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EXECUTIVE SUMMARY 
The match between the biota expected at a site in the absence of impacts and what is found 

there when testing is a robust and popular bioassessment method in many countries worldwide.   

The difference between the assemblage found and that expected is measured as the 

observed/expected ratio and is the basis of the RIVPACS1 approach initially developed in the 

United Kingdom using invertebrates. 

When the observed and expected assemblages match the O/E score is 1.  An O/E score less than 

1 means some impact and more than 1 suggests better than expected biota. 

This scoping trial of the feasibility of a fish predictive RIVPACS type bioassessment using the New 

Zealand Freshwater Fish Database (NZFFDB) and predictive models of fish distribution from the 

Freshwater Ecosystems of New Zealand2 (FENZ) was not successful. 

This study revealed that the predictive bioassessment approach in this case failed mainly due to 

the lack of suitable predictive models for this not because of problems with the predictive 

bioassessment approach. 

The problem with the available FENZ fish predictions used ij this study is that they were 

developed to predict how the fish assemblages are today allowing for many land-use impacts 

rather than the predictions of the assemblages that would be expected in the absence of 

impacts crucial to RIVPACS type models. 

Regional O/E fish models have been successfully applied with fish in New Zealand by taking all 

the steps in the RIVPACS process but have generally not been taken up by resource managers. 

To validate the data used in this study an Index of Biotic Integrity (IBI) was successfully applied to 

the observed (NZFFDB) and predicted fish assemblages (FENZ) and revealed their suitability for 

bioassessment. 

However, an assessment of the observed/expected IBI results was, like the fish community O/E 

unsuccessful, again because the predictions are for actual rather than expected fish 

communities. 

                                                             
1 This is the River Invertebrate Prediction and Classification System, first developed in the United Kingdom in 
1984/ 
2 http://www.doc.govt.nz/conservation/land-and-freshwater/freshwater/freshwater-ecosystems-of-new-
zealand/ 
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The conclusions from this study are that predictive bioassessment models have great potential 

for use in New Zealand but there are no shortcuts.  Consequently, new predictive models must 

be produced based on reference sites and using habitat descriptors that are least influenced by 

human impacts.   

In the meantime the IBI is a useful measure of the biotic integrity of freshwater in New Zealand, 

and improvements in sampling and metrics to take into account abundance and size/age classes 

show that the IBI can be updated and the outputs precision improved.     

 

INTRODUCTION 

 

FISH IN BIOASSESSMENT 

Freshwater biological communities are sensitive indicators of the relative health of their ecosystems 

and the surrounding catchment (Fausch et al. 1990, McCormick et al. 2000). The relationship 

between the biological, physical and chemical components of ecosystems is the basis of biological 

monitoring. Fish are potentially effective indicators of the condition of aquatic ecosystems, because 

different species exhibit diverse ecological, morphological and behavioural adaptations to their 

natural habitat (Karr et al. 1986, Fausch et al. 1990).  Fish communities integrate the ecological 

processes of streams across both temporal and spatial scales (Karr et al. 1986, Fausch et al. 1990), 

therefore they can be useful indicators of aquatic degradation (Karr 1981, Karr 1991b, a).  

Furthermore, because fish are a visible part of stream biological integrity, they represent a measure 

of stream quality easily and intuitively understood by the public (McCormick et al. 2000).  

Despite this potential however, until recently fish were seldom used in biological assessment in New 

Zealand because of the overwhelming influence of altitude and distance from the sea on fish 

distribution (Joy et al. 2000, McDowall and Taylor 2000, Joy and Death 2001).  The development in 

2004 of a fish index of biotic integrity (IBI) (Joy and Death 2004a) resulted in national and regional 

freshwater fish integrity analyses in relation to land use and temporal trends (Joy 2009), and many 

regional councils (Southland, Tasman, Waikato, Auckland, Hawkes Bay and Wellington) now have 

regional IBI models for use in state of the environment and other monitoring e.g. (Joy 2005b, 2008).  
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BACKGROUND TO SCOPING STUDY 

This assessment was undertaken to investigate the feasibility of using freshwater fish predictive 

models in national bioassessment in New Zealand.  Although regional predictive bioassessment 

models have been developed (Joy and Death 2000, 2002b, a) they have rarely been used in 

bioassessment and being regional are not suitable for national assessment.   The main objective of 

this scoping study was to see if the existing extensive database of fish distribution (the New Zealand 

freshwater fish database) could be combined with an existing national predictive model of fish 

distribution (Leathwick et al. 2008a) to give a baseline measure of fish communities at a national 

scale.   

This study was undertaken with the recognition that many of the requirements of the predictive 

bioassement models developed and used overseas would not be met, but given the lack of resources 

and time to address these issues an assessment of its potential use could be made with the existing 

data.  The limitations included the lack of ‘reference site’(Kennard et al. 2006, Robertson et al. 2006, 

Wang et al. 2008) data and the fact that the predictions used are predictions for how the 

communities are now including impacts not how they would be in the absence of those impacts.   

 

EXPECTATIONS OF SCOPING STUDY 

The advantage of using predictions that include all sites (not just reference sites) and human-

influenced variables is that the predictions are more accurate, as there is always a trade-off between 

accuracy of predictive models and limiting predictions by removing sites and variables.  The 

hypothesis in this case was that using the large number of sites in the database the O/E scores would 

represent baseline conditions and that the upper and lower ends of the distribution of scores would 

represent extremely good and extremely bad sites respectively.  It was anticipated that the upper 

end of the range of O/E score would include many of the sites in native vegetation and not many 

sites in developed catchments as a validation of the method. 

 

PREDICTIVE MODELS IN BIOASSESSMENT 

The basis of the analysis assessed in this report is the River Invertebrate Prediction and Classification 

System (RIVPACS) approach, originally developed in the U.K. by Wright and colleagues (Wright 1995) 

later advanced by Simpson & Norris in Australia with the Australian River Assessment Scheme 
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(AUSRIVAS) (Simpson and Norris 2000) and more recently in the USA (Hargett et al. 2007, Carlisle 

and Hawkins 2008, Yuan et al. 2008, Aguiar et al. 2011, Tsang et al. 2011).  These predictive 

bioassessment models are similar and will be referred to in this report as RIVPACS models. RIVPACS 

models assess biological status by comparing the biotic condition at sites being evaluated with the 

biota expected to occur in the absence of stress (Wright 1995).  A detailed account of the 

background to this type of predictive modelling has been covered in numerous publications e.g. 

(Wright 1995, Hawkins et al. 2000, Simpson and Norris 2000, Joy and Death 2001), and hence will 

not be explained in detail here.  But a basic summary of the steps are: 

1. A predictive model is built using biological, physical and chemical data collected at a number 

of unimpacted or minimally impacted sites, generally referred to as reference sites.  

2. The reference sites are classified into groups based on the homogeneity of their fauna, and 

the physical and chemical characteristics that best describe variation among the groups are 

determined.  

3. Some form of discriminant analysis is used to predict the biotic communities expected to 

occur in the absence of environmental stress.  

4. Finally the expected community is defined as the sum of probabilities for all predicted 

species and this is divided by the observed list of species (only if predicted to be there) to 

give the observed over expected ratio. 

In this assessment some of the steps described above were omitted or altered.  The main differences 

were: 1) the predictions did not come from reference sites and 2) the predictions included land use 

and other human influenced variables so were effectively “how it is“ rather than “how it would be in 

the absence of impact”. 

 

METHODS 

FISH DATA  

All fish records were taken from the New Zealand Freshwater Fish Database (NZFFDB) 

(McDowall and Richardson 1983, Richardson 1989, Richardson 1993) for the years 1970 – 2010 

for all sampling methods which gave a total of 27300 sites.   However, not all sites had 

matching predictive fish or environmental data so approximately 27000 sites were analysed for 

this project.  Since this is a scoping study to trial different methods no attempt was made to 
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select database entries with different levels of sampling intensity or gear type, the assumption 

was that a large number of sites would lessen the effects of sampling variability.   

 

LAND COVER DATA - RIVER ENVIRONMENT CLASSIFICATION (REC) 

The REC classifications were used to validate the O/E.  The O/E and IBI scores for each database 

record were associated with its REC classification (Snelder and Guest 2000, Snelder and Biggs 2002, 

Snelder et al. 2002, Snelder et al. 2004). 

 

PREDICTIVE SPATIAL MODELS 

The predictive models used came from freshwater ecosystems of New Zealand (FENZ) project 

(Leathwick et al. 2008b).  As part of the FENZ, the spatial distribution of most fish species were 

extended out over the entire river network was predicted using boosted regression trees by 

John Leathwick.  This technique known as fish mapping was first developed in New Zealand by 

Joy and Death (Joy and Death 2004b).  in this study, the predictive models for all fish species 

were used, only native fish and trout were used for the O/E models, all non-native as well as 

native for the IBI assessment. 

 

CALCULATING OBSERVED OVER EXPECTED O/E RATIOS 

The predicted fish assemblages from the Leathwick models were compared with the observed fish 

assemblages using an O/E ratio following the procedure originally described by Wright et al. (1984).  

To do this the following procedure was used: The probabilities of the predicted taxa were summed 

to give the ‘expected number of taxa’ (E). The number of species actually captured at a site, 

providing they were predicted to occur (and met the threshold used) was the ‘observed number of 

taxa’ (O). The ratio of the observed to the expected number of taxa (O ⁄ E) is the output from the 

model.  

 

BEST PROBABILITY THRESHOLDS 

Using the probabilities of occurrence from predictive models in bioassessment raises the issue of 

deciding on the probability threshold to use.  Many models use the 0.5 (or 50% probability 
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threshold) - so that a probability greater than 0.5 means the species is present and less than 0.5 

means absence (Fielding and Bell 1997).  This approach is acceptable if the data that were used to 

create the model are balanced i.e. that the species modelled has a prevalence of around 50%, but in 

the data set used in these models prevalence varied from 0.003 to 0.37 so the 0.5 or any single 

threshold over all species would not give the best representation of the likelihood of finding it.  To 

circumvent this problem the threshold that gave the best prediction was found for each species.  

This was done by trying all thresholds between 0 and 1 in 0.01 steps and then selecting the threshold 

that gave the best overall prediction measured as the maximum Cohen’s Kappa (Cohen 1960, Olden 

et al. 2006b).   

 

INDEX OF BIOTIC INTEGRITY (IBI) 

The Index of Biotic Integrity (IBI) was originally developed using fish in the USA by James Karr 

during the early 1980s (Karr et al. 1986).  The original version had 12 metrics that reflected fish 

species richness and composition, number and abundance of indicator species, trophic 

organization and function, reproductive behaviour, fish abundance, and condition of individual 

fish.  This process has been repeated and IBIs developed on many continents.  The fish fauna 

of New Zealand is however, radically different from the continental faunas thus the IBI 

developed for New Zealand includes a number of changes see (Joy and Death 2004a) for full 

details.    

The six metrics that are used in the New Zealand IBI measure taxonomic richness over a number of 

habitat guilds, and as well use indicator species by measuring the number of species showing 

intolerance to degraded conditions and the ratio of native to exotic species.  Many studies have 

shown that New Zealand’s fish fauna is largely structured by elevation and distance from the coast 

(McDowall 1988, McDowall 1990, Joy and Death 2001).  Because elevation and distance from the 

coast are the overriding controllers of native fish species distribution they were used to structure 

expectations of fish assemblages.  The six metrics were assessed for both elevation and distance 

from the coast to give 12 metrics overall and these were summed to give the final score.  IBI scores 

were calculated for all the sites used in this study to compare with the O/E scores.     
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RESULTS 

Thirty one native species and two introduced fish the trout were used for the O/E ratio calculations 

and forty two fish species were used for IBI calculations.  The best thresholds for all the native 

species with their prevalence in the database are shown in Table 1.   

Table 1.  Common and scientific names for all species used in the analysis, the best threshold from ROC analysis and 
their prevalence in the freshwater fish database records used. 

Common name Scientific name 
Best 

Threshold Prevalence 

Shortfin eel Anguilla australis schmidtii 0.535 0.187 

Longfin eel Anguilla dieffenbachia 0.710 0.376 

Torrentfish Cheimarrichthys fosteri 0.230 0.071 

Roundhead galaxias Galaxias anomalus 0.240 0.004 

Giant kokopu Galaxias argenteus 0.365 0.032 

Koaro Galaxias brevipinnis 0.435 0.088 

Kakanui Lowland longjaw galaxias  Galaxias cobitinis  0.105 0.004 

Flathead galaxias Galaxias depressiceps 0.585 0.008 

Dwarf galaxias  Galaxias divergens 0.972 0.020 

Eldon’s galaxias Galaxias eldoni 0.668 0.004 

Banded kokopu Galaxias fasciatus 0.923 0.120 

Gollum galaxias Galaxias gollumoides 0.345 0.007 

Bignose galaxias Galaxias macronasus  0.085 0.005 

Inanga Galaxias maculatus 0.525 0.120 

Alpine galaxias  Galaxias paucispondylus 0.225 0.018 

Shortjaw kokopu Galaxias postvectis 0.555 0.022 
Upland longjaw galaxias 
(Cantebury) 

Galaxias prognathous 
0.380 0.004 

Dusky galaxias Galaxias pullus 0.393 0.003 

Lower Shag galaxias Galaxias sp. E. 0.173 0.005 

Canterbury galaxias Galaxias vulgaris 0.353 0.044 

Lamprey Geotria australis 0.250 0.021 

Crans bully Gobiomorphus basalis 0.170 0.042 

Upland bully  Gobiomorphus breviceps 0.300 0.121 

Common bully Gobiomorphus cotidianus 0.430 0.168 

Giant bully Gobiomorphus gobioides 0.315 0.017 

Bluegill bully Gobiomorphus hubbsi 0.485 0.035 

Redfin bully Gobiomorphus huttoni 0.563 0.139 

Grey mullet Mugil cephalus 0.110 0.006 

Common smelt Retropinna retropinna 0.620 0.047 

Black flounder Rhombosolea retiaria 0.093 0.010 

Brown Trout Salmo Trutta 0.580 0.249 

Rainbow trout Oncorhynchus mykiss 0.455 0.066 

 

OBSERVED OVER EXPECTED RATIOS 
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The O/E scores were calculated for all sites using the three different thresholds (0.01, best threshold 

and 0.00001; Table 2).  The O/E ratios were mostly lower than 1 and the average was higher for the 

individual best threshold (0.63) than for the uniform across all species thresholds of 0.1 and 0.0001.  

All three thresholds had many O/E scores of zero (around 7000 sites) these are sites where none of 

the predicted fish species occurred or there were no native fish present (Figure 1).   

 

Table 2.  Descriptive statistics for the O/E scores for all NZFFDB sites where a score could be calculated for the 
three probability thresholds. 

Statistic O/E 0.1 O/E best O/E 0.0001 

Mean 0.56 0.63 0.57 

Standard Error 0.0029 0.0036 0.0029 

Median 0.54 0.63 0.54 

Standard Deviation 0.49 0.56 0.49 

Sample Variance 0.24 0.32 0.24 

Kurtosis 15.20 14.13 9.30 

Skewness 1.84 1.45 1.66 

Range 8.13 11.24 7.02 

Minimum 0 0 0 

Maximum 8.13 11.24 7.02 

Count 27062 24867 27211 

 

Apart from the zero O/E scores all three threshold O/E scores had relatively normal 

distributions.  The distribution of for the ‘best threshold’ scores was less skewed and the ‘best 

threshold’ scores had a greater range (Table 2).   

 



10 | P a g e  
 

 

Figure 1.  Histogram for the O/E scores using the three probability thresholds. 

 

VALIDATION USING THE RIVER ENVIRONMENT CLASSIFICATION 

The usefulness of the O/E scores was assessed by how well the scores they could discriminate 

between land-cover classes and if the average scores showed consistent logical differences between 

them and whether the highest scores contained more sites in unimpacted catchments.  The three 

thresholds all produced O/E score distributions that discriminated between REC classes but the 

relative differences were not consistent over all thresholds or logical (figures 2 - 4).  The relative 

ranking changed for each threshold and for example pasture and indigenous forest  

Table 3. The number and proportion of sites in each REC class 

REC  class Sites Proportion of total 

Bare ground 563 0.02 

Exotic forest 1888 0.07 

H pasture 11052 0.39 

Indigenous forest 7126 0.25 

L Pasture 1914 0.07 

Scrub 1459 0.05 

Tussock 2312 0.08 
Urban 1718 0.06 
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Figure 2.  Average O/E score (± SE) for each REC class using the prediction threshold of 0.1. See table 3 for 
details on number of sites in each class 

 

Figure 3.  Average O/E score (± SE) for each REC class using the best prediction threshold. See table 3 for 
details on number of sites in each class 
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Figure 4.  Average O/E score (± SE) for each REC class using the 0.00001 prediction threshold. See table 3 for 
details on number of sites in each class. 

The next validation test was to take the higher scoring sites and see if the natural landcover classes 

were better represented.  All sites with an O/E score greater than 0.9 were compared with the 

background distribution of O/E scores by land-cover class to see if there was a difference.  The 

comparison revealed no difference in the land-cover site distribution for the greater than 0.9 scores 

(Figure 5). The O/E sores produced were not able to discriminate between land-cover and thus the 

assessment showed the O/E methods failed. 

 

Figure 5.  The number of sites in each REC class for all sites (black bars) and sites with an O/E score > 0.9 (grey bars). 
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INDEX OF BIOTIC INTEGRITY  

Index of biotic integrity scores were calculated for all sites using; 1) the observed data and 2) the 

predicted IBI using ‘best thresholds’ predictions and 3) the IBI-O/E observed IBI scores obtained by 

divided the observed IBI scores by the predicted IBI scores.   

The predicted IBI scores were on average higher than the observed and slightly less variable (Table 

4).  The IBI-O/E scores averaged 2.49 reflecting the higher expected than observed values and had a 

few extreme values where observed and expected IBI score were 60:0).     

Table 4.  Descriptive statistics for the IBI scores for all NZFFDB sites where a score could be calculated and for 
the Observed/expected IBI.    

Statistic Observed Predicted O/E - IBI 

Mean 32.87 35.31 2.49 

Standard Error 0.11 0.10 0.05 

Median 36 36 1 

Standard Deviation 16.82 15.34 7.37 

Sample Variance 282.96 235.27 54.28 

Kurtosis -0.29 0.33 22.13 

Skewness -0.71 -0.84 4.74 

Range 60 60 60 

Minimum 0 0 0.02 

Maximum 60 60 60 

Count 22529 22529 22529 

 

IBI LAND-COVER CLASSES 

The validation of the IBI scores using the REC land-cover classes for both the observed and 

expected fish assemblages showed the expected relationships and rankings between classes 

with natural land cover scoring high and altered scoring low (Figures 6 & 7).  Similar 

relationships and rankings between the REC land cover types have been found in other IBI 

studies using some of the same data nationally (Joy and Death 2004a, Joy 2009) and regionally 

(Joy 2005a, 2007, 2008).  Inspection of the individual class average scores shows that the 

relative scores and rankings are virtually the same between observed and predicted IBIs for 

bare ground, high intensity pasture, indigenous forest, low intensity forest, miscellaneous, and 

scrub REC classes.  Tussock, urban and exotic forest IBI scores and rankings were however less 

similar between observed and expected IBI average scores.  
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Figure 6.  Average observed IBI score (± SE) for each REC class. See table 3 for details on number of sites in 
each class 

 

Figure 7.  Average predicted IBI score (± SE) for each REC class using the best prediction threshold to 
maximise kappa from ROC analysis. See table 3 for details on number of sites in each class 

 

OBSERVED OVER EXPECTED IBI 

The O/E - IBI scores show contradictory and incongruous scores for the REC classes (Figure 8).  The 

scores a virtual the reverse of the rankings from the mainly congruent observed and predicted IBI 
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scores above.  For example the pasture sites score higher than the indigenous forest sites.  

 

Figure 8.  Average O/E - IBI score (± SE) for each REC class the predicted IBI using the best prediction 
threshold to maximise kappa from ROC analysis. See table 3 for details on number of sites in each class 
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DISCUSSION 

Analysis of the O/E scores calculated for all the sites in the New Zealand freshwater fish database 

using predictions based on present conditions failed to give the hoped for results.  Rather, it turned 

out to be a measure of the accuracy of the individual species predictive models at a community level 

(Olden et al. 2006a) rather than a useful bioassessment tool.  The anticipated result that high scores 

would reflect good conditions did not transpire, rather it revealed that the Leathwick predictive 

species models are just as accurate (or inaccurate) at impacted sites as they are at unimpacted sites.   

The hypothesis that the observed fish communities divided by predictions of fish assemblages “as is” 

rather than ‘should be’ would give a baseline measure of condition was not supported as the scores 

could not discriminate logically between land-cover types.  The IBI part of this report revealed that 

the fish data that failed for the O/E assessment can be effective in bioassessment if an index is used, 

thus the problem for both the O/E fish model and the IBI-O/E is with the land-cover influenced 

predictions.   

 

O/E MODELS 

The failure of the O/E scores developed in this report did however, emphasise the need to follow all 

the logical steps used in the RIVPACS (Wright et al. 1984)/AUSRIVAS (Smith et al. 1999) predictive 

bioassement approach.  Predictive models using invertebrates have been successfully developed in 

New Zealand (Joy and Death 2003) the United Kingdom (Wright et al. 1984, Wright 1995), Australia 

(Marchant and Hehir 2002), Indonesia (Hart et al. 2001, Sudaryanti et al. 2001) and in the USA 

(Hawkins et al. 2000, Hawkins and Hafele 2003).   

Predictive RIVPACS models have been shown to work with fish regionally in New Zealand (Joy and 

Death 2002a, b) and internationally e.g. in Ireland (Joy 2004, Kelly et al. 2008), and the USA (Carlisle 

et al. 2008).  Thus, there is no reason why they would not be successful in New Zealand but will 

require considerable up-front effort and investment in a database of reference sites and then model 

construction.   

 

IBI MODELS 

The IBI model calculated from the observed data worked well as expected and the predicted 

IBI scores from the predicted assemblages also performed well.  The O/E - IBI output failed in a 
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similar way to the full O/E models, again it seemed to reflect the predictive ability of the 

individual predictive models rather than different impacts on assemblages.  The IBI analysis 

was done to show that the same data that revealed a lack of usefulness of data when used as 

an O/E fish assemblage score can be useful when an index approach is taken.  The predictive 

IBI added nothing to the analysis when using the O/E – IBI approach but would be useful for 

highlighting impacted areas of the country when mapped out nationally.   The IBI assessment 

could be improved with the inclusion of abundance/density data and information on size 

classes so that population structure could be added.  The information required to improve 

these models would require consistent sampling methods and protocols to achieve this and 

these are now available (David et al. 2010, Joy et al. 2013). 

 

CONCLUSIONS & RECOMMENDATIONS 

Predictive O/E bioassessment models using fish have great potential to improve freshwater 

ecological assessment in New Zealand.  However, this study showed that taking short-cuts does not 

work with these models.  The model building procedure outlined in many studies worldwide shows 

that initial investment in site selection and collection of reference data is crucial.  This investment 

may seem expensive but is a one-off and can be used for many years.   The IBI approach is useful in 

the absence of an O/E model, for regional and national reporting but to improve it there needs to be 

upgraded to include the consistent abundance data which is now being collected now protocols are 

available (David et al. 2010, Joy et al. 2013).       

 

RECOMMENDATIONS FOR FISH AS NATIONAL INDICATORS 

Freshwater fish are ideal indicators of the overall health of freshwater ecosystems as they integrate 

all ecological components.  At the top of food webs and influenced by both upstream and 

downstream conditions fish have the greatest potential as holistic river health indicators.   The tools 

to enable the use of fish in national level assessment in New Zealand are available with the fish IBI 

and IBI models are already being used in state of the environment reporting by many councils.   The 

existing fish IBI models do however, have potential for improvement with the quantitative data 

collection now becoming available with the new sampling protocols (David et al. 2010, Joy et al. 

2013).  This new data is collected using standardised procedures and includes information on 

abundance and population structure.  While, the predictive modelling RIVPACs type fish models 
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have great potential as national indicators they require a considerable initial investment to gather 

reference site data, and model building although this investment is one-off.   

 

INDEX OF BIOTIC INTEGRITY 

In the short term, the presently available IBI (Joy and Death 2004a) would be appropriate as a 

national assessment indicator, however, in the long term investment in developing the IBI further to 

include the newly available standardised fish data would further enhance its precision.  The next 

steps to develop the IBI would be to gather the fish data gathered already using the new protocols 

(David et al. 2010) and any in the database that includes abundance and size details and use this 

data to update the IBI.  The inclusion of abundance and size class information will enhance the 

precision of the IBI by including metrics encompassing abundance and size/age structure.  These 

new metrics have been added to an IBI developed for New Caledonia and shown to work well (Joy 

and Poellabauer In Prep).    

In a trail run, a sample of new data collected using the New Zealand protocols was assessed using an 

upgraded IBI (with some abundance metrics added).  The comparison of the presence absence and 

basic abundance data and new metrics in an IBI using around 90 sites sampled using the 

electrofishing protocols showed that the precision when comparing REC pasture sites with 

indigenous forest sites was higher.  The P value for the test for the statistic for the difference 

between the average IBI scores at the two REC classes was: using presence/absence P = 0.00001457 

and for the basic abundance model P = 0.00000012 .  This difference can be seen in figures 9 and 10 

with tighter ranges in box plots with abundance versus presence/absence IBI scores.  The 

comparison was limited because it was just a first attempt and didn’t include size class data, but 

revealed the likelihood that there will advantages with upgrading the IBI and collecting more 

comprehensive data.   
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Figure 9.  Presence/absence IBI scores at pasture and indigenous forest sites 

  

Figure 10. Abundance IBI scores at pasture and indigenous forest sites 

 

RIVPACS PREDICTIVE O/E ASSESSMENT 

Long-term the development of a predictive O/E model would be a useful addition to the available 

bioassessment toolkit in New Zealand.  The minimum requirement for reference site data would be 

in the order of 200 sites nationally sampled using the protocols (Joy et al. 2013) although a 

reasonable proportion of these data may be able to be uncovered from existing databases.  The 

accepted reality is that at lowland areas over most of New Zealand very few pristine sites can be 

found and thus the criteria of ‘best management practice’ rather than pristine must be applied for 

site selection. 
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