survival Ra<br>Nonlinear Regr<br>0B07C0191126 | ate<br>ression (NL<br>69DEBFC6 | R)<br>12C1A53753 | B59              | CETI<br>Statu<br>Edito          | S Vers<br>Is Leve<br>or ID: | ion:<br>el:                  | CETISV.<br>1                                 | 2.1.4                        |            |
| Batch I<br>Start D<br>Ending<br>Test Le | D: 20-4<br>ate: 04  <br>  Date: 06  <br>ength: 48h                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 8394-3851<br>May-24<br>May-24 | T<br>P<br>S<br>T | est Type:<br>rotocol:<br>pecies:<br>axon: | Survival (48h)<br>NIWA SOP 10<br>Daphnia thoms    | (2022)<br>soni (Water          | flea)            |                  | Analy<br>Dilue<br>Brine<br>Sour | yst:<br>ent:<br>e:<br>ce:   | Ecot<br>Waii<br>Not<br>Field | tox Team<br>hou<br>Applicable<br>I Collected | I                            | Age:       |
| Sample<br>Sample<br>Receip<br>Sample    | e ID: 02-4<br>e Date: 03  <br>t Date: 03  <br>e Age: 24h                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 5559-2325<br>May-24<br>May-24 | C<br>M<br>C<br>C | code:<br>laterial:<br>AS (PC):<br>lient:  | 24.003.5 Cu<br>Copper<br>Hydrotoxy Rese           | earch                          |                  |                  | Proje<br>Sour<br>Stati          | ect:<br>ce:<br>on:          | Spec<br>Solu<br>Lab          | cial Studie:<br>tion made<br>Solution        | s<br>by NIWA                 |            |
| Non-Li                                  | near Regre                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | ssion Optio                   | ns               |                                           |                                                   |                                | _                |                  |                                 |                             |                              |                                              |                              |            |
| Model                                   | Name and                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | Function                      |                  |                                           |                                                   | Weightin                       | ng Function      |                  |                                 | PTBS                        | Fun                          | nction                                       | X Trans                      | Y Trans    |
| 3P Log                                  | -Logistic: µ:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | =α/[1+[x/o]^γ]                |                  |                                           |                                                   | Binomiai                       | [ω=n/[p·q]]      |                  |                                 | ΟΠ[μ                        | r=h]                         |                                              | None                         | None       |
| Regres                                  | sion Sumr                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | nary                          |                  |                                           |                                                   |                                |                  |                  |                                 |                             |                              |                                              |                              |            |
| Iters                                   | LL                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | AICc                          | BIC              | Adj Ra                                    | 2 PMSD                                            | Thresh                         | Optimize         | FS               | tat                             | P-Val                       | ue                           | Decisior                                     | n(α:5%)                      |            |
| 10                                      | -18.87                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 45.23                         | 46.72            | 0.8551                                    | 5.32%                                             | 0.9576                         | Yes              | 0.78             | 865                             | 0.521                       | 2                            | Non-Sigr                                     | nificant Lack-               | -of-Fit    |
| Point E                                 | stimates                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                               |                  |                                           |                                                   |                                |                  |                  |                                 |                             |                              |                                              |                              |            |
| Level                                   | µg/L                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 95% LCL                       | 95% U(           | CL                                        |                                                   |                                |                  |                  |                                 |                             |                              |                                              |                              |            |
| LC5                                     | 18.78                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 24.99                         |                  |                                           |                                                   |                                |                  |                  |                                 |                             |                              |                                              |                              |            |
| LC10                                    | 22.83                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                               | 29.64            |                                           |                                                   |                                |                  |                  |                                 |                             |                              |                                              |                              |            |
| LC15                                    | 25.78                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 12 10                         | 33.09            |                                           |                                                   |                                |                  |                  |                                 |                             |                              |                                              |                              |            |
| 1.025                                   | 20.24                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 18.71                         | 38.55            |                                           |                                                   |                                |                  |                  |                                 |                             |                              |                                              |                              |            |
| LC40                                    | 36.51                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 27.81                         | 45.61            |                                           |                                                   |                                |                  |                  |                                 |                             |                              |                                              |                              |            |
| LC50                                    | 40.6                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 32.61                         | 50.55            |                                           |                                                   |                                |                  |                  |                                 |                             |                              |                                              |                              |            |
| Regres                                  | sion Parar                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | neters                        |                  |                                           |                                                   |                                |                  |                  |                                 |                             |                              |                                              |                              |            |
| Daram                                   | ator                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Eetimato                      | Std Err          | or 05% 1                                  | 05% 1101                                          | t Stat                         | D Value          | Dec              | ricion/                         | a:5%)                       |                              |                                              |                              |            |
| Farann                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 0.0576                        | 0.02413          | 0 0067                                    | 1 008                                             | 20.60                          | <1.0E_05         | Sig              | nificant                        | t Param                     | otor                         |                                              |                              |            |
| v                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 3 818                         | 0.8905           | 1 939                                     | 5 697                                             | 4 287                          | 0.0005           | Sig              | nificant                        | t Param                     | neter                        |                                              |                              |            |
| ō                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 40.6                          | 4.128            | 31.89                                     | 49.31                                             | 9.836                          | <1.0E-05         | Sig              | nificant                        | t Param                     | neter                        |                                              |                              |            |
| ANOVA                                   | Table                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                               |                  |                                           |                                                   |                                |                  |                  |                                 |                             |                              |                                              |                              |            |
| Source                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | Sum Squa                      | ares M           | lean Squar                                | e DF                                              | F Stat                         | P-Value          | Dec              | cision(                         | α:5%)                       |                              |                                              |                              |            |
| Model                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 1989                          | 6                | 62.9                                      | 3                                                 | 615.5                          | <1.0E-05         | Sig              | nificant                        | t Effect                    |                              |                                              |                              |            |
| Lack of                                 | Fit                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 2.641                         | 0                | .8803                                     | 3                                                 | 0.7865                         | 0.5212           | Nor              | n-Signif                        | ficant L                    | ack-o                        | of-Fit                                       |                              |            |
| Pure El                                 | ror                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 15.67                         | 1.               | .119                                      | 14                                                |                                |                  |                  |                                 |                             |                              |                                              |                              |            |
| Residu                                  | ai                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 10.31                         | 1.               | .077                                      | 17                                                |                                |                  |                  |                                 |                             |                              |                                              |                              |            |
| Residu                                  | al Analysis                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | ;                             |                  |                                           |                                                   |                                |                  |                  |                                 |                             |                              |                                              |                              |            |
| Attribu                                 | te                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | Method                        |                  |                                           | Test Stat                                         | Critical                       | P-Value          | Dec              | cision(                         | α:5%)                       |                              |                                              |                              |            |
| Model I                                 | Fit                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | Likelihood                    | Ratio GO         | OF Test                                   | 19.38                                             | 27.59                          | 0.3073           | Nor              | n-Signif                        | ficant H                    | letero                       | ogeneity                                     |                              |            |
| Variana                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | Pearson C                     | ni-Sq GC         | JF lest<br>itu of Vorion                  | 18.31                                             | 27.59                          | 0.3695           | Nor              | 1-Signi<br>Iol Vori             | ficant H                    | etero                        | ogeneity                                     |                              |            |
| Distribu                                | tion.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | Anderson-                     | Darling A        | 10 Ur variari<br>12 Tost                  | 0 7253                                            | 2 492                          | 0.4114           | Nor              | mal Di                          | etributir                   | n                            |                                              |                              |            |
| Distribu                                | and the second se | Shapiro-W                     | ilk W No         | t 0.893                                   | 0.9044                                            | 0.0305                         | Nor              | n-Norm           | al Distr                        | ibutio                      | on                           |                                              |                              |            |
| Overdis                                 | persion                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | Tarone C(                     | a) Overdi        | ispersion Te                              | est 1.394                                         | 1.645                          | 0.0816           | Nor              | n-Signif                        | ficant C                    | verd                         | ispersion                                    |                              |            |
|                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                               |                  |                                           |                                                   |                                |                  |                  |                                 |                             |                              |                                              |                              |            |

CETIS™ v2.1.4.5 (009-951-268-0)

| CETIS And                                                           | alytical Repo                   | ort                                                      |                                                                   |                                                                   | Report<br>Test C                                                  | Date:<br>ode/ID:                                        | 27<br>24.0                                               | May-24 14:0<br>03.5 Cu / 15                              | 4 (p 2 of 3)<br>-1536-4540             |                                                           |                                                  |
|---------------------------------------------------------------------|---------------------------------|----------------------------------------------------------|-------------------------------------------------------------------|-------------------------------------------------------------------|-------------------------------------------------------------------|---------------------------------------------------------|----------------------------------------------------------|----------------------------------------------------------|----------------------------------------|-----------------------------------------------------------|--------------------------------------------------|
| Daphnia thor                                                        | nsoni 48-h Acute                | Survival                                                 | Test                                                              |                                                                   |                                                                   |                                                         |                                                          |                                                          |                                        | NIWA Ecot                                                 | oxicology                                        |
| Analysis ID:<br>Analyzed:<br>Edit Date:                             | 15-5899-0665<br>27 May-24 14:02 | En<br>Ana<br>MD                                          | dpoint: 48<br>alysis: No<br>95 Hash: 0B                           | h Survival R<br>onlinear Reg<br>07C019112                         | ate<br>ression (NL<br>69DEBFC6                                    | R)<br>12C1A5375                                         | CET<br>Stat<br>3B59 Edit                                 | IS Version:<br>us Level:<br>or ID:                       | CETISv2<br>1                           | 2.1.4                                                     |                                                  |
| 48h Survival                                                        | Rate Summary                    |                                                          |                                                                   |                                                                   |                                                                   | Calculate                                               | d Variate(A                                              | 'B)                                                      |                                        |                                                           |                                                  |
| Conc-µg/L                                                           | Code                            | Count                                                    | Mean                                                              | Median                                                            | Min                                                               | Мах                                                     | Std Err                                                  | Std Dev                                                  | CV%                                    | %Effect                                                   | ΣΑ/ΣΒ                                            |
| 0.8<br>9.75<br>21.1<br>48<br>97<br>211<br>48h Survival<br>Conc-µg/L | D<br>Rate Detail<br>Code        | 5<br>3<br>3<br>3<br>3<br>3<br>3<br>Rep 1                 | 0.9600<br>0.9667<br>0.8333<br>0.4000<br>0.0000<br>0.0000<br>Rep 2 | 1.0000<br>1.0000<br>0.9000<br>0.5000<br>0.0000<br>0.0000<br>Rep 3 | 0.9000<br>0.9000<br>0.6000<br>0.2000<br>0.0000<br>0.0000<br>Rep 4 | 1.0000<br>1.0000<br>0.5000<br>0.0000<br>0.0000<br>Rep 5 | 0.0245<br>0.0333<br>0.1202<br>0.1000<br>0.0000<br>0.0000 | 0.0548<br>0.0577<br>0.2082<br>0.1732<br>0.0000<br>0.0000 | 5.71%<br>5.97%<br>24.98%<br>43.30%<br> | 0.00%<br>-0.69%<br>13.19%<br>58.33%<br>100.00%<br>100.00% | 48/50<br>29/30<br>25/30<br>12/30<br>0/30<br>0/30 |
| 0.8<br>9.75<br>21.1<br>48<br>97<br>211                              | D                               | 1.0000<br>1.0000<br>1.0000<br>0.5000<br>0.0000<br>0.0000 | 0.9000<br>0.9000<br>0.9000<br>0.2000<br>0.0000<br>0.0000          | 1.0000<br>1.0000<br>0.6000<br>0.5000<br>0.0000<br>0.0000          | 0.9000                                                            | 1.0000                                                  |                                                          |                                                          |                                        |                                                           |                                                  |
| 48h Survival                                                        | Rate Binomials                  |                                                          |                                                                   |                                                                   |                                                                   |                                                         |                                                          |                                                          |                                        |                                                           |                                                  |
| Conc-µg/L                                                           | Code                            | Rep 1                                                    | Rep 2                                                             | Rep 3                                                             | Rep 4                                                             | Rep 5                                                   |                                                          |                                                          |                                        |                                                           |                                                  |
| 0.8<br>9.75<br>21.1<br>48<br>97<br>211                              | D                               | 10/10<br>10/10<br>10/10<br>5/10<br>0/10<br>0/10          | 9/10<br>9/10<br>9/10<br>2/10<br>0/10<br>0/10                      | 10/10<br>10/10<br>6/10<br>5/10<br>0/10<br>0/10                    | 9/10                                                              | 10/10                                                   |                                                          |                                                          |                                        |                                                           |                                                  |

CETIS™ v2.1.4.5 (009-951-268-0)



Convergent Rounding (4 sf)

CETIS™ v2.1.4.5 (009-951-268-0)

## Appendix K Physico-chemical data for zinc tests

Table K-1:Summary of physico-chemical measures from acute *D. thomsoni* zinc toxicity testing withMahurangi Stream water.Values shown are the measurements taken at test initiation ( $T_0$ ) and testtermination ( $T_{48}$ ).Shaded cells indicate concentrations used in statistical analyses.

| Nominal concentration    | Ŗ              | н           | Dissolved O | kygen (mg/L) | Condu<br>(µՏյ | uctivity<br>/cm) | Tempera | iture (°C)  |
|--------------------------|----------------|-------------|-------------|--------------|---------------|------------------|---------|-------------|
| (µg/L Zn <sup>2+</sup> ) | T <sub>0</sub> | <b>T</b> 48 | To          | <b>T</b> 48  | To            | <b>T</b> 48      | To      | <b>T</b> 48 |
| 0 Control                | 7.8            | 7.9         | 8.8         | 8.8          | 241           | 254              | 20      | 20          |
| 100                      | 7.9            | 8.0         | 9.2         | 9.2          | 249           | 259              | 20      | 20          |
| 220                      | 7.9            | 8.1         | 9.2         | 9.1          | 245           | 257              | 20      | 20          |
| 484                      | 7.9            | 8.0         | 9.2         | 9.1          | 248           | 254              | 20      | 20          |
| 1,065                    | 7.9            | 8.0         | 9.2         | 9.0          | 251           | 257              | 20      | 20          |
| 2,343                    | 7.7            | 7.9         | 9.2         | 9.1          | 252           | 259              | 20      | 20          |
| 5,154                    | 7.5            | 7.4         | 9.2         | 9.0          | 259           | 254              | 20      | 20          |
| 11,000                   | 7.2            | 7.1         | 9.1         | 9.0          | 275           | 244              | 20      | 20          |

#### Table K-2: Summary of physico-chemical measures from acute D. thomsoni zinc toxicity testing with

**Hoteo River water.** Values shown are the measurements taken at test initiation ( $T_0$ ) and test termination ( $T_{48}$ ). Shaded cells indicate concentrations used in statistical analyses.

| Nominal<br>concentration | р   | н           | Dissolved O | xygen (mg/L) | Conc<br>(μ | ductivity<br>S/cm) | Tempera | iture (°C)  |
|--------------------------|-----|-------------|-------------|--------------|------------|--------------------|---------|-------------|
| (µg/L Zn <sup>2+</sup> ) | To  | <b>T</b> 48 | To          | <b>T</b> 48  | To         | <b>T</b> 48        | To      | <b>T</b> 48 |
| 0 Control                | 7.6 | 7.6         | 8.2         | 8.8          | 198        | 225                | 20      | 20          |
| 100                      | 7.8 | 7.9         | 9.3         | 9.0          | 258        | 211                | 20      | 20          |
| 220                      | 7.8 | 8.0         | 9.1         | 9.0          | 205        | 205                | 20      | 20          |
| 484                      | 7.9 | 8.0         | 9.1         | 9.0          | 205        | 212                | 20      | 20          |
| 1065                     | 7.8 | 7.9         | 9.1         | 9.0          | 206        | 217                | 20      | 20          |
| 2343                     | 7.7 | 7.8         | 9.1         | 9.1          | 220        | 231                | 20      | 20          |
| 5154                     | 7.6 | 7.9         | 9.2         | 9.0          | 218        | 218                | 20      | 20          |
| 11000                    | 7.3 | 7.9         | 9.0         | 9.0          | 236        | 218                | 20      | 20          |

Table K-3:Summary of physico-chemical measures from acute *D. thomsoni* zinc toxicity testing with pHadjusted Okutua Creek water.Values shown are the measurements taken at test initiation  $(T_0)$  and testtermination  $(T_{48})$ , nm = not measured.Shaded cells indicate concentrations used in statistical analyses.

| Nominal<br>concentration | рН  |             | Dissolved O | Dissolved Oxygen (mg/L) |      | Conductivity<br>(μS/cm) |    | ature (°C)  |
|--------------------------|-----|-------------|-------------|-------------------------|------|-------------------------|----|-------------|
| (µg/L Zn <sup>2+</sup> ) | To  | <b>T</b> 48 | To          | <b>T</b> 48             | To   | T <sub>48</sub>         | To | <b>T</b> 48 |
| 0 Control                | 6.0 | 6.5         | 8.4         | 8.8                     | 32.0 | 34.6                    | 19 | 20          |
| 100                      | 5.9 | 6.3         | 8.3         | 8.7                     | 31.3 | 34.8                    | 19 | 20          |
| 220                      | 5.8 | 6.3         | 8.2         | 8.7                     | 30.6 | 40.7                    | 20 | 20          |
| 484                      | 5.8 | 6.3         | 8.2         | 8.7                     | 32.5 | 35.9                    | 19 | 20          |
| 1,065                    | 5.8 | 6.3         | 8.0         | 8.7                     | 30.8 | 36.0                    | 20 | 20          |

| Nominal<br>concentration | рН  |             | Dissolved O    | Dissolved Oxygen (mg/L) |      | Conductivity<br>(μS/cm) |    | Temperature (°C)       |  |
|--------------------------|-----|-------------|----------------|-------------------------|------|-------------------------|----|------------------------|--|
| (µg/L Zn <sup>2+</sup> ) | To  | <b>T</b> 48 | T <sub>0</sub> | <b>T</b> <sub>48</sub>  | To   | <b>T</b> <sub>48</sub>  | To | <b>T</b> <sub>48</sub> |  |
| 2,343                    | 5.7 | 6.1         | 8.3            | 8.7                     | 32.9 | 40.4                    | 20 | 20                     |  |
| 5,154                    | 5.5 | nm          | 8.5            | nm                      | 47.1 | nm                      | 20 | nm                     |  |
| 11,000                   | 5.4 | nm          | 8.5            | nm                      | 69.3 | nm                      | 19 | nm                     |  |

Table K-4:Summary of physico-chemical measures from acute D. thomsoni zinc toxicity testing withClutha River water.Values shown are the measurements taken at test initiation (T<sub>0</sub>) and test termination (T<sub>48</sub>),nm = not measured.Shaded cells indicate concentrations used in statistical analyses.

| Nominal concentration    | рН             |                        | Dissolved O | Dissolved Oxygen (mg/L) |      | Conductivity<br>(μS/cm) |    | Temperature (°C)       |  |
|--------------------------|----------------|------------------------|-------------|-------------------------|------|-------------------------|----|------------------------|--|
| (µg/L Zn <sup>2+</sup> ) | T <sub>0</sub> | <b>T</b> <sub>48</sub> | To          | <b>T</b> <sub>48</sub>  | To   | <b>T</b> <sub>48</sub>  | To | <b>T</b> <sub>48</sub> |  |
| 0 Control                | 7.5            | 7.5                    | 8.3         | 9.0                     | 76.2 | 85.4                    | 19 | 20                     |  |
| 45                       | 7.6            | nm                     | 9.0         | nm                      | 79.3 | nm                      | 19 | nm                     |  |
| 100                      | 7.6            | 7.5                    | 8.9         | 9.1                     | 78.0 | 84.5                    | 19 | 20                     |  |
| 220                      | 7.6            | 7.6                    | 9.0         | 9.0                     | 77.2 | 89.9                    | 19 | 20                     |  |
| 484                      | 7.6            | 7.6                    | 9.0         | 8.9                     | 78.3 | 86.9                    | 19 | 20                     |  |
| 1,065                    | 7.5            | 7.5                    | 8.8         | 8.9                     | 78.0 | 92.4                    | 20 | 20                     |  |
| 2,343                    | 7.3            | 7.4                    | 8.9         | 9.0                     | 84.2 | 93.3                    | 20 | 20                     |  |
| 5,154                    | 7.1            | nm                     | 8.9         | nm                      | 95.7 | nm                      | 19 | nm                     |  |

Table K-5:Summary of physico-chemical measures from acute *D. thomsoni* zinc toxicity testing withWaihou River water.Values shown are the measurements taken at test initiation ( $T_0$ ) and test termination( $T_{48}$ ), nm = not measured.Shaded cells indicate concentrations used in statistical analyses.

| Nominal<br>concentration | рН  |             | Dissolved O | Dissolved Oxygen (mg/L) |      | Conductivity<br>(µS/cm) |                | Temperature (°C) |  |
|--------------------------|-----|-------------|-------------|-------------------------|------|-------------------------|----------------|------------------|--|
| (µg/L Zn <sup>2+</sup> ) | To  | <b>T</b> 48 | To          | <b>T</b> 48             | To   | <b>T</b> 48             | T <sub>0</sub> | <b>T</b> 48      |  |
| 0 Control                | 7.5 | 7.9         | 8.4         | 8.6                     | 89.1 | 100                     | 19             | 20               |  |
| 100                      | 7.7 | 7.7         | 8.8         | 8.9                     | 90.1 | 99.6                    | 19             | 20               |  |
| 220                      | 7.6 | 7.7         | 8.8         | 8.9                     | 88.6 | 101                     | 20             | 20               |  |
| 484                      | 7.7 | 7.7         | 8.8         | 8.9                     | 91.3 | 102                     | 19             | 20               |  |
| 1,065                    | 7.6 | 7.7         | 8.7         | 8.8                     | 93.8 | 100                     | 19             | 20               |  |
| 2,343                    | 7.5 | 7.5         | 8.8         | 8.9                     | 97.7 | 106                     | 19             | 20               |  |
| 5,154                    | 7.2 | nm          | 8.9         | nm                      | 107  | nm                      | 19             | nm               |  |

## Appendix L Physico-chemical data for copper tests

Table L-1:Summary of physico-chemical measures from acute D. thomsoni copper toxicity testing withMahurangi Stream water.Values shown are the measurements taken at test initiation  $(T_0)$  and testtermination  $(T_{48})$ , nm = not measured.Shaded cells indicate concentrations used in statistical analyses.

| Nominal concentration    | рН             |             | Dissolved O | Dissolved Oxygen (mg/L) |     | uctivity<br>/cm) | Temperature (°C) |             |
|--------------------------|----------------|-------------|-------------|-------------------------|-----|------------------|------------------|-------------|
| (µg/L Cu <sup>2+</sup> ) | T <sub>0</sub> | <b>T</b> 48 | To          | <b>T</b> 48             | To  | <b>T</b> 48      | To               | <b>T</b> 48 |
| 0 Control                | 7.8            | 7.9         | 8.8         | 8.8                     | 241 | 254              | 20               | 20          |
| 1                        | 7.7            | nm          | 8.7         | nm                      | 242 | nm               | 20               | nm          |
| 2.2                      | 7.8            | nm          | 8.6         | nm                      | 244 | nm               | 20               | nm          |
| 4.8                      | 7.8            | nm          | 9.8         | nm                      | 243 | nm               | 20               | nm          |
| 10.6                     | 7.8            | nm          | 8.8         | nm                      | 242 | nm               | 20               | nm          |
| 23.4                     | 7.7            | 8.0         | 8.7         | 8.8                     | 242 | 253              | 20               | 20          |
| 51.5                     | 7.8            | 8.0         | 8.3         | 8.7                     | 244 | 253              | 20               | 20          |
| 154.5                    | 7.7            | 7.6         | 9.7         | 8.6                     | 250 | 253              | 20               | 20          |
| 463.5                    | 7.6            | 7.8         | 9.5         | 8.7                     | 250 | 250              | 20               | 20          |
| 1,390.5                  | 7.2            | 7.8         | 8.9         | 8.7                     | 250 | 251              | 20               | 20          |

# Table L-2:Summary of physico-chemical measures from acute *D. thomsoni* copper toxicity testing withHoteo River water.Values shown are the measurements taken at test initiation ( $T_0$ ) and test termination ( $T_{48}$ ),nm = not measured.Shaded cells indicate concentrations used in statistical analyses.

| Nominal concentration    | рН             |             | Dissolved O | Dissolved Oxygen (mg/L) |     | ıctivity<br>/cm) | Temperature (°C) |             |
|--------------------------|----------------|-------------|-------------|-------------------------|-----|------------------|------------------|-------------|
| (µg/L Cu <sup>2+</sup> ) | T <sub>0</sub> | <b>T</b> 48 | To          | <b>T</b> 48             | To  | <b>T</b> 48      | T <sub>0</sub>   | <b>T</b> 48 |
| 0 Control                | 7.6            | 7.6         | 8.2         | 8.8                     | 198 | 225              | 20               | 20          |
| 1                        | 7.6            | nm          | 9.3         | nm                      | 196 | nm               | 20               | nm          |
| 2.2                      | 7.6            | nm          | 8.7         | nm                      | 199 | nm               | 20               | nm          |
| 4.8                      | 7.7            | nm          | 8.7         | nm                      | 199 | nm               | 20               | nm          |
| 10.6                     | 7.6            | nm          | 8.9         | nm                      | 200 | nm               | 20               | nm          |
| 23.4                     | 7.6            | 7.7         | 8.6         | 8.8                     | 199 | 218              | 20               | 20          |
| 51.5                     | 7.6            | 7.8         | 9.0         | 8.8                     | 200 | 207              | 19               | 20          |
| 154.5                    | 7.6            | 7.8         | 9.7         | 8.7                     | 210 | 212              | 20               | 20          |
| 463.5                    | 7.6            | 7.8         | 9.2         | 8.7                     | 205 | 208              | 20               | 20          |
| 1,390.5                  | 7.5            | 7.8         | 8.2         | 8.7                     | 207 | 211              | 20               | 20          |

Table L-3:Summary of physico-chemical measures from acute *D. thomsoni* copper toxicity testing with pHadjusted Okutua Creek water.Values shown are the measurements taken at test initiation (T<sub>0</sub>) and testtermination (T<sub>48</sub>), nm = not measured.Shaded cells indicate concentrations used in statistical analyses.

| Nominal concentration    | рН  |             | Dissolved O | Dissolved Oxygen (mg/L) |      | Conductivity<br>(μS/cm) |    | Temperature (°C) |  |
|--------------------------|-----|-------------|-------------|-------------------------|------|-------------------------|----|------------------|--|
| (µg/L Cu <sup>2+</sup> ) | To  | <b>T</b> 48 | To          | <b>T</b> 48             | To   | T <sub>48</sub>         | To | <b>T</b> 48      |  |
| 0 Control                | 6.0 | 6.5         | 8.4         | 8.8                     | 32.0 | 34.6                    | 19 | 20               |  |

| Nominal concentration    | рН             |             | Dissolved O | Dissolved Oxygen (mg/L) |      | ıctivity<br>/cm)       | Temperature (°C) |                        |
|--------------------------|----------------|-------------|-------------|-------------------------|------|------------------------|------------------|------------------------|
| (µg/L Cu <sup>2+</sup> ) | T <sub>0</sub> | <b>T</b> 48 | To          | <b>T</b> 48             | To   | <b>T</b> <sub>48</sub> | To               | <b>T</b> <sub>48</sub> |
| 1                        | 6.0            | nm          | 8.5         | nm                      | 32.2 | nm                     | 20               | nm                     |
| 2.2                      | 6.0            | nm          | 8.5         | nm                      | 32.5 | nm                     | 20               | nm                     |
| 4.8                      | 6.0            | nm          | 8.3         | nm                      | 33.4 | nm                     | 19               | nm                     |
| 10.6                     | 6.0            | 6.6         | 8.3         | 8.9                     | 34.5 | 41.7                   | 20               | 20                     |
| 23.4                     | 5.9            | 6.4         | 8.3         | 8.8                     | 32.3 | 32.9                   | 20               | 20                     |
| 51.5                     | 5.9            | 6.3         | 8.2         | 8.8                     | 31.9 | 37.0                   | 19               | 20                     |
| 113.4                    | 5.9            | 6.3         | 8.4         | 8.8                     | 32.6 | 36.2                   | 19               | 20                     |
| 249                      | 5.6            | 6.3         | 8.5         | 8.8                     | 33.9 | 38.8                   | 19               | 20                     |

Table L-4:Summary of physico-chemical measures from acute D. thomsoni copper toxicity testing withClutha River water.Values shown are the measurements taken at test initiation ( $T_0$ ) and test termination ( $T_{48}$ ),nm = not measured.Shaded cells indicate concentrations used in statistical analyses.

| Nominal<br>concentration | рН  |                 | Dissolved O | Dissolved Oxygen (mg/L) |      | ıctivity<br>/cm) | Temperature (°C) |                        |
|--------------------------|-----|-----------------|-------------|-------------------------|------|------------------|------------------|------------------------|
| (µg/L Cu <sup>2+</sup> ) | To  | T <sub>48</sub> | To          | <b>T</b> 48             | To   | <b>T</b> 48      | To               | <b>T</b> <sub>48</sub> |
| 0 Control                | 7.5 | 7.5             | 8.3         | 9.0                     | 76.2 | 85.4             | 19               | 20                     |
| 1                        | 7.8 | nm              | 8.7         | nm                      | 74.8 | nm               | 19               | nm                     |
| 2.2                      | 7.8 | 7.6             | 8.7         | 9.1                     | 74.9 | 90.6             | 19               | 20                     |
| 4.8                      | 7.8 | 7.6             | 8.7         | 9.2                     | 74.9 | 93.0             | 19               | 20                     |
| 10.6                     | 7.9 | 7.6             | 8.8         | 9.1                     | 75.2 | 90.3             | 19               | 20                     |
| 23.4                     | 7.9 | 7.7             | 8.8         | 9.1                     | 75.4 | 95.7             | 19               | 20                     |
| 51.5                     | 8.0 | 7.7             | 9.1         | 9.1                     | 75.6 | 90.7             | 20               | 20                     |

Table L-5:Summary of physico-chemical measures from acute D. thomsoni copper toxicity testing withWaihou River water.Values shown are the measurements taken at test initiation  $(T_0)$  and test termination  $(T_{48})$ , nm = not measured.Shaded cells indicate concentrations used in statistical analyses.

| Nominal concentration    | рН  |             | Dissolved O    | Dissolved Oxygen (mg/L) |      | ıctivity<br>/cm)       | Temperature (°C) |             |
|--------------------------|-----|-------------|----------------|-------------------------|------|------------------------|------------------|-------------|
| (µg/L Cu <sup>2+</sup> ) | To  | <b>T</b> 48 | T <sub>0</sub> | <b>T</b> <sub>48</sub>  | To   | <b>T</b> <sub>48</sub> | To               | <b>T</b> 48 |
| 0 Control                | 7.5 | 7.9         | 8.4            | 8.6                     | 89.1 | 100                    | 19               | 20          |
| 1                        | 7.7 | nm          | 9.1            | nm                      | 92.8 | nm                     | 20               | nm          |
| 2.2                      | 7.5 | nm          | 9.1            | nm                      | 89.2 | nm                     | 20               | nm          |
| 4.8                      | 7.6 | 7.8         | 8.9            | 8.7                     | 89.3 | 93.6                   | 20               | 20          |
| 10.6                     | 7.6 | 7.8         | 8.9            | 8.7                     | 88.9 | 98.5                   | 20               | 20          |
| 23.4                     | 7.6 | 7.8         | 8.7            | 8.6                     | 88.8 | 95.9                   | 20               | 20          |
| 51.5                     | 7.5 | 7.8         | 8.5            | 8.6                     | 88.8 | 102                    | 20               | 20          |
| 113                      | 7.8 | 7.7         | 9.4            | 8.8                     | 94.7 | 99.4                   | 20               | 20          |
| 249                      | 7.8 | 7.7         | 9.2            | 8.8                     | 93.1 | 96.4                   | 20               | 20          |

# Appendix M NIWA's unpublished zinc and copper toxicity data

Table M-1:Summary of NIWA's unpublished or publicly unavailable New Zealand native species acute zinctoxicity testing data.Shaded values are nominal concentrations. na = not available.

| Notes incl. source                                                                                                                                                             | Duration     | Temp.<br>°C | pH mean (min<br>max.) | Hardness<br>mg/L<br>CaCO <sub>3</sub> | DOC<br>mg/L | EC <sub>50</sub> ª (95% CL or ± 2<br>SD)<br>µg/L Zn <sup>2+</sup> |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------|-------------|-----------------------|---------------------------------------|-------------|-------------------------------------------------------------------|
| Fish - Smelt - Retropinna retro                                                                                                                                                | pinna        |             |                       |                                       |             |                                                                   |
| Juvenile wet weight 1.8 g;<br>Head-tail base length 57 mm.<br>NIWA reference toxicant data<br>base (unpublished). Zinc<br>stock concentration verified,<br>test dilutions not. | 96 h         | 15          | 7.4-7.7               | ≈ 40                                  | <0.5        | 5,601 n=1                                                         |
| Fish - Common bully - Gobiom                                                                                                                                                   | orphus cotid | ianus       |                       |                                       |             |                                                                   |
| NIWA reference toxicant data<br>base (unpublished). Zinc<br>stock concentration verified,<br>test dilutions not.                                                               | 96 h         | 15          | 7.4-7.7               | ≈ 40                                  | <0.5        | 3,060 (684-5,435)<br>n=12                                         |
| Juvenile wet weight 0.45 g;<br>Head-tail base length 32 mm.<br>Ouwerkerk (2017)                                                                                                | 96 h         | 16          | 7.24 (6.93-7.54)      | 14.2                                  | 0.3ª        | 1,868 (1,581-2,207)<br>n=1                                        |
| Juvenile wet weight 0.75 g;<br>Head-tail base length 37.5<br>mm. Ouwerkerk (2017)                                                                                              | 96 h         | 16          | 7.05 (6.65-7.38)      | 14.2                                  | 1.3ª        | 3,888 (3,655-4,136)<br>n=1                                        |
| Juvenile wet weight 0.63 g;<br>Head-tail base length 37 mm.<br>Ouwerkerk (2017)                                                                                                | 96 h         | 16          | 7.21 (6.87-7.58)      | 14.2                                  | 4.3ª        | 2,171 (1,654-2,848)<br>n=1                                        |
| Juvenile wet weight 0.45 g;<br>Head-tail base length 32 mm.<br>Ouwerkerk (2017)                                                                                                | 10 d         | 16          | 7.24 (6.93-7.54)      | 14.2                                  | 0.3ª        | 382 (284-514) n=1                                                 |
| Juvenile wet weight 0.75 g;<br>Head-tail base length 37.5<br>mm. Ouwerkerk (2017)                                                                                              | 10 d         | 16          | 7.05 (6.65-7.38)      | 14.2                                  | 1.3ª        | 244 (121-493) n=1                                                 |
| Juvenile wet weight 0.63 g;<br>Head-tail base length 37 mm.<br>Ouwerkerk (2017)                                                                                                | 10 d         | 16          | 7.21 (6.87-7.58)      | 14.2                                  | 4.3ª        | 166 (94-293) n=1                                                  |
| Fish - Inanga - <i>Galaxias maculo</i>                                                                                                                                         | ntus         |             |                       |                                       |             |                                                                   |
| Juvenile wet weight 0.3 g,<br>length 40 mm. NIWA<br>reference toxicant data base<br>(unpublished). Zinc stock<br>concentration verified, test<br>dilutions not.                | 96 h         | 15          | 7.4-7.7               | ≈ 40                                  | <0.5        | 3,493 (3,073-3,969<br>n=1                                         |
| Invertebrate - Snail - Potamop                                                                                                                                                 | yrgus antipo | darum       |                       |                                       |             |                                                                   |
| NIWA reference toxicant data<br>base (unpublished). Zinc<br>stock concentration verified,<br>test dilutions not. Survival.                                                     | 96 h         | 20          | 7.4-7.7               | ≈ 40                                  | <0.5        | 1,561 (1,345-1,812)<br>n=1                                        |
| NIWA reference toxicant data<br>base (unpublished). Zinc<br>stock concentration verified,<br>test dilutions not. Morbidity<br>(mobility).                                      | 96 h         | 20          | 7.4-7.7               | ≈ 40                                  | <0.5        | 936 (796-1,101) n=1                                               |

| Notes incl. source                                                                                               | Duration      | Temp.<br>°C | pH mean (min<br>max.) | Hardness<br>mg/L<br>CaCO3 | DOC<br>mg/L       | EC <sub>50</sub> ª (95% CL or ± 2<br>SD)<br>μg/L Zn <sup>2+</sup> |
|------------------------------------------------------------------------------------------------------------------|---------------|-------------|-----------------------|---------------------------|-------------------|-------------------------------------------------------------------|
| Ouwerkerk (2017). Survival.                                                                                      | 96 h          | 19          | 7.06 (6.94-7.18)      | 14.2                      | 0.3ª              | 532 (474-597) n=1                                                 |
| Ouwerkerk (2017). Survival.                                                                                      | 96 h          | 20          | 7.02 (6.86-7.10)      | 14.2                      | 1.3ª              | 819 (694-968) n=1                                                 |
| Ouwerkerk (2017). Survival.                                                                                      | 96 h          | 21          | 7.03 (6.86-7.13)      | 14.2                      | 4.3ª              | 1,004 (896-1,125) n=1                                             |
| Ouwerkerk (2017). Survival.                                                                                      | 96 h          | 20          | 6.99 (6.94-7.06)      | 14.2                      | 9.3ª              | 1,372 (1,222-1,541)<br>n=1                                        |
| Ouwerkerk (2017). Morbidity<br>(mobility).                                                                       | 96 h          | 19          | 7.06 (6.94-7.18)      | 14.2                      | 0.3ª              | 446 (403-492) n=1                                                 |
| Ouwerkerk (2017). Morbidity<br>(mobility).                                                                       | 96 h          | 20          | 7.02 (6.86-7.10)      | 14.2                      | 1.3ª              | 459 (401-525) n=1                                                 |
| Ouwerkerk (2017). Morbidity<br>(mobility).                                                                       | 96 h          | 21          | 7.03 (6.86-7.13)      | 14.2                      | 4.3ª              | 723 (655-771) n=1                                                 |
| Ouwerkerk (2017). Morbidity<br>(mobility).                                                                       | 96 h          | 20          | 6.99 (6.94-7.06)      | 14.2                      | 9.3ª              | 993 (905-1089) n=1                                                |
| Invertebrate - Amphipod - Pare                                                                                   | acalliope flu | viatilis    |                       |                           |                   |                                                                   |
| NIWA reference toxicant data<br>base (unpublished). Zinc<br>stock concentration verified,<br>test dilutions not. | 48 h          | 20          | 7.4                   | 48                        | na                | 887 (564-1,210) n=5                                               |
| Ouwerkerk (2017). Morbidity<br>(mobility)                                                                        | 48 h          | 20          | 7.32 (7.21-7.37)      | 14.2                      | 0.3ª              | 482 (403-577) n=1                                                 |
| Ouwerkerk (2017). Morbidity<br>(mobility)                                                                        | 48 h          | 20          | 7.21 (7.16-7.25)      | 14.2                      | 1.3ª              | 293 (242-353) n=1                                                 |
| Ouwerkerk (2017). Morbidity<br>(mobility)                                                                        | 48 h          | 20          | 7.37 (7.21-7.48)      | 14.2                      | 4.3ª              | 579 (500-672) n=1                                                 |
| Ouwerkerk (2017). Morbidity<br>(mobility)                                                                        | 48 h          | 20          | 7.43 (7.13-7.58)      | 14.2                      | 9.3ª              | 823 (671-950) n=1                                                 |
| Invertebrate – Water flea – Da                                                                                   | phnia thoms   | ioni        | 7 5 (7 2 7 7)         | 14.0                      | 0.42 h            | 270 (200 248) -1                                                  |
| NIVVA SLUDY FWWQ2009                                                                                             | 48 11         | 20          | 7.5 (7.2-7.7)         | 14.0                      | 0.42 °            | 270 (209-348) N=1                                                 |
| NIWA study FWWQ2009                                                                                              | 48 h          | 20          | 7.4 (7.1-7.6)         | 14.0                      | 1.76 <sup>b</sup> | 240 (202-303) n=1                                                 |
| NIWA study FWWQ2009<br>NIWA reference toxicant data                                                              | 48 h          | 20          | 7.4 (7.0-7.8)         | 14.0                      | 3.66⁵             | 856 (na-na) n=1                                                   |
| stock concentration verified,<br>test dilutions not.                                                             | 48 h          | 20          | 7.8                   | 48                        | na                | 998 (812-1,226) n=1                                               |
| Bivalve – Freshwater mussel ju                                                                                   | venile - Echy | ridella me  | enziesii              |                           |                   |                                                                   |
| NIWA reference toxicant data<br>base (unpublished). Zinc<br>stock concentration verified,<br>test dilutions not. | 48 h          | 20          | 7.4-7.7               | ≈ 40                      | <0.5              | 354 (212-518) n=1                                                 |
| NIWA reference toxicant data<br>base (unpublished). Zinc<br>stock concentration verified,<br>test dilutions not. | 96 h          | 20          | 7.4-7.7               | ≈ 40                      | <0.5              | 261 (172-341) n=1                                                 |

<sup>a</sup> Humic acid reference carbon source. <sup>b</sup> Manuka leaf extract carbon source.

| Notes incl. source                                                               | Duration | Temp.<br>°C | pH mean (min<br>max.) | Hardness<br>mg/L<br>CaCO₃ | DOC<br>mg/L       | EC <sub>50</sub> ª (95% CL)<br>μg/L Cu <sup>2+</sup> |
|----------------------------------------------------------------------------------|----------|-------------|-----------------------|---------------------------|-------------------|------------------------------------------------------|
| Fish - Common bully - Gobiomorphus cotidianus                                    |          |             |                       |                           |                   |                                                      |
| Juvenile wet weight 0.45g;<br>Head-tail base length 32mm.<br>Ouwerkerk (2017)    | 96 h     | 16          | 7.29 (7.05-7.80)      | 14.2                      | 0.3ª              | 476 (289-565) n=1                                    |
| Juvenile wet weight 0.75g;<br>Head-tail base length 37.5<br>mm. Ouwerkerk (2017) | 96 h     | 16          | 7.22 (6.84-7.52)      | 14.2                      | 1.3ª              | 601 (477-757) n=1                                    |
| Juvenile wet weight 0.63 g;<br>Head-tail base length 37 mm.<br>Ouwerkerk (2017)  | 96 h     | 16          | 7.18 (6.87-7.58)      | 14.2                      | 4.3ª              | 1,789 (1,000-3,200)<br>n=1                           |
| Juvenile wet weight 0.45 g;<br>Head-tail base length 32 mm.<br>Ouwerkerk (2017)  | 10 d     | 16          | 7.29 (7.05-7.80)      | 14.2                      | 0.3ª              | 125 (93-163) n=1                                     |
| Juvenile wet weight 0.75g;<br>Head-tail base length 37.5<br>mm. Ouwerkerk (2017) | 10 d     | 16          | 7.22 (6.84-7.52)      | 14.2                      | 1.3ª              | 534 (496-574) n=1                                    |
| Juvenile wet weight 0.63 g;<br>Head-tail base length 37 mm.<br>Ouwerkerk (2017)  | 10 d     | 16          | 7.18 (6.87-7.58)      | 14.2                      | 4.3ª              | 1,006 (797-1,270)<br>n=1                             |
| Invertebrate - Snail - Potamopyrgus antipodarum                                  |          |             |                       |                           |                   |                                                      |
| Ouwerkerk (2017). Survival                                                       | 96 h     | 20          | 6.86 (6.65-7.1)       | 14.2                      | 0.3ª              | 17 (14-20) n=1                                       |
| Ouwerkerk (2017). Survival                                                       | 96 h     | 20          | 7.06 (7.0-7.14)       | 14.2                      | 1.3ª              | 36 (31-41) n=1                                       |
| Ouwerkerk (2017). Survival                                                       | 96 h     | 20          | 7.06 (7.03-7.16)      | 14.2                      | 4.3ª              | 77 (67-89) n=1                                       |
| Ouwerkerk (2017). Survival                                                       | 96 h     | 20          | 6.89 (6.78-7.06)      | 14.2                      | 9.3ª              | 110 (102-120) n=1                                    |
| Ouwerkerk (2017). Morbidity<br>(mobility)                                        | 96 h     | 20          | 6.86 (6.65-7.1)       | 14.2                      | 0.3ª              | 14 (13-15) n=1                                       |
| Ouwerkerk (2017). Morbidity<br>(mobility)                                        | 96 h     | 20          | 7.06 (7.0-7.14)       | 14.2                      | 1.3ª              | 34 (30-38) n=1                                       |
| Ouwerkerk (2017). Morbidity<br>(mobility)                                        | 96 h     | 20          | 7.06 (7.03-7.16)      | 14.2                      | 4.3ª              | 52 (47-58) n=1                                       |
| Ouwerkerk (2017). Morbidity<br>(mobility)                                        | 96 h     | 20          | 6.89 (6.78-7.06)      | 14.2                      | 9.3ª              | 91 (83-100) n=1                                      |
| Invertebrate - Amphipod - Paracalliope fluviatilis                               |          |             |                       |                           |                   |                                                      |
| Ouwerkerk (2017). Morbidity<br>(mobility)                                        | 48 h     | 21          | 7.37 (7.31-7.44)      | 14.2                      | 0.3ª              | 70 (58-84) n=1                                       |
| Ouwerkerk (2017). Morbidity<br>(mobility)                                        | 48 h     | 20          | 7.29 (7.18-7.35)      | 14.2                      | 1.3ª              | 92 (80-108) n=1                                      |
| Ouwerkerk (2017). Morbidity<br>(mobility)                                        | 48 h     | 20          | 7.48 (7.35-53)        | 14.2                      | 4.3ª              | 263 (184-308) n=1                                    |
| Ouwerkerk (2017). Morbidity<br>(mobility)                                        | 48 h     | 20          | 7.53 (7.47-7.59)      | 14.2                      | 9.3ª              | 629 (564-700) n=1                                    |
| Invertebrate – Water flea – Daphnia thomsoni                                     |          |             |                       |                           |                   |                                                      |
| NIWA study FWWQ2009                                                              | 48 h     | 20          | 7.6 (7.3-7.8)         | 14.0                      | 0.42 <sup>b</sup> | 28 (na-na) n=1                                       |
| NIWA study FWWQ2009                                                              | 48 h     | 20          | 7.7 (7.5-7.8)         | 14.0                      | 1.70 <sup>b</sup> | 215 (164-246) n=1                                    |
| NIWA study FWWQ2009                                                              | 48 h     | 20          | 7.7 (7.5-7.8)         | 14.0                      | 2.52 ⁵            | 597 (558-614) n=1                                    |

Table M-2:Summary of NIWA's unpublished or publicly unavailable New Zealand native species acutecopper toxicity testing data.Shaded values are nominal concentrations. na = not available.

<sup>a</sup> Humic acid reference carbon source.

## Appendix D Calculation of acute algal toxicity data

#### D.1 Introduction

Algal toxicity tests with zinc had been undertaken in a variety of waters for development of the chronic zinc guideline values from studies funded by IZA.<sup>1</sup> Those tests were undertaken under an exposure duration of 72 hours, however in accordance with the test protocols, algal cell counts were also measured at 24 hours – an acceptable time frame to be considered an acute toxicity test. The raw data from those tests were therefore used to generate toxicity data for use in deriving acute guideline values.

#### D.2 Methods

The original report<sup>2</sup> should be referred to for a full description of the methods including locations of natural water samples, toxicity test methods and analysis of water chemistry during and after tests. Raw data were obtained for six tests with *Raphidocelis subcapitata* from NIWA (K Thompson, pers. comm) and for multiple tests with *Chlorella* sp. (PNG isolate) from Gwilym Price. These each included data for 24 hour cell yields and measured zinc concentrations at day 0 and day 3.

The 24 hour growth rates were calculated as:

Growth rate = log(24-h cell yield) - log(0-h cell yield/inoculum)

The growth rate was calculated as a percentage of the control for each test replicate as follows:

 $Growth \, rate \, inhibition = 100 \times \frac{Growth \, rate \, _{test, replicate}}{Growth \, rate \, _{control}}$ 

For all tests, zinc concentrations were measured at 0 hours and at 72 hours but not at 24 hours. The measured zinc concentrations at 0 hours were used for the zinc concentration in concentration-response regressions as these would be more reflective of the 24 hour concentrations than those measured at 72-hours.

Non-linear regression models were fitted in the R studio environment with the extension package drc.<sup>3</sup> Multiple models were fitted including log-logistic and Weibull (type 1 and type 2) with fixed and varying parameters, and AIC was used to select the model with the best fit, along with visual assessments of the fitted curves.

Several tests, especially those with *R. subcapitata* resulted in concentration-response curves that reached an asymptote around 20% growth rate (as a percentage of control). In these situations, models were fitted with varying lower limits (instead of zero) to enable the model to best fit the curve. As the ED function in drc calculates effect concentrations between the upper and lower limits of the model (i.e., an EC50 will represent the midpoint of the upper and lower asymptotes, not the 50% response relative to the control, an absolute EC50 was calculated – that is, the concentration where a line at 50% of control growth rate intersects with the fitted model.

#### D.3 Results

The results for the six waters tested with *R. subcapitata* (Figure D.1) indicate some variation in the response between the waters tested, with EC50 values ranging from 50 to  $165 \mu g/L$ .

<sup>&</sup>lt;sup>1</sup> J Stauber et al., 2022. Towards bioavailability-based guideline values for zinc in Australian and New Zealand natural waters. Report to the International Zinc Association (CSIRO, Australia, January 2022).

<sup>&</sup>lt;sup>2</sup> Stauber et al., 2022.

<sup>&</sup>lt;sup>3</sup> R: A Language and Environment for Statistical Computing. , R Foundation for Statistical Computing, Vienna, Austria. C Ritz et al., 2015. Dose-response analysis using R. *PLoS ONE* 10, 12: e0146021.
The Chlorella tests indicate a much wider range in the EC50 response, from 27  $\mu$ g/L (at pH 8.5, hardness 90 mg/L as CaCO<sub>3</sub> and DOC 0.5 mg/L) to >1000  $\mu$ g/L in natural waters with high DOC (20-25 mg/L) and lower pH.



Figure D.I: Concentration-response curves for *R. subcapitata* after exposure to **zinc** for 24 hours. Note that for most of the waters tested growth rate did not reduce to zero after 24 hours of exposure. EC50 calculated as 50% of control growth rate.

Appendix Table D.1: Acute (24 hour) algal (*R. subcapitata*) growth rate inhibition EC50 values for **zinc**. Model type 3pLL= 3-parameter log-logistic; 4pLL= 4-parameter log-logistic.

| River     | EC50<br>(95% confidence interval,<br>µg Zn/L) | Model | рН  | Hardness (mg/L<br>as CaCO₃) | DOC (mg/L) |
|-----------|-----------------------------------------------|-------|-----|-----------------------------|------------|
| Control   | 50 (48-53)                                    | 4pLL  | 7.2 | 8.7                         | 0.15       |
| Clutha    | 57 (55-60)                                    | 4pLL  | 8   | 50                          | 0.4        |
| Waihou    | 69 (67-72)                                    | 4pLL  | 7.9 | 39                          | 0.15       |
| Mahurangi | 81 (77-84)                                    | 4pLL  | 8.2 | 110                         | 2.4        |
| Hoteo     | 76 (69-83)                                    | 3pLL  | 7.6 | 72                          | 4.6        |
| Okutua    | 165 (156-173)                                 | 3pLL  | 7.2 | 26                          | 7.3        |

| Test             | рН   | Hardness | DOC  | EC50 value (CI)  | Model |
|------------------|------|----------|------|------------------|-------|
| Synthetic waters |      |          |      |                  |       |
| 200302_H5_pH6.5  | 6.5  | 4.8      | 0.75 | 240 (230-260)    | W     |
| 200302_H5_pH8.5  | 8.5  | 4.8      | 0.75 | 47 (38-55)       | LL    |
| 200609_H30_pH6.5 | 6.5  | 32       | 0.50 | 800 (770-840)    | LL    |
| 200609_H30_pH7.5 | 7.5  | 32       | 0.50 | 330 (300-350)    | W     |
| 200601_H30_pH7.5 | 7.5  | 30       | 0.50 | 170 (140-200)    | LL    |
| 200601_H30_pH8.5 | 8.5  | 30       | 0.50 | 45 (39-51)       | W     |
| 200609_H30_pH8.5 | 8.5  | 32       | 0.50 | 47 (44-50)       | LL    |
| 190923_pH8.5     | 8.3  | 93       | 0.54 | 27 (24-30)       | LL    |
| 191021_pH8.5     | 8.3  | 94       | 1.1  | 40 (36-44)       | W     |
| Natural waters   |      |          |      |                  |       |
| WR buffered      | 7.11 | 18       | 5.3  | 870 (350-660)    | LL    |
| BW buffered      | 8.05 | 355      | 4.2  | 300 (240-380)    | W     |
| OR buffered      | 7.47 | 11       | <1   | 380 (360-400)    | LL    |
| MC buffered      | 6.38 | 3        | 6.0  | 300 (290-320)    | W     |
| LC buffered      | 7.42 | 89       | 20   | 1400 (1200-1600  | LL    |
| TC unbuffered    | 6.1  | 13       | 25   | 1800 (1600-1900) | LL    |

Appendix Table D.2: Acute (24 hour) algal (*Chlorella* sp. (PNG isolate)) growth rate inhibition EC50 values for **zinc** in synthetic and natural waters. Model type W = Weibull type 1; LL= 3-parameter log-logistic.



Figure D.2: Concentration-response curves for *Chlorella* sp. after exposure to **zinc** for 24 hours. This includes tests in synthetic waters at various pH and hardness values and in natural waters that varied by pH, hardness and DOC.

# Appendix E Evaluation of metal bioavailability models for plants and algae

#### E.1 Models and the evaluation process

There is limited use of models for assessing bioavailability of algal or plant acute toxicity data internationally, particularly within the context of deriving guideline values. Therefore, models that could potentially be used for this purpose were evaluated. This was undertaken independently of model evaluation for the complete toxicity dataset to identify whether models for fish and invertebrates would perform adequately for plants and algae, or whether specific models would be required.

Appendix Table E.1 sets out the models available for both copper and zinc. No algal MLRs have been developed for copper to date. Although the European risk assessment for copper uses a chronic toxicity algal BLM, that model was not available for evaluation.

### Appendix Table E.I: Models available for normalising acute **copper** and **zinc** toxicity data for plants and algae. Additional information on each model including the applicable TMF ranges and taxonomic groups included in their development is available in the excel files associated with this project.

| Model                                          | Use internationally                             | TMFs included                    |  |
|------------------------------------------------|-------------------------------------------------|----------------------------------|--|
| Copper                                         |                                                 |                                  |  |
| Plant BLM <sup>4</sup>                         | Canadian copper GVs <sup>5</sup>                | pH, DOC, multiple cations/anions |  |
| Zinc                                           |                                                 |                                  |  |
| <i>R. subcapitata</i> chronic MLR <sup>6</sup> | Chronic zinc DGVs for Australia & NZ $^{\rm 8}$ | pH, DOC                          |  |
| Chlorella sp. chronic MLR <sup>7</sup>         | Chronic zinc DGVs for Australia & NZ $^{\rm 8}$ | pH, DOC, hardness                |  |
| <i>R. subcapitata</i> BLM <sup>6</sup>         | No use to date                                  | pH, DOC, multiple cations/anions |  |

There were few data available for model evaluation. For copper, one study tested the macrophyte *Ceratophyllum demersum* at varying hardness values from 35 to 335 mg CaCO<sub>3</sub>/L.<sup>9</sup> However, there was no variation in pH or DOC for these tests, or any other tests with this species. Further, there were no other toxicity data identified for other species where pH, DOC and hardness were varied. Without suitable data, no evaluation of the models for copper could be made.

For zinc, algal data were available at a 24 hour time period from the work undertaken to support the derivation of chronic zinc guideline values,<sup>10</sup> where pH, DOC and/or hardness varied (see Appendix D). These data were used to evaluate each of the models listed in Appendix Table E.2, as well as the models used for fish and invertebrates (see section 6), using the quantitative assessment method outlined in section 5.4.3.

<sup>&</sup>lt;sup>4</sup> X Wang, L Hua, and Y Ma, 2012. A biotic ligand model predicting acute copper toxicity for barley (Hordeum vulgare): Influence of calcium, magnesium, sodium, potassium and pH. Chemosphere 89, 1: 89-95.

<sup>&</sup>lt;sup>5</sup> ECCC, 2021; B.C. Ministry of Environment and Climate Change Strategy, 2019.

<sup>6</sup> DeForest et al., 2023.

<sup>7</sup> Price et al., 2023.

<sup>&</sup>lt;sup>8</sup> ANZG, 2024.

<sup>&</sup>lt;sup>9</sup> Markich, King, and Wilson, 2006.

<sup>&</sup>lt;sup>10</sup> Stauber et al., 2023; GAV Price et al., 2021. The influence of pH on zinc lability and toxicity to a tropical freshwater microalga. *Environmental Toxicology and Chemistry* 40, 10: 2836-45; GAV Price et al., 2022. The influence of hardness at varying pH on zinc toxicity and lability to a freshwater microalga, *Chlorella* sp. *Environmental Science-Processes & Impacts* 24, 5: 783-93.

Appendix Table E.2: Toxicity data used to evaluate models for normalising acute **copper** and **zinc** toxicity data for plants and algae. The full set of data used for this evaluation is available in the excel files associated with this project.

| Species                | Test duration & effect      | TMF ranges                                                     | Metal (no.<br>data points) |
|------------------------|-----------------------------|----------------------------------------------------------------|----------------------------|
| Cerotophyllum demersum | 96-h biomass                | pH 7.0<br>Hardness 35-335 mg CaCO₃/L<br>DOC 0.1 mg/L*          | Copper (3)                 |
| Chlorella sp.          | 24-h growth rate inhibition | pH 6.1-8.3<br>Hardness 3-355 mg CaCO₃/L<br>DOC 0.69-20 mg/L    | Zinc (15)                  |
| R. subcapitata         | 24-h growth rate inhibition | pH 7.2-8.2<br>Hardness 9-110 mg CaCO₃/L<br>DOC 0.15**-7.3 mg/L | Zinc (6)                   |

Note: DOC values were reported as below the limit of detection (\*<0.2 mg/L and \*\*<0.3 mg/L).

#### E.2 Performance of algal models for zinc

Plots of predicted EC50 values versus observed (Figure E.1) indicated poor performance for predicting toxicity to *Chlorella* sp. in synthetic waters for all models except the *R. subcapitata* chronic MLR, which had a model performance score of 0.84, compared to 0.41–0.57 for the remaining models (Appendix Table E.3). If these synthetic water tests are excluded, there was much less difference between the models.

Overall, and surprisingly the *R. subcapitata* chronic BLM did not predict the toxicity *R. subcapitata* or *Chlorella* sp. very well, over-predicting the EC50 values for most tests. As this means the model underpredicts toxicity, this would not be a conservative model to use for guideline value derivation.

Based on the above assessment, if the synthetic water *Chlorella* sp. data are excluded, the fish/invertebrate MLR or BLMs could be adopted. Otherwise, the *R. subcapitata* chronic MLR model performed the best and could be used for adjusting the zinc algal data for the SSD and guideline value derivation.



Species • Chlorella sp. (PNG isolate) • Chlorella sp. (PNG isolate, nat. water) • Raphidocelis subcapitata

Figure E.I: Observed EC50 values for acute **zinc** toxicity to algal species, compared to EC50 values predicted with various models. Solid line is line of perfect agreement between observed and predicted EC50 values. Dashed lines indicate a factor of ±2 difference. The closest agreement is shown using the *R. subcapitata* chronic MLR model, for both algal species tested.

Appendix Table E.3: Model performance metrics for plant/algal models. See plots in Annex for additional information.

| Model                 | R <sup>2</sup> | <b>RF</b> <sub>x,2.0</sub> <sup>†</sup> | Residual<br>scores <sup>‡</sup> | Overall score<br>(average of 3 metrics) |
|-----------------------|----------------|-----------------------------------------|---------------------------------|-----------------------------------------|
| Hardness              | 0.22           | 0.47                                    | 0.62                            | 0.44                                    |
| Fish/invertebrate MLR | 0.39           | 0.53                                    | 0.71                            | 0.56                                    |
| Fish/invertebrate BLM | 0.47           | 0.38                                    | 0.75                            | 0.53                                    |
| Chlorella MLR         | 0.45           | 0.47                                    | 0.74                            | 0.57                                    |
| R. subcapitata MLR    | 0.77           | 0.80                                    | 0.94                            | 0.84                                    |
| R. subcapitata BLM    | 0.32           | 0.24                                    | 0.67                            | 0.41                                    |

Notes: <sup>†</sup> Proportion of predictions within a factor of two. <sup>‡</sup> Residual score based on linear regressions between residuals (observed/predicted) and log(observed EC50), pH, log(hardness) and log(DOC). Each is calculated as 2/(1+10^|(slope × (1-p-value))|)<sup>11</sup> and all are averaged to calculate the overall residual score. See plots in next section for relationships between residuals and each of these variables.

#### Annex to Appendix E: Additional details for model evaluation

This section provides the plots of residuals versus log EC50, pH, log hardness and log DOC, from which the slopes and p-values were calculated for the residual scores.

<sup>&</sup>lt;sup>11</sup> Besser et al., 2021..



Figure E.2: Model evaluation plots for **zinc** plant/algae data with hardness regression. Green points are *R*. *subcapitata*, blue points are *Chlorella* sp. in synthetic waters, red points are *Chlorella* sp. in natural waters.



Figure E.3: Model evaluation plots for **zinc** plant/algae data with pooled fish/invertebrate MLR. Green points are *R. subcapitata*, blue points are *Chlorella* sp. in synthetic waters, red points are *Chlorella* sp. in natural waters.



Figure E.4: Model evaluation plots for **zinc** plant/algae data with pooled fish/invertebrate BLM. Green points are *R. subcapitata*, blue points are *Chlorella* sp. in synthetic waters, red points are *Chlorella* sp. in natural waters.



Figure E.5: Model evaluation plots for **zinc** plant/algae data with *Chlorella* sp. MLR. Green points are *R*. *subcapitata*, blue points are *Chlorella* sp. in synthetic waters, red points are *Chlorella* sp. in natural waters.



Figure E.6: Model evaluation plots for **zinc** plant/algae data with *R. subcapitata*. MLR. Green points are *R. subcapitata*, blue points are *Chlorella* sp. in synthetic waters, red points are *Chlorella* sp. in natural waters.

| Medel                     | Slopes (p-values) of observed/predicted EC50 versus: |               |                |              |  |  |  |  |
|---------------------------|------------------------------------------------------|---------------|----------------|--------------|--|--|--|--|
| Woder                     | Observed EC50                                        | рН            | Log (Hardness) | Log (DOC)    |  |  |  |  |
| Hardness                  | 0.46 (0.07)                                          | -0.67 (<0.01) | -0.38 (<0.01)  | 0.01 (0.91)  |  |  |  |  |
| Fish/invertebrate MLR     | 0.33 (0.1)                                           | -0.45 (<0.01) | -0.29 (<0.01)  | -0.05 (0.54) |  |  |  |  |
| Fish/invertebrate BLM     | te BLM 0.39 (0.02)                                   |               | -0.16 (0.04)   | -0.07 (0.31) |  |  |  |  |
| Chlorella MLR             | 0.22 (0.29)                                          | -0.37 (0.02)  | -0.3 (<0.01)   | -0.12 (0.12) |  |  |  |  |
| <i>R. subcapitata</i> MLR | 0.17 (0.11)                                          | 0.01 (0.89)   | 0.06 (0.22)    | -0.03 (0.51) |  |  |  |  |
| R. subcapitata BLM        | 0.61 (<0.01)                                         | -0.47 (<0.01) | -0.17 (0.04)   | 0.04 (0.61)  |  |  |  |  |

## Appendix F Additional results of bioavailability model evaluation

#### F.1 Copper cross-species validation

|                                     | Correlation                   |                              | Slopes (p-values) of observed/predicted EC50 versus: ‡ |              |                   |               |                     |
|-------------------------------------|-------------------------------|------------------------------|--------------------------------------------------------|--------------|-------------------|---------------|---------------------|
| Model                               | coefficient<br>(pred.vs obs.) | <b>RF</b> x,2.0 <sup>†</sup> | Log (obs.<br>EC50)*                                    | рН           | Log<br>(hardness) | Log (DOC)     | Log<br>(Alkalinity) |
| Hardness regression                 | 0.45                          | 0.48                         | 0.58 (<0.01)                                           | 0 (0.97)     | -0.21 (0.014)     | 0.37 (<0.01)  | -0.12 (0.15)        |
| Pooled fish/<br>invertebrate<br>MLR | 0.64                          | 0.67                         | 0.2 (<0.01)                                            | 0 (0.98)     | -0.08 (0.16)      | -0.1 (0.02)   | -0.01 (0.93)        |
| Trophic MLR                         | 0.58                          | 0.67                         | 0.27 (<0.01)                                           | -0.01 (0.84) | -0.13 (0.04)      | -0.02 (0.70)  | -0.05 (0.41)        |
| Fish/<br>invertebrate<br>BLM        | 0.69                          | 0.62                         | 0.12 (0.055)                                           | 0.05 (0.2)   | -0.01 (0.92)      | -0.22 (<0.01) | 0.05 (0.39)         |

#### Appendix Table F.I: Cross-species model performance metrics for **copper**.

Notes: <sup>†</sup> Proportion of predictions within a factor of two. <sup>‡</sup> Linear regressions between residuals (observed/predicted) and log(observed EC50), pH, log(hardness) and log(DOC). Each is calculated as 2/(1+10^|(slope × (1-p-value))|)<sup>12</sup> and all are averaged to calculate the overall residual score. See plots below for relationships between residuals and each of these variables. \* Observed EC50 concentration.

<sup>&</sup>lt;sup>12</sup> Besser et al., 2021..







Figure F.2: Model evaluation plots for **copper** cross-validation of pooled fish/invertebrate MLR model.







Figure F.4: Model evaluation plots for copper cross-validation of BLM. .

#### F.2 Zinc cross-species validation plots

|                                     | Correlation                   |                                         | Slopes (p-values) of observed/predicted EC50 versus: <sup>‡</sup> |               |                   |               |                     |  |
|-------------------------------------|-------------------------------|-----------------------------------------|-------------------------------------------------------------------|---------------|-------------------|---------------|---------------------|--|
| Model                               | coefficient<br>(pred.vs obs.) | <b>RF</b> <sub>x,2.0</sub> <sup>†</sup> | Log<br>(obs. EC50)*                                               | рН            | Log<br>(hardness) | Log (DOC)     | Log<br>(Alkalinity) |  |
| Hardness<br>regression              | 0.59                          | 0.76                                    | 0.32 (<0.01)                                                      | -0.35 (<0.01) | -0.31 (0.001)     | 0.17 (0.014)  | -0.42 (<0.01)       |  |
| Pooled fish/<br>invertebrate<br>MLR | 0.73                          | 0.81                                    | 0.26 (<0.01)                                                      | -0.21 (<0.01) | -0.18 (0.019)     | 0.05 (0.403)  | -0.27 (<0.01)       |  |
| Trophic MLR                         | 0.65                          | 0.66                                    | 0.07 (0.429)                                                      | 0.05 (0.501)  | 0.04 (0.734)      | -0.3 (<0.01)  | 0.1 (0.35)          |  |
| Fish/<br>invertebrate<br>BLM        | 0.61                          | 0.61                                    | 0.28 (<0.01)                                                      | -0.19 (0.006) | -0.21 (0.027)     | -0.09 (0.198) | -0.21 (0.035)       |  |

#### Appendix Table F.2: Cross-species model performance metrics for **zinc**.

Notes: <sup>†</sup> Proportion of predictions within a factor of two. <sup>‡</sup> Linear regressions between residuals (observed/predicted) and log(observed EC50), pH, log(hardness) and log(DOC). Each is calculated as 2/(1+10^|(slope × (1-p-value))|)<sup>13</sup> and all are averaged to calculate the overall residual score. See plots below for relationships between residuals and each of these variables. \* Observed EC50 concentration.



Figure F.5: Model evaluation plots for **zinc** cross-validation of hardness regression model.

<sup>&</sup>lt;sup>13</sup> Besser et al., 2021..



Figure F.6: Model evaluation plots for **zinc** cross-validation of pooled fish/invertebrate MLR.



Figure F.7: Model evaluation plots for zinc cross-validation of trophic fish and invertebrate MLRs.



Figure F.8: Model evaluation plots for **zinc** cross-validation of pooled fish/invertebrate BLM.

#### F.3 Copper native species validation

Appendix Table F.3: Native-species model performance metrics for copper.

|                                     | Correlation                                       |      | Slopes (p-values) of observed/predicted EC50 versus: <sup>‡</sup> |              |                   |               |                     |  |  |
|-------------------------------------|---------------------------------------------------|------|-------------------------------------------------------------------|--------------|-------------------|---------------|---------------------|--|--|
| Model                               | coefficient<br>(pred.vs obs.) RF <sub>x,2.0</sub> |      | Log (obs.<br>EC50)*                                               | рН           | Log<br>(hardness) | Log (DOC)     | Log<br>(Alkalinity) |  |  |
| Hardness<br>regression              | 0.36                                              | 0.48 | 0.8 (<0.01)                                                       | 0.19 (0.17)  | -1.23 (<0.01)     | 0.7 (<0.01)   | -0.67 (<0.01)       |  |  |
| Pooled fish/<br>invertebrate<br>MLR | 0.94                                              | 0.84 | 0.1 (0.02)                                                        | -0.04 (0.47) | -0.38 (<0.01)     | 0.03 (0.39)   | -0.16 (0.034)       |  |  |
| Trophic MLR                         | 0.89                                              | 0.77 | 0.23 (<0.01)                                                      | -0.07 (0.32) | -0.59 (<0.01)     | 0.19 (<0.01)  | -0.34 (<0.01)       |  |  |
| Fish/<br>invertebrate<br>BLM        | 0.94                                              | 0.73 | -0.1 (0.03)                                                       | -0.06 (0.27) | 0.23 (0.03)       | -0.15 (<0.01) | 0.27 (<0.01)        |  |  |

Notes: <sup>†</sup> Proportion of predictions within a factor of two. <sup>‡</sup> Linear regressions between residuals (observed/predicted) and log(observed EC50), pH, log(hardness) and log(DOC). Each is calculated as 2/(1+10^|(slope × (1-p-value))|)<sup>14</sup> and all are averaged to calculate the overall residual score. See plots below for relationships between residuals and each of these variables. \* Observed EC50 concentration.

<sup>&</sup>lt;sup>14</sup> Besser et al., 2021..



Figure F.9: Model evaluation plots for **copper** native-species validation of hardness regression.



Figure F.10: Model evaluation plots for **copper** native-species validation of pooled fish/invertebrate MLR.



Figure F.11: Model evaluation plots for **copper** native-species validation of trophic-level MLRs.



Figure F.12: Model evaluation plots for **copper** native-species validation of BLM.

#### F.4 Zinc native species validation

|                                     | Correlation                   |                                         | Slop                | s: ‡          |                   |               |                     |
|-------------------------------------|-------------------------------|-----------------------------------------|---------------------|---------------|-------------------|---------------|---------------------|
| Model                               | coefficient<br>(pred.vs obs.) | <b>RF</b> <sub>x,2.0</sub> <sup>†</sup> | Log<br>(obs. EC50)* | рН            | Log<br>(hardness) | Log (DOC)     | Log<br>(Alkalinity) |
| Hardness regression                 | 0.52                          | 0.70                                    | 0.15 (0.33)         | -0.4 (<0.01)  | -0.22 (0.14)      | 0.09 (0.26)   | -0.45 (0.03)        |
| Pooled fish/<br>invertebrate<br>MLR | 0.71                          | 0.85                                    | 0.2 (0.031)         | -0.21 (<0.01) | -0.2 (0.03)       | 0.05 (0.33)   | -0.29 (0.03)        |
| Trophic MLR                         | 0.48                          | 0.46                                    | -0.05 (0.79)        | 0.07 (0.59)   | 0.1 (0.6)         | -0.47 (<0.01) | 0.27 (0.32)         |
| Fish/<br>invertebrate<br>BLM        | 0.59                          | 0.64                                    | 0.22 (0.072)        | -0.04 (0.66)  | -0.07 (0.54)      | -0.05 (0.49)  | 0.12 (0.47)         |

#### Appendix Table F.4: Native-species model performance metrics for **zinc**.

Notes: <sup>†</sup> Proportion of predictions within a factor of two. <sup>‡</sup> Linear regressions between residuals (observed/predicted) and log(observed EC50), pH, log(hardness) and log(DOC). Each is calculated as 2/(1+10^|(slope × (1-p-value))|)<sup>15</sup> and all are averaged to calculate the overall residual score. See plots below for relationships between residuals and each of these variables. \* Observed EC50 concentration.



Figure F.13: Model evaluation plots for **zinc** native-species validation of hardness regression.

<sup>&</sup>lt;sup>15</sup> Besser et al., 2021..



Figure F.14: Model evaluation plots for **zinc** native-species validation of pooled fish/invertebrate MLR.



Figure F.15: Model evaluation plots for **zinc** native-species validation of trophic-level MLRs.



Figure F.16: Model evaluation plots for **zinc** native-species validation of BLM.

### Appendix G Acute toxicity data used in the derivations

Appendix Table G.I: **Copper** acute toxicity values used to derive acute guideline values in freshwater. Reported EC50 value shown here is geometric mean of all reported values. Single values for each species, toxicity values normalised to index water chemistry of pH 7.5, hardness 30 mg CaCO<sub>3</sub>/L and 0.5 mg/L DOC.

| Tax Group  | Species                     | Effect    | Organism<br>life stage | Exposure duration | N. data<br>this<br>species | Reported<br>EC50 * | Norma-<br>lised<br>EC50 | Converted<br>EC10 | Percentile<br>rank<br>(1-100) |
|------------|-----------------------------|-----------|------------------------|-------------------|----------------------------|--------------------|-------------------------|-------------------|-------------------------------|
| Amphibian  | Lithobates<br>clamitans     | Mortality | Embryo                 | 96                | 1                          | 160                | 46                      | 25                | 63                            |
| Amphibian  | Lithobates<br>catesbeianus  | Mortality | Larva                  | 96                | 1                          | 2400               | 7600                    | 4200              | 99                            |
| Annelid    | Lumbriculus<br>variegatus   | Mortality | Adult                  | 48                | 25                         | 110                | 59                      | 36                | 74                            |
| Crustacean | Scapholeberis<br>mucronata  | Mortality | Juvenile               | 48                | 1                          | 5.3                | 1.5                     | 0.9               | 0                             |
| Crustacean | Ceriodaphnia dubia          | Mortality | Neonate                | 48                | 46                         | 45                 | 4                       | 2.5               | 9                             |
| Crustacean | Alona<br>quadrangularis     | Mortality | Juvenile               | 48                | 2                          | 54                 | 4.2                     | 2.6               | 10                            |
| Crustacean | Daphnia longispina          | Mortality | Juvenile               | 48                | 11                         | 7.9                | 5.7                     | 3.5               | 12                            |
| Crustacean | Alona sp.                   | Mortality | Juvenile               | 48                | 1                          | 23                 | 6.4                     | 4                 | 15                            |
| Crustacean | Daphnia pulex               | Mortality | Neonate                | 48                | 31                         | 13                 | 6.7                     | 4.2               | 16                            |
| Crustacean | Simocephalus<br>exspinosus  | Mortality | Juvenile               | 48                | 11                         | 27                 | 7.6                     | 4.7               | 19                            |
| Crustacean | Daphnia galeata             | Mortality | Juvenile               | 48                | 6                          | 14                 | 7.9                     | 4.9               | 20                            |
| Crustacean | Ceriodaphnia<br>reticulata  | Mortality | Neonate                | 48                | 422                        | 41                 | 8.4                     | 5.2               | 21                            |
| Crustacean | Daphnia magna               | Mortality | Neonate                | 48                | 7                          | 16                 | 8.6                     | 5.3               | 22                            |
| Crustacean | Disparalona<br>rostrata     | Mortality | Juvenile               | 48                | 2                          | 99                 | 11                      | 6.6               | 27                            |
| Crustacean | Daphnia obtusa              | Mortality | Neonate                | 48                | 53                         | 23                 | 11                      | 6.7               | 29                            |
| Crustacean | Simocephalus<br>vetulus     | Mortality | Juvenile               | 48                | 18                         | 12                 | 11                      | 6.8               | 30                            |
| Crustacean | Hyalella azteca             | Mortality | Juvenile               | 96                | 7                          | 20                 | 11                      | 6.9               | 33                            |
| Crustacean | Eurycercus<br>Iamellatus    | Mortality | Juvenile               | 48                | 2                          | 18                 | 13                      | 8.2               | 37                            |
| Crustacean | Pleuroxus<br>truncatus      | Mortality | Juvenile               | 48                | 2                          | 160                | 17                      | 11                | 42                            |
| Crustacean | Acroperus harpae            | Mortality | Juvenile               | 48                | 2                          | 26                 | 17                      | 11                | 43                            |
| Crustacean | Chydorus<br>sphaericus      | Mortality | Juvenile               | 48                | 9                          | 39                 | 22                      | 14                | 49                            |
| Crustacean | Caridina sp.                | Mortality | Adult                  | 48                | 1                          | 4.5                | 23                      | 14                | 51                            |
| Crustacean | Daphnia carinata            | Mortality | Neonate                | 48                | 1                          | 40                 | 28                      | 17                | 53                            |
| Crustacean | Paracalliope<br>fluviatilis | Mortality | NA                     | 48                | 1                          | 61                 | 41                      | 26                | 65                            |
| Crustacean | Daphnia thomsoni            | Mortality | Neonate                | 48                | 7                          | 100                | 57                      | 35                | 72                            |

| Tax Group  | Species                        | Effect    | Organism<br>life stage | Exposure<br>duration | N. data<br>this<br>species | Reported<br>EC50 * | Norma-<br>lised<br>EC50 | Converted<br>EC10 | Percentile<br>rank<br>(1-100) |
|------------|--------------------------------|-----------|------------------------|----------------------|----------------------------|--------------------|-------------------------|-------------------|-------------------------------|
| Crustacean | Paratya<br>australiensis       | Mortality | Adult                  | 96                   | 11                         | 140                | 63                      | 39                | 78                            |
| Fish       | Acipenser<br>transmontanus     | Growth    | Larva                  | 96                   | 1                          | 5.3                | 2.1                     | 1.1               | 1                             |
| Fish       | Prosopium<br>williamsoni       | Mortality | Juvenile               | 96                   | 2                          | 5.5                | 2.8                     | 1.5               | 2                             |
| Fish       | Cottus bairdii                 | Mortality | Larva                  | 96                   | 1                          | 17                 | 4.9                     | 2.7               | 11                            |
| Fish       | Ptychocheilus<br>oregonensis   | Mortality | Juvenile               | 96                   | 2                          | 20                 | 12                      | 6.7               | 28                            |
| Fish       | Etheostoma<br>rubrum           | Mortality | NA                     | 96                   | 1                          | 58                 | 12                      | 6.8               | 31                            |
| Fish       | Oncorhynchus<br>clarkii        | Mortality | Adult/<br>Juvenile     | 96                   | 2                          | 67                 | 14                      | 7.9               | 34                            |
| Fish       | Oncorhynchus<br>mykiss         | Mortality | Juvenile               | 96                   | 56                         | 23                 | 15                      | 8.1               | 36                            |
| Fish       | Oncorhynchus<br>apache         | Mortality | NA                     | 96                   | 1                          | 67                 | 17                      | 9.2               | 39                            |
| Fish       | Oncorhynchus<br>tshawytscha    | Mortality | Juvenile               | 96                   | 152                        | 75                 | 19                      | 10                | 40                            |
| Fish       | Oncorhynchus<br>kisutch        | Mortality | Juvenile               | 96                   | 3                          | 15                 | 21                      | 12                | 46                            |
| Fish       | Pimephales<br>promelas         | Mortality | Larva                  | 96                   | 5                          | 71                 | 22                      | 12                | 48                            |
| Fish       | Perca flavescens               | Mortality | Adult/<br>Juvenile     | 96                   | 2                          | 86                 | 33                      | 18                | 55                            |
| Fish       | Poeciliopsis<br>occidentalis   | Mortality | NA                     | 96                   | 1                          | 160                | 40                      | 22                | 57                            |
| Fish       | Galaxias maculatus             | Mortality | Adult                  | 96                   | 1                          | 59                 | 41                      | 22                | 58                            |
| Fish       | Gila elegans                   | Mortality | NA                     | 96                   | 1                          | 190                | 45                      | 25                | 62                            |
| Fish       | Salvelinus<br>confluentus      | Mortality | Juvenile               | 96                   | 5                          | 100                | 52                      | 29                | 67                            |
| Fish       | Scaphirhynchus<br>platorynchus | Mortality | NA                     | 96                   | 1                          | 160                | 55                      | 30                | 69                            |
| Fish       | Etheostoma<br>Iepidum          | Mortality | NA                     | 96                   | 1                          | 250                | 63                      | 34                | 71                            |
| Fish       | Macquaria<br>ambigua           | Mortality | Juvenile               | 96                   | 1                          | 94                 | 65                      | 36                | 73                            |
| Fish       | Acrocheilus<br>alutaceus       | Mortality | Juvenile               | 96                   | 1                          | 140                | 68                      | 38                | 75                            |
| Fish       | Entosphenus<br>tridentatus     | Mortality | Egg                    | 96                   | 1                          | 46                 | 69                      | 38                | 76                            |
| Fish       | Gasterosteus<br>aculeatus      | Mortality | Adult                  | 96                   | 5                          | 330                | 82                      | 45                | 79                            |
| Fish       | Pseudomugil<br>tenellus        | Mortality | Adult                  | 96                   | 1                          | 120                | 95                      | 52                | 82                            |

| Tax Group      | Species                            | Effect    | Organism<br>life stage | Exposure duration | N. data<br>this<br>species | Reported<br>EC50 * | Norma-<br>lised<br>EC50 | Converted<br>EC10 | Percentile<br>rank<br>(1-100) |
|----------------|------------------------------------|-----------|------------------------|-------------------|----------------------------|--------------------|-------------------------|-------------------|-------------------------------|
| Fish           | Etheostoma<br>flabellare           | Mortality | NA                     | 96                | 4                          | 340                | 98                      | 54                | 83                            |
| Fish           | Ptychocheilus<br>Iucius            | Mortality | NA                     | 96                | 2                          | 410                | 120                     | 66                | 84                            |
| Fish           | Etheostoma<br>nigrum               | Mortality | NA                     | 96                | 4                          | 510                | 150                     | 81                | 85                            |
| Fish           | Cyprinus carpio                    | Mortality | Juvenile               | 96                | 4                          | 420                | 160                     | 89                | 87                            |
| Fish           | Melanotaenia<br>nigrans            | Mortality | Adult                  | 96                | 1                          | 230                | 180                     | 100               | 88                            |
| Fish           | Mogurnda<br>mogurnda               | Mortality | Larva                  | 96                | 5                          | 21                 | 230                     | 130               | 89                            |
| Fish           | Hypseleostris<br>compressus        | Mortality | Adult                  | 96                | 1                          | 330                | 260                     | 140               | 91                            |
| Fish           | Denariusa bandata                  | Mortality | Adult                  | 96                | 1                          | 520                | 360                     | 200               | 92                            |
| Fish           | Gobiomorphus<br>cotidianus         | Mortality | Juvenile               | 96                | 1                          | 77                 | 390                     | 220               | 93                            |
| Fish           | Porochilus rendahli                | Mortality | Adult                  | 72                | 1                          | 85                 | 430                     | 240               | 94                            |
| Fish           | Lepomis<br>macrochirus             | Mortality | Juvenile               | 96                | 2                          | 1700               | 550                     | 300               | 96                            |
| Fish           | Melanotaenia<br>splendida inornata | Mortality | Adult                  | 96                | 2                          | 350                | 700                     | 380               | 97                            |
| Fish           | Notemigonus<br>crysoleucas         | Mortality | NA                     | 96                | 1                          | 81200              | 22600                   | 12400             | 100                           |
| Insect         | Rhithrogena hageni                 | Mortality | Larva                  | 96                | 1                          | 140                | 73                      | 45                | 80                            |
| Insect         | Deleatidium spp.                   | Mortality | Larva                  | 48                | 1                          | 86                 | 210                     | 130               | 90                            |
| Insect         | Chironomus<br>decorus              | Mortality | NA                     | 48                | 1                          | 740                | 650                     | 410               | 98                            |
| Macrophyt<br>e | Ceratophyllum<br>demersum          | Biomass   | Juvenile               | 96                | 3                          | 9                  | 20                      | 12                | 47                            |
| Macrophyt<br>e | Lemna<br>aequinoctialis            | Growth    | Mature                 | 96                | 1                          | 16                 | 43                      | 24                | 61                            |
| Mollusc        | Venustaconcha<br>ellipsiformis     | Mortality | Glochidia              | 24                | 1                          | 10                 | 2.5                     | 1.6               | 3                             |
| Mollusc        | Epioblasma<br>capsaeformis         | Mortality | Juvenile               | 48                | 2                          | 14                 | 3.2                     | 2                 | 4                             |
| Mollusc        | Villosa iris                       | Mortality | Juvenile               | 96                | 5                          | 35                 | 3.5                     | 2.2               | 6                             |
| Mollusc        | Potamilus ohiensis                 | Mortality | Glochidia              | 24                | 1                          | 14                 | 3.6                     | 2.2               | 7                             |
| Mollusc        | Lymnaea stagnalis                  | Mortality | Juvenile               | 96                | 2                          | 28                 | 4                       | 2.5               | 8                             |
| Mollusc        | Lampsilis<br>siliquoidea           | Mortality | Juvenile               | 96                | 38                         | 51                 | 6                       | 3.7               | 13                            |
| Mollusc        | Leptodea leptodon                  | Mortality | Juvenile               | 48                | 1                          | 29                 | 6.8                     | 4.2               | 17                            |
| Mollusc        | Lithoglyphus<br>virens             | Mortality | NA                     | 96                | 1                          | 7.7                | 6.9                     | 4.3               | 18                            |
| Mollusc        | Lampsilis abrupta                  | Mortality | Glochidia              | 24                | 1                          | 34                 | 8.6                     | 5.4               | 24                            |

| Tax Group | Species                       | Effect                       | Organism<br>life stage | Exposure duration | N. data<br>this<br>species | Reported<br>EC50 * | Norma-<br>lised<br>EC50 | Converted<br>EC10 | Percentile<br>rank<br>(1-100) |
|-----------|-------------------------------|------------------------------|------------------------|-------------------|----------------------------|--------------------|-------------------------|-------------------|-------------------------------|
| Mollusc   | Villosa fabalis               | Mortality                    | Glochidia              | 24                | 1                          | 6.9                | 9.2                     | 5.7               | 25                            |
| Mollusc   | Lampsilis<br>rafinesqueana    | Mortality                    | Glochidia              | 24                | 1                          | 41                 | 10                      | 6.5               | 26                            |
| Mollusc   | Juga plicifera                | Mortality                    | Adult                  | 96                | 1                          | 15                 | 13                      | 8                 | 35                            |
| Mollusc   | Epioblasma<br>triquetra       | Mortality                    | Glochidia              | 24                | 4                          | 24                 | 14                      | 9                 | 38                            |
| Mollusc   | Obovaria<br>subrotunda        | Mortality                    | Glochidia              | 24                | 1                          | 13                 | 17                      | 11                | 44                            |
| Mollusc   | Epioblasma<br>rangiana        | Mortality                    | Glochidia              | 24                | 1                          | 13                 | 18                      | 11                | 45                            |
| Mollusc   | Lampsilis fasciola            | Mortality                    | Glochidia              | 24                | 3                          | 34                 | 26                      | 16                | 52                            |
| Mollusc   | Pomacea paludosa              | Mortality                    | Adult/<br>Juvenile     | 96                | 19                         | 45                 | 28                      | 17                | 54                            |
| Mollusc   | Potamopyrgus<br>antipodarum   | Mobility                     | NA                     | 96                | 4                          | 39                 | 34                      | 21                | 56                            |
| Mollusc   | Echyridella<br>menziesii      | Mortality                    | Juvenile               | 48                | 1                          | 33                 | 37                      | 23                | 60                            |
| Mollusc   | Actinonaias<br>ligamentina    | Mortality                    | Larva                  | 24                | 1                          | 31                 | 41                      | 26                | 64                            |
| Mollusc   | Ptychobranchus<br>fasciolaris | Mortality                    | Glochidia              | 24                | 2                          | 34                 | 46                      | 29                | 66                            |
| Mollusc   | Ligumia recta                 | Mortality                    | Glochidia              | 24                | 1                          | 35                 | 52                      | 32                | 70                            |
| Mollusc   | Hyridella depressa            | Duration<br>valve<br>opening | Adult/<br>Juvenile     | 48                | 11                         | 100                | 80                      | 50                | 81                            |

Appendix Table G.2: **Zinc** acute toxicity values used to derive acute guideline values in freshwater. Reported EC50 value shown here is geometric mean of all reported values. Single values for each species, toxicity values normalised to index water chemistry of pH 7.5, hardness 30 mg CaCO<sub>3</sub>/L and 0.5 mg/L DOC.

| Tax Group  | Species                       | Effect    | Organism<br>life stage | Exposure duration | N. data<br>this<br>species | Reported<br>EC50* | Norma-<br>lised<br>EC50 | Converted<br>EC10 | Percen<br>tile<br>rank<br>(1-100) |
|------------|-------------------------------|-----------|------------------------|-------------------|----------------------------|-------------------|-------------------------|-------------------|-----------------------------------|
| Amphibian  | Bufo boreas                   | Mortality | Larva                  | 96                | 2                          | 840               | 480                     | 260               | 50                                |
| Amphibian  | Bufo gargarizan               | Mortality | Larva                  | 96                | 2                          | 19000             | 5000                    | 2700              | 84                                |
| Amphibian  | Bufo melanostictus            | Mortality | Larva                  | 96                | 1                          | 20000             | 5700                    | 3100              | 87                                |
| Fish       | Oncorhynchus mykiss           | Mortality | Fry                    | 96                | 41                         | 150               | 110                     | 57                | 12                                |
| Fish       | Cottus bairdi                 | Mortality | Juvenile               | 96                | 2                          | 380               | 140                     | 71                | 15                                |
| Fish       | Oncorhynchus clarkii          | Mortality | Juvenile               | 96                | 6                          | 150               | 160                     | 81                | 16                                |
| Fish       | Prosopium<br>williamsoni      | Mortality | Fry                    | 96                | 3                          | 420               | 270                     | 140               | 29                                |
| Fish       | Cottus confusus               | Mortality | Juvenile               | 96                | 1                          | 300               | 280                     | 140               | 31                                |
| Fish       | Acipenser<br>transmontanus    | Mortality | Larva                  | 96                | 4                          | 680               | 340                     | 180               | 37                                |
| Fish       | Salmo trutta                  | Mortality | Juvenile               | 96                | 16                         | 940               | 400                     | 210               | 40                                |
| Fish       | Pimephales promelas           | Mortality | Larva                  | 96                | 10                         | 920               | 450                     | 230               | 46                                |
| Fish       | Salvelinus fontinalis         | Mortality | Juvenile               | 96                | 2                          | 930               | 560                     | 290               | 56                                |
| Fish       | Rhinichthys<br>cataractae     | Mortality | Fry                    | 96                | 1                          | 1900              | 1100                    | 560               | 63                                |
| Fish       | Retropinna retropinna         | Mortality | Juvenile               | 96                | 1                          | 1500              | 1400                    | 700               | 68                                |
| Fish       | Platygobio gracilis           | Mortality | Juvenile               | 96                | 1                          | 2600              | 1500                    | 770               | 69                                |
| Fish       | Gobiomorphus<br>cotidianus    | Mortality | Juvenile               | 96                | 1                          | 2300              | 2100                    | 1100              | 72                                |
| Fish       | Lepomis macrochirus           | Mortality | Juvenile               | 96                | 1                          | 3200              | 2200                    | 1100              | 74                                |
| Fish       | Cyprinus carpio               | Mortality | Juvenile               | 96                | 1                          | 9700              | 3100                    | 1600              | 76                                |
| Fish       | Pseudorasbora parva           | Mortality | n.r.                   | 96                | 2                          | 19000             | 5000                    | 2600              | 82                                |
| Fish       | Galaxias maculatus            | Mortality | Adult                  | 96                | 1                          | 5500              | 5500                    | 2800              | 85                                |
| Fish       | Misgurnus<br>anguillicaudatus | Mortality | n.r.                   | 96                | 2                          | 29000             | 7800                    | 4000              | 88                                |
| Fish       | Macquaria ambigua             | Mortality | Adult                  | 96                | 1                          | 7900              | 7900                    | 4100              | 90                                |
| Fish       | Anguilla dieffenbachii        | Mortality | Juvenile               | 96                | 1                          | 8900              | 8400                    | 4300              | 93                                |
| Fish       | Anguilla australis            | Mortality | Juvenile               | 96                | 1                          | 11000             | 11000                   | 5400              | 96                                |
| Fish       | Gambusia affinis              | Mortality | Adult                  | 96                | 3                          | 74000             | 26000                   | 13000             | 97                                |
| Crustacean | Hyalella azteca               | Mortality | Juvenile               | 96                | 2                          | 140               | 68                      | 37                | 6                                 |
| Crustacean | Ceriodaphnia dubia            | Mortality | Neonate                | 48                | 11                         | 310               | 200                     | 110               | 19                                |
| Crustacean | Daphnia carinata              | Mortality | Neonate                | 48                | 1                          | 340               | 200                     | 110               | 21                                |
| Crustacean | Paratya australiensis         | Mortality | Juvenile               | 48                | 2                          | 240               | 250                     | 130               | 26                                |
| Crustacean | Ceriodaphnia<br>reticulata    | Mortality | Neonate                | 48                | 1                          | 940               | 280                     | 150               | 32                                |
| Crustacean | Simocephalus vetulus          | Mortality | <48 hr                 | 48                | 2                          | 940               | 280                     | 160               | 34                                |

| Tax Group  | Species                           | Effect    | Organism<br>life stage | Exposure duration | N. data<br>this<br>species | Reported<br>EC50* | Norma-<br>lised<br>EC50 | Converted<br>EC10 | Percen<br>tile<br>rank<br>(1-100) |
|------------|-----------------------------------|-----------|------------------------|-------------------|----------------------------|-------------------|-------------------------|-------------------|-----------------------------------|
| Crustacean | Daphnia galeata                   | Mortality | <48 hr                 | 48                | 1                          | 1000              | 300                     | 170               | 35                                |
| Crustacean | Simocephalus<br>exspinosus        | Mortality | <48 hr                 | 48                | 2                          | 1200              | 350                     | 190               | 38                                |
| Crustacean | Ceriodaphnia<br>pulchella         | Mortality | Neonate                | 48                | 1                          | 1300              | 380                     | 210               | 41                                |
| Crustacean | Daphnia magna                     | Mortality | Neonate                | 48                | 16                         | 960               | 390                     | 210               | 43                                |
| Crustacean | Chydorus sphaericus               | Mortality | <48 hr                 | 48                | 1                          | 1300              | 400                     | 220               | 44                                |
| Crustacean | Daphnia pulex                     | Mortality | Neonate                | 48                | 25                         | 500               | 420                     | 230               | 47                                |
| Crustacean | Daphnia thomsoni                  | Mortality | Neonate                | 48                | 7                          | 470               | 450                     | 250               | 49                                |
| Crustacean | Chydorus ovalis                   | Mortality | less than<br>48 h      | 48                | 1                          | 1600              | 490                     | 270               | 51                                |
| Crustacean | Daphnia longispina                | Mortality | <48 hr                 | 48                | 1                          | 1700              | 520                     | 280               | 54                                |
| Crustacean | Paracalliope fluviatilis          | Mortality | NA                     | 48                | 4                          | 510               | 660                     | 360               | 57                                |
| Crustacean | Macrobrachium<br>nipponense       | Mortality | n.r.                   | 96                | 2                          | 2700              | 720                     | 400               | 59                                |
| Crustacean | Paratya curvirostris              | Mortality | Adult                  | 96                | 1                          | 14000             | 8200                    | 4500              | 94                                |
| Insect     | Neocloeon triangulifer            | Mortality | Neonate                | 96                | 1                          | 69                | 30                      | 16                | 0                                 |
| Insect     | Deleatidium spp.                  | Mortality | Juvenile               | 48                | 1                          | 570               | 500                     | 280               | 53                                |
| Insect     | Rhithrogena sp.                   | Mortality | Larva                  | 96                | 1                          | 1400              | 920                     | 500               | 62                                |
| Insect     | Chironomus riparius               | Mortality | n.r.                   | 96                | 2                          | 11000             | 3000                    | 1700              | 78                                |
| Insect     | <i>Capnia</i> sp.                 | Mortality | Larva                  | 96                | 2                          | 5700              | 3300                    | 1800              | 79                                |
| Insect     | Baetis tricaudatus                | Mortality | Larva                  | 96                | 3                          | 11000             | 7800                    | 4300              | 91                                |
| Insect     | Rhithrogena hageni                | Mortality | Larva                  | 96                | 2                          | 44000             | 30000                   | 16000             | 99                                |
| Insect     | <i>Cinygmula</i> sp.              | Mortality | Larva                  | 96                | 2                          | 69000             | 43000                   | 24000             | 100                               |
| Mollusc    | Leptoxis ampla                    | Mortality | Juvenile               | 96                | 1                          | 67                | 58                      | 32                | 4                                 |
| Mollusc    | Lampsilis<br>rafinesqueana        | Mortality | Juvenile               | 48                | 1                          | 130               | 120                     | 67                | 13                                |
| Mollusc    | Villosa vibex                     | Mortality | Juvenile               | 96                | 1                          | 200               | 170                     | 94                | 18                                |
| Mollusc    | Pomacea paludosa                  | Mortality | Juvenile               | 96                | 8                          | 520               | 210                     | 120               | 22                                |
| Mollusc    | Actinonaias pectorosa             | Mortality | Juvenile               | 96                | 1                          | 360               | 220                     | 120               | 24                                |
| Mollusc    | Epioblasma<br>capsaeformis        | Mortality | Juvenile               | 96                | 1                          | 370               | 240                     | 130               | 25                                |
| Mollusc    | Lampsilis straminea<br>claibornen | Mortality | Juvenile               | 96                | 1                          | 290               | 250                     | 140               | 28                                |
| Mollusc    | Cipangopaludina<br>cathayensis    | Mortality | n.r.                   | 96                | 2                          | 3300              | 870                     | 480               | 60                                |
| Mollusc    | Potamopyrgus<br>antipodarum       | Mortality | Adult                  | 96                | 9                          | 1000              | 1100                    | 630               | 65                                |
| Mollusc    | Lampsilis siliquoidea             | Mortality | Juvenile               | 96                | 1                          | 1700              | 1500                    | 800               | 71                                |
| Mollusc    | Gyraulus sp.                      | Mortality | NA                     | 96                | 1                          | 3300              | 2100                    | 1200              | 75                                |

| Tax Group      | Species                            | Effect            | Organism<br>life stage | Exposure duration | N. data<br>this<br>species | Reported<br>EC50* | Norma-<br>lised<br>EC50 | Converted<br>EC10 | Percen<br>tile<br>rank<br>(1-100) |
|----------------|------------------------------------|-------------------|------------------------|-------------------|----------------------------|-------------------|-------------------------|-------------------|-----------------------------------|
| Mollusc        | Lymnaea luteola                    | Mortality         | Adult                  | 48                | 3                          | 11000             | 3600                    | 2000              | 81                                |
| Annelid        | Limnodrilus<br>hoffmeisteri        | Mortality         | n.r.                   | 96                | 2                          | 100               | 56                      | 31                | 9                                 |
| Annelid        | Nais elinguis                      | Mortality         | Adult                  | 96                | 1                          | 120               | 69                      | 38                | 66                                |
| Rotifer        | Euchlanis dilatata                 | Mortality         | Neonate                | 24                | 1                          | 300               | 80                      | 44                | 3                                 |
| Rotifer        | Lecane quadridentata               | Mortality         | Neonate                | 48                | 1                          | 890               | 1100                    | 630               | 7                                 |
| Green<br>algae | Raphidocelis<br>subcapitata        | Population growth | exponential<br>growth  | 24                | 5                          | 83                | 54                      | 26                | 1                                 |
| Green<br>algae | <i>Chlorella</i> sp. (PNG isolate) | Population growth | exponential<br>growth  | 24                | 10                         | 180               | 120                     | 56                | 10                                |