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Executive Summary 

The Ministry for the Environment (MFE) is assisting regional councils with implementation of 

the National Policy Statement for Freshwater Management (NPS-FM). This report has been 

prepared for MFE as a contribution to that effort and is related to Section 3.13 of the NPS-FM. 

Section 3.13 requires councils to set concentration criteria for dissolved inorganic nitrogen 

(DIN) and dissolved reactive phosphorus (DRP) in rivers to achieve objectives for attributes 

defined in the National Objectives Framework (NOF), including periphyton.  

The objective of this study was to provide updated look-up tables for nutrient criteria to achieve 

target periphyton attribute states in all hard bottom (i.e., cobble-gravel-bed) streams and rivers 

in New Zealand, classified into the 21 Source-of-flow classes defined by the River Environment 

Classification (REC). The tables update those for total nitrogen (TN) and DRP provided in 

earlier reports and published papers.  

The current study aimed to improve on the existing criteria through: (a) the use of new data 

from regional council periphyton monitoring programmes; (b) the use of periphyton measured 

as chlorophyll a (chlorophyll), which is directly related to the NOF periphyton biomass attribute 

(rather than data on cover, which needed to be converted to chlorophyll); and (c) application 

of a range of statistical methods using the larger dataset.  

Data available for the study comprised chlorophyll observations at 251 monitoring sites that 

had at least 20 monthly sample occasions (summarised as the 92nd percentile of the 

observations and referred to hereafter as Chla92), associated water quality data including 

nutrient concentrations (typically summarised as median values of the observations), and other 

environmental observations at the sites including substrate composition and shade. Data also 

included flow records that were converted to hydrological indices that characterised the flow 

regime at each site.  

The approach we used to derive nutrient concentration criteria started with statistical 

regression models that sought to explain between-site variation in Chla92 as a function of 

environmental factors that influence periphyton biomass, including nutrient concentrations, 

hydrology, and physical habitat. We trialled several statistical methods and determined that 

the most appropriate was ordinary least-squares regression (OLS). We used OLS r to fit 

models that explained Chla92 in terms of DIN, TN, DRP and total phosphorus (TP) combined 

with other environmental variables.   

Nutrient concentration criteria for DIN, TN, DRP and TP were then obtained by inverting the 

fitted OLS models to obtain the concentrations associated with the three NOF periphyton 

attribute state thresholds: 50 mg m-2, 120 mg m-2, and 200 mg m-2. This process involved using 

the fitted OLS models to predict the concentration criteria for all segments of the national digital 

river network (order ≥ 3). The look-up tables were then prepared as the mean of these 

predicted values in each Source-of-flow class.  

Variation in between-site periphyton biomass explained by the statistical models developed in 

this study was low. For the OLS models that were used to define the criteria, cross-validated 

R2 values varied between 0.27 and 0.38. The consequence of low variation explained by the 

statistical models is that predictions of biomass have large uncertainty. For example, a 

prediction for Chla92 of 90 mg m-2 made with the OLS models has a 95% confidence interval 

of approximately 15 mg m-2 to 300 mg m-2 and the 70th, 80th and 90th percentiles of the 

distribution are 128 mg m-2, 156 mg m-2 and 202 mg m-2, respectively. These levels of model 

performance and associated uncertainties are consistent with other studies in both New 
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Zealand and internationally. Uncertainties reflect the complexity of the underlying processes 

and incomplete knowledge of the drivers of periphyton biomass.  

The model uncertainty means that a single specific criterion will not ensure that a target level 

of biomass is not exceeded. Instead, there is a probability distribution that describes the risk 

that the target level of biomass at a site will be exceeded for a given nutrient concentration. 

We refer to this probability as under-protection risk. It is important that nutrient criteria describe, 

as much as possible, the risk of under-protection and allow decision-makers to choose the 

level of risk that is acceptable. The nutrient criteria derived in this study provide for choice in 

the level of under-protection risk that might be acceptable. The chosen level of risk of under-

protection is not scientifically defined and is a subjective (‘normative’) choice. 

The under-protection risk refers to a river location. Choosing a level of under-protection risk 

means that, across a domain of interest comprising many sites, a proportion of locations can 

be expected to have biomass higher than the nominated target despite being compliant with 

the criteria. The corollary to this is that the objective underlying the criteria is to maintain 

periphyton biomass at or below the nominated thresholds at a proportion of sites within a 

domain that is the complement of the under-protection risk. For example, under-protection 

risks of 30%, 20% and 10% correspond to objectives to maintain biomass below the target 

level at 70%, 80% or 90% of sites across the domain, respectively.  

In this study, we derived look-up tables of nutrient criteria for four forms of nutrient (TN, DIN, 

TP and DRP) for three target periphyton attribute states (50 mg m-2, 120 mg m-2, and 200 mg 

m-2.) and for the 21 Source-of-flow classes that encompass all New Zealand’s rivers. The look-

up tables provide for six levels of under-protection risk, 50%, 30%, 20%, 15%, 10% and 5%. It 

is noted that the risk of over-protection is the complement of the risk of under-protection (i.e., 

over-protection risk = 100% - under-protection risk). Because Shade was included as an 

explanatory variable in all four nutrient OLS models, separate look-up tables of nutrient criteria 

were derived for shaded and unshaded locations. 

The criteria are uncertain in that, for a stated under-protection risk, we do not know what is the 

precise proportion of sites that will exceed the target biomass threshold when concentrations 

are held to the criteria. However, validation of the derived criteria using an independent dataset 

indicates that they perform well. We therefore do not consider that the uncertainties should be 

a barrier to using the criteria. 

The models developed in this study indicate that there is an initially high rate of increase in 

periphyton biomass with increasing nutrient concentrations for each of the nutrients we 

considered (TN, DIN, TP and DRP), but periphyton biomass reaches a “ceiling” beyond which 

there is no further response to increasing nutrient concentrations. Our study indicates that from 

a practical perspective, in most REC Source-of-flow classes a 92nd percentile chlorophyll 

biomass of 200 mg m-2 would rarely be exceeded because of nutrient enrichment. We refer to 

the nutrient concentration beyond which there is no further biomass response as the 

“saturating concentration”. The models developed by this study indicated that the saturating 

concentrations are approximately 1,000 mg m-3 for TN and DIN, approximately 50 mg m-3 for 

TP and approximately 25 mg m-3 for DRP. The stated saturating concentrations are 

approximate because they were derived subjectively from simplified graphical representations 

of the models defined by this study. We are not aware of statistical methods that could be used 

to more objectively identify the saturating concentrations based on our models. If such 

methods do exist, any estimate of the saturating concentration will have large uncertainties 

because our models have considerable unexplained variation. 
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Because the OLS models used to derive the nutrient criteria are parametric and represent 

biomass as a log-transformed function of nutrient concentration, some of our derived criteria 

are higher than the identified saturating concentrations. In addition, for some combinations of 

nutrient, Source-of-flow class and level of under-protection risk, the model predictions would 

not exceed the biomass threshold even at the maximum of the range of observed site median 

nutrient concentrations represented in our dataset. For these combinations, our criteria are 

appreciably higher than the saturating concentrations of approximately 1,000 mg m-3 for TN 

and DIN, 50 mg m-3 for TP and 25 mg m-3 for DRP but criteria were limited to the maximum of 

the relevant observed site median nutrient concentrations.  

For all nutrients, the derived criteria typically had high values, relative to saturating 

concentrations, for Source-of-flow classes that represent rivers with strong physical controls 

on periphyton biomass (e.g., classes with high flow variability and low temperature). The high 

values of these criteria should be interpreted cautiously because the sites in our fitting data 

that represented these physical conditions did not cover a wide range of nutrient 

concentrations. This means that the models were poorly informed about the nutrient – biomass 

relationship at sites with strong physical controls on periphyton biomass. It is possible that 

physical conditions limit maximum biomass in rivers with strong physical controls even when 

the nutrient concentrations are high. However, because our method involved extrapolation of 

the model into environmental conditions that are poorly represented by the fitting data, the 

uncertainty of criteria for Source-of-flow classes that represent rivers with strong physical 

controls on periphyton biomass is particularly high. 

We consider there is high uncertainty about whether biomass can be managed by restricting 

nutrient concentrations to levels greater than the saturating concentrations. Therefore, where 

a biomass threshold is exceeded at a site, it is likely that biomass reduction can only be 

expected if nutrient concentrations are reduced to below the saturating value. Nutrient criteria 

higher than the saturating values indicate combinations of conditions where periphyton 

biomass is strongly controlled by non-nutrient factors. Under such conditions, even when 

nutrient concentrations are greater than saturating levels, the biomass threshold(s) may not 

be exceeded. 
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Glossary 

The table below defines the terms according to how they are used in this report. 

Term Definition 

Biomass A level of periphyton abundance measured as mg chlorophyll a m-2 

Biomass 
thresholds 

Levels of periphyton abundance that are considered in this study. Biomass 
thresholds are measured as specified by the NOF attribute state bands A B, and C 
as the 92nd percentile value of chlorophyll with boundaries being 50 mg m-2, 120 mg 
m-2, and 200 mg m-2, respectively. 

Chla92 The 92nd percentile value of observations of chlorophyll a made at a monitoring site. 

𝐶ℎ𝑙𝑎92̂  A prediction of the 92nd percentile value of observations of chlorophyll a made using 
a model 

Conceptual 
model 

A theoretical model expresses our understanding of the processes that produce 
differences in biomass between sites. 

DIN Dissolved inorganic nitrogen (NO3-N – NO2-N + NH4-N). One form of the two 
periphyton nutrients considered by this study.  

Disturbance Components of the conceptual model that are understood to contribute to biomass 
loss. 

DRP Dissolved reactive phosphorus. One form of the two periphyton nutrients 
considered by this study.  

EC Electrical conductivity, a measure of the amount dissolved material in the water, 
dominated by naturally occurring concentrations of the major ions (e.g., calcium, 
sodium) but also influenced by anthropogenic inputs.  

Exceedance 
probabilities 

The probability that 92nd percentile value of chlorophyll will be exceeded based on 
the predicted probability distribution.  

FineSed The proportion of the bed covered by fine sediment, generally visually assessed 
using the SAM2 method Clapcott et al. (2011) 

Independent 
variable 

The variables that are used to explain/predict in a statistical model. Referred to 
elsewhere as explanatory variables or predictors.  

Normal 
distribution 

A type of probability distribution, used in this report to characterise model residuals. 
A plot of number of cases against value generates a bell-shaped curve with most 
cases being close to the mean value (= to the median and modal values) and cases 
higher or lower than the mean with progressively fewer cases in a predictable 
pattern.  

Nutrient 
criteria 

Concentration limits for nitrogen and phosphorus forms considered by this study 
that will restrict periphyton biomass to a specified threshold.     

OLS Ordinary least squares regression. 

PBIAS Percent bias. A measure of regression model performance that describes the 
average tendency of the predicted values to be larger or smaller than the observed 
values. 

Probability 
distribution 

A description all the possible values that the predictions of 92nd percentile value of 

chlorophyll (𝐶ℎ𝑙𝑎92̂ ) represent and the associated likelihoods of these.  

QR Quantile regression. 

R2 Coefficient of determination. A measure of regression model performance that 
describes the proportion of variation in the response that is explained by the model. 

REC River Environment Classification. A system of classes that discriminates individual 
segments of New Zealand’s rivers and streams into a number of hierarchical levels.  

Residual Or residual error. In a regression, the difference between an observed value and 
the value predicted by the regression model. 
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Term Definition 

Resources Components of the conceptual model that are understood to contribute to biomass 
accrual (i.e., growth). 

Response  The dependent variable in a statistical model (i.e., the variable being 
explained/predicted by the model). In this study, the response variable was 
generally Chla92. 

RF Random forest regression.  

RMSD Root mean square deviation. A measure of regression model performance that 
quantifies the characteristic (i.e., mean) error of the predictions.  

Source-of-flow The second hierarchical level of the REC, which is based on the climate and 
topography of the upstream catchment. River segments belonging to different 
Source-of-flow classes are expected to differ significantly with respect to the 
processes represented by the conceptual model. Consequently, the nutrient criteria 
pertaining to specific biomass thresholds are expected to differ between Source-of-
flow classes. 

TN Total nitrogen. One form of the two periphyton nutrients considered by this study.  

TP Total phosphorus. One from of the two periphyton nutrients considered by this 
study.  

Under-
protection risk 

The risk, expressed as a percentage, that a randomly chosen location will exceed 
a specified biomass threshold despite nutrient concentrations being compliant with 
the specified nutrient criteria. Referred to elsewhere as spatial exceedance.  

VIF Variance inflation factor, a measure of an independent variable’s level of collinearity 
with other independent variables 
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1 Introduction 

The Ministry for the Environment (MFE) is assisting regional councils with implementation of 

the National Policy Statement for Freshwater Management (NPS-FM). The NPS-FM requires 

regional councils to set objectives using attributes that are defined in the National Objective 

Framework (NOF). One of the attributes for streams and rivers is periphyton biomass. 

Periphyton comprises primarily algae of various types, living on or near to the streambed, but 

also includes fungi, bacteria and detritus. The algal component of periphyton is generally the 

predominant primary producer in hard-bottomed (i.e., cobble-gravel-bed) streams. The NOF 

periphyton attribute state is a measure of the algal component of periphyton (hereafter 

periphyton biomass) and is measured as mg chlorophyll a per square metre of riverbed.  The 

attribute defines four states from A (low biomass, best state) to D (high biomass considered 

to be below the bottom line)1.    

The periphyton attribute is associated with NPS-FM clause 3.13 (Special provisions for 

attributes affected by nutrients), which requires that councils must, at a minimum, set river 

nutrient concentration criteria for dissolved inorganic nitrogen (DIN) and dissolved reactive 

phosphorus (DRP). The most up-to-date nitrogen and phosphorus criteria to achieve NOF 

periphyton attribute states was recently published in a peer reviewed paper (Snelder et al., 

2019) and has been used to assist MFE’s policy development (MFE 2019). The criteria 

developed by Snelder et al. (2019) are risk-based and provide total nitrogen (TN) and DRP 

concentration criteria for each of 21 River Environment Classification (REC) source-of-flow 

classes (Snelder and Biggs. 2002) and for the three NOF periphyton biomass attribute state 

thresholds. The concentration criteria are presented in a series of ‘look-up tables’ that allow 

for varying levels of risk that are specified by a ‘spatial exceedance criterion’. A spatial 

exceedance criterion expresses the risk that periphyton biomass at a site is greater than the 

stated threshold, despite being compliant with the nutrient criteria. To date, lookup tables have 

been developed for three spatial exceedance criteria 10%, 20% and 30%.  

Many regional council monitoring programmes now include measurements of chlorophyll a, 

nutrients and other variables that are directly related to the NOF periphyton biomass attribute 

measurement unit. The available new data allowed this study to target three aspects of the 

criteria developed by Snelder et al. (2019) for improvement.  

1. Snelder et al. (2019) developed their criteria using a model derived from data obtained 

from long-term sampling at 77 National Water Quality Network (NRWQN) sites 

because this was the best available data at that time. There are now over 350 sites 

throughout New Zealand at which regional councils have collected periphyton and 

associated water quality monitoring data that could be used to derive new nutrient 

criteria.  

2. The NRWQN data described periphyton cover (i.e., percentage of the stream bed 

covered by visible periphyton) rather than biomass (i.e., chlorophyll a, which is the 

measure of periphyton specified in the NPS-FM). Snelder et al. (2019) converted the 

cover data to the equivalent biomass (as chlorophyll a) but this conversion was a 

source of uncertainty in their criteria. Most regional council monitoring programmes 

 
1 The biomass thresholds of 50, 120 and 200 mg m-2, which separate the NOF bands, refer to the 92nd percentile of periphyton 

biomass determined from at least three years of data, The 92nd percentile is equivalent to an allowed exceedance of the 

biomass in one of 12 monthly observations, on average. 
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now include measurements of periphyton biomass as chlorophyll a, which is consistent 

with the NOF periphyton biomass attribute measurement unit. 

3. Snelder et al. (2019) used an ordinary least squares (OLS) regression model with 

some additional analysis to derive their criteria. Quantile regression (QR) is a more 

direct and less complicated approach that may be easier to understand. QR is 

commonly applied to the development of nutrient criteria (e.g., Phillips et al., 2018) and 

can produce the same type of output as the lookup tables for differing spatial 

exceedance criteria developed by Snelder et al. (2019).  

In this study, we aimed to produce river nutrient concentration criteria to achieve NOF 

periphyton attribute states that (1) utilised recent data collected in regional councils periphyton 

monitoring programmes (2) are based directly on biomass observations (as chlorophyll a; 

hereafter chlorophyll), and (3) that use appropriate methods that are easily understood as 

possible. The intended purpose of these criteria is to assist with implementation of the NOF 

periphyton attribute and the tables produced by this study are intended to update those of 

Snelder et al. (2019).  We used QR and OLS to model the relationships between biomass and 

several environmental drivers of biomass accrual and loss including nutrient concentrations, 

light, temperature and hydrological indices. Where satisfactory models were obtained, we 

used the models to produce concentration criteria lookup tables for 21 source-of-flow classes 

and the three NOF attribute band thresholds and for differing levels of risk a site will have 

periphyton biomass more than the stated threshold. 

  



 

 Page 16 of 121 

2 Approach to derivation of criteria 

Frequently used approaches to defining nutrient concentration criteria for rivers include: (1) 

reference state nutrient conditions; (2) identifying nutrient concentrations that represent 

significant shifts in aquatic ecosystem structure and function; and (3) linking water column 

nutrient concentrations to measures of autotroph abundance (e.g., periphyton biomass). The 

aim in this study was to use the third approach to derive criteria for water column 

concentrations of either dissolved inorganic or total nutrients to achieve objectives for 

periphyton biomass measured as benthic chlorophyll in hard-bottomed streams (e.g., Biggs, 

2000; Dodds et al., 2002; Snelder et al., 2019; Van Nieuwenhuyse and Jones, 1996). The 

reason for taking this approach is that it will result in criteria that are consistent with the 

requirements of the NPS-FM to manage periphyton biomass.  

The link between nutrient concentration and periphyton abundance can be established based 

on statistical regression models. These models describe between-site variation in periphyton 

biomass as a function of environmental variables that affect periphyton, including nutrients, 

hydrology, and physical habitat. This section outlines this approach in overview as three steps 

(Figure 1). Greater detail is provided in the following sections.  

 

Figure 1. Summary of the approach to deriving nutrient criteria taken by this study.  

2.1 Obtain and summarise data 

Data comprised monthly observations of periphyton biomass as chlorophyll and several water 

quality indicators, including concentrations of the nutrients (nitrogen and phosphorus in both 

dissolved inorganic and total forms), water temperature, electrical conductivity, visual clarity 

and turbidity. Data on physical condition at each site including substrate size and shade were 

also included and many sites were associated with a continuous hydrological record.  

For each site, the periphyton biomass was represented by the 92nd percentile of the chlorophyll 

observation time series and water quality variables, and data describing physical conditions, 

were each summarised as a single statistic (e.g., median)) to represent the characteristic 

condition for that variable at the site. Continuous hydrological records (as mean daily flows) 

were used to derive hydrological indicators describing aspects of the hydrological regimes for 

each site. These summarised variables were used in all subsequent analyses. 

1. Obtain and
summarise data

2. Model biomass as
function of environment

3. Derive nutrient criteria
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2.2 Model biomass as a function of the environment 

A conceptual model expressing understanding of the processes that produce differences in 

biomass between sites guided the development of statistical models that explain those 

differences. This conceptual model (Figure 2) was proposed by Biggs (1996) and explains 

periphyton biomass dynamics in streams in terms of counteracting processes that control 

biomass accrual (e.g., nutrient supply and light) and biomass loss (e.g., from hydrological 

disturbance and invertebrate grazing). We aimed to define statistical models that:  

(a) explained variation in periphyton biomass using a combination of independent 

variables that were consistent with the conceptual model (e.g., positive associations 

with independent variables representing resources and negative associations with 

variables representing disturbance), 

(b) had adequate statistical performance, and  

(c) included a nutrient as an independent variable that was positively associated with 

biomass, to enable development of nutrient criteria in the next step (see below). 

The statistical modelling approaches used were quantile regression (QR), ordinary least 

squares regression (OLS), and random forest regression (RF). Each of these approaches has 

strengths and weaknesses, which are described in more detail below. 

 

Figure 2. Conceptual model of stream periphyton biomass dynamics proposed by Biggs 

(1996). 

We made separate models for each nutrient form in the water quality dataset: total nitrogen 

(TN), dissolved inorganic nitrogen (DIN), total phosphorus (TP) and dissolved reactive 

phosphorus (DRP). We recognise that the influence of nitrogen and phosphorus on periphyton 

growth are not independent of each other. However, our models included only one nutrient 
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because including both nutrients would not allow the model to be used to derive criteria 

because the same biomass can be arrived at from differing combinations of the two nutrients. 

This means the models should be seen as correlative in nature, i.e., establishing the 

correlation between the characteristic level of nitrogen and phosphorus enrichment and 

biomass, rather than representing the actual processes of growth and loss through time. We 

fitted the models to all available sites (i.e., a single global model) to maximise the statistical 

power that was available from the data. We assumed that the global model would account for 

regional differences in conditions controlling periphyton biomass because the independent 

variables describe these differences.  

2.3 Derive nutrient criteria 

Nutrient criteria were derived using the models from the second step that were judged to 

perform adequately and were consistent with the conceptual model. Deriving nutrient criteria 

essentially involves inverting the periphyton biomass models, described above, to predict the 

nutrient concentration given biomass thresholds of interest, which in this study were NPS-FM 

attribute state boundaries of 50 mg chlorophyll m-2, 120 mg chlorophyll m-2 and 200 mg 

chlorophyll m-2  

The inversion of the periphyton biomass models to derive criteria is shown schematically in 

Figure 3, in which a response (e.g., biomass) is represented as a function of a stressor (e.g., 

nutrient concentration) using an OLS model. The black points represent observations from 

cases with different levels of the stressor and corresponding response. The blue line 

represents a model of the stressor–response relationship that is fitted to the observations. The 

inversion of the stressor–response model to derive criteria is indicated by the red horizontal 

and vertical arrows. The horizontal red arrow represents a target level of biomass of 120 mg 

chlorophyll m-2. The level of the stressor that will achieve this response is shown by the vertical 

green line, which defines the criterion as 658 mg m-3. 
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Figure 3. Schematic representation of the derivation of criteria based on a hypothetical 

stressor-response model. The blue line is an OLS regression fitted to the data. See text for 

explanation.  

 

While Figure 3 illustrates how an environmental criterion can be derived, the example shown 

does not account for the uncertainty that always exists in such stressor-response models. In 

Figure 3, the uncertainty is shown by the scatter of observations around the regression line, 

due to sampling error and uncontrolled sources of variation. This uncertainty means that there 

is a risk that the target level of the response will be exceeded even if the stressor is held at or 

below the derived criterion.  

2.3.1 Accounting for under-protection risk  

Assuming the model errors are normally distributed, uncertainty in the stressor–response 

model means 50% of sites will exceed the specified response at the stated criterion. These 

sites will be under-protected when a criterion has been derived from the model as shown in 

Figure 3. In addition, 50% of sites will be below the specified response even when the stressor 

level is higher than the stated criteria. These sites are over-protected when a criterion has 

been derived from the model as shown in Figure 3.  

A subjective decision might be made that the uncertainty is acceptable because the amount 

by which the 50% of sites that exceed the acceptable response is “small” or ecologically 

unimportant. However, some stressor–response relationships are less certain than others due 

to unexplained variation.  
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Where unexplained variation is large, the assumption that the exceedance is small and 

acceptable may not be appropriate. A valid criticism of the stressor-response model-based 

approach to criteria development for periphyton is that relationships between periphyton and 

in-river nutrient concentrations are generally weak (low variation explained; Dodds et al., 2002; 

Dodds and Welch, 2000; Lewis et al., 2010; Snelder et al., 2014; Van Nieuwenhuyse and 

Jones, 1996; Welch et al., 1988). In order to address the issue of a weak stressor-response 

model, Snelder et al. (2019) specifically accounted for under-protection risk in their criteria and 

called this the spatial exceedance because it indicates the proportion of sites that can be 

expected to exceed the target level of response even if the stressor is within the stated criteria. 

In this study, we anticipated that the stressor-response models would be weak (i.e., the 

explained variation will be low), and therefore aimed to provide for under-protection risk in the 

derived criteria. The approach taken in this study is equivalent to that taken by Snelder et al. 

(2019) and is also the discussed in the guidance for deriving nutrient criteria provided by the 

United States Environmental Protection Agency (USEPA, 2010) and the European Union 

(Phillips et al., 2018). We note that focussing on under-protection risk indicates a decision to 

be precautionary with respect to environmental values. For any given level of under-protection 

risk, there is an associated complementary over-protection risk as shown by the sites below 

the regression line in Figure 3.  

Providing for under-protection risk is shown schematically in Figure 4. The key idea is that a 

regression model is not simply a single regression line; the model describes the range of 

values that future, or unobserved, cases will lie. This range is described by a probability 

distribution that is centred on the regression line in Figure 3. The probability distribution around 

the line is determined by the model’s residual error. If the model residuals are normally 

distributed, the probability distribution is symmetrical (the regression line represents the mean 

of the distribution), its width (i.e., the spread of values either side of the regression line) is 

related to the model variation explained (Figure 4). Therefore, a regression model can be used 

to predict the entire probability distribution for a specified level of the stressor.  

The predicted probability distribution can be used to define response levels that are not 

exceeded with specified probabilities. For example, the dot-dash, dashed, and dotted lines 

shown in Figure 4 indicate response levels not exceeded by 70%, 80% and 90% of cases, 

respectively. We refer to these response levels as those associated with the 70th, 80th and 90th 

percentiles of the predicted distribution. The probability that the response levels are exceeded 

is defined by the complement of these percentiles (i.e., 30%, 20% and 10%). Therefore, 

because the top blue (dotted) line shown in Figure 4 represents the 90th percentile of the 

distribution, it can be used to define nutrient criteria for which there is a 10% probability the 

target level of response will be exceeded. We refer to a criterion defined on this basis as 

having an under-protection risk of 10% (i.e., a probability that the target response is exceeded 

of 10%).  

For the hypothetical stressor-response model discussed here, if the under-protection risk is to 

be 20%, and the acceptable response is 120 mg chlorophyll m-2, the corresponding criterion 

is defined by the point at which the red arrow shown in Figure 4 intersects the line representing 

the 80th percentile of the predicted distribution (dashed blue line in Figure 4). This point is 

shown in Figure 4 by the green arrow, which indicates a criterion of 266 mg m-3.  

Note that this criterion is lower (more stringent) than that defined by the regression line (i.e., 

the solid blue line shown in Figure 3) because the tolerance of risk of under-protection is lower. 

The level of risk of under-protection that is used to define criteria is not scientifically defined 

and is a subjective (‘normative’) choice. It is noted that the risk of over-protection is the 
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complement of the risk of under-protection (i.e., over-protection risk = 100% - under-protection 

risk). 

 

Figure 4. Schematic representation of the derivation of hypothetical criteria showing the fitted 

OLS regression line (solid blue) and the predicted cumulative probability distribution. The 

successive blue lines (dot-dash, dashed, and dotted) above the solid blue line represent the 

70th, 80th and 90th percentiles of the predicted response distribution. These lines are used to 

define criteria having under-protection risks of 30%, 20% and 10% respectively. See text for 

further explanation. 

The above example shows how a stressor–response relationship that is fitted to observations 

using OLS regression can be used to derive criteria with differing levels of under-protection 

risk. An alternative approach to defining the stressor-response relationship is to use quantile 

regression (QR). Rather than fitting a model to the conditional mean of the data, QR fits a 

model to a user-defined conditional quantile of the data (e.g., the 80th percentile; Cade and 

Noon, 2003). There are several benefits of QR over OLS including being robust when model 

residuals are heteroscedastic2 and not normal. Heteroscedastic residuals indicate that there 

are sources of variation that have not been accounted for in the model and include wedge-

shaped plots of stressor versus response (e.g., Figure 5). The wedge-shaped distribution of 

values indicates that the maximum response is dependent on the value of the stressor, but 

that there is heterogeneity in the response due to other limiting factors.  

 
2 Heteroscedastic means that the model residuals change depending on the stressor and response values. Heteroscedasticity 

is typically identified from a fan-shaped or wedge-shaped plot, in which variance increases as values increase.   
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A wedge-shaped stressor-response relationship can be quantified by fitting a QR model to 

some suitable quantile of the data. For example, in Figure 5, the QR model is fitted to the 80th 

quantile so that 20% of cases lie above the regression line (i.e., a 20% under-protection risk). 

The regression model for the 80th percentile can be inverted and used to derive criteria in the 

same way as the OLS. The criteria for a target level of the response of 120 mg chlorophyll m-

2 is demonstrated in Figure 5 by the point at which the red arrow intersects the regression line. 

The value of the stressor that is predicted to limit cases with biomass greater than 120 mg 

chlorophyll m-2 to 20% is shown by the green arrow and a criterion of 275 mg m-3.  

Note that as for the OLS case, the level of risk of under-protection that is used to define the 

criteria (the quantile the model is fitted to) is not scientifically defined and is a subjective 

(‘normative’) choice. 

 

 

Figure 5. Schematic representation of the derivation of criteria when stressor-response 

relationship is wedge-shaped. The blue line is a quantile regression fitted to the 80th 

percentile of the data. The grey dashed line represents an OLS regression. See text for 

explanation. 

 

2.3.2 Incorporating more than one independent variable 

We expected our models to include several environmental variables representing the accrual 

and loss processes shown in Figure 2, rather than a single independent variable, as illustrated 

in Figure 3 to Figure 5. Therefore, the relationship between nutrient concentration and 
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periphyton biomass depends on additional environmental variables and differs between 

locations. If the values of all the environmental variables are known for a location, the models 

can be inverted and criteria specific to that location can be derived. To provide an easily 

applied set of criteria, we applied this approach to derive criteria that are specific to rivers 

grouped into classes.  

Following Snelder et al. (2019) river classes were defined by the second level (Source-of-flow) 

of the REC (Snelder and Biggs, 2002, see section 3.1 for further details). To define nutrient 

concentration criteria for each Source-of-flow class we calculated the criteria for every 

segment (order ≥ 3) in the class and then obtained the mean of these values as the class 

criterion. To calculate the criteria for every segment it was necessary to have the values of the 

environmental variables that were included in the models. The calculations used estimates of 

each of the environmental variables that were made for all network segments from spatial 

models that are described in more detail below.   
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3 Data acquisition, organisation and processing 

The analyses described in subsequent sections depended on water quality, periphyton and 

hydrological data from regional council SOE river monitoring programmes. In addition, we 

used existing modelled data that are available for all river segments in New Zealand. In this 

section we describe the data available from these different sources, followed by an account of 

selection the preliminary dataset of variables used for data analysis.  

3.1 Spatial framework 

The spatial framework for our study was the GIS-based digital drainage network, which 

underlies the REC. The digital network was derived from 1:50,000 scale contour maps and 

represents New Zealand’s rivers as segments bounded by upstream and downstream 

confluences, each of which is associated with a sub-catchment.  

REC Source-of-flow classes were used to broadly stratify New Zealand’s rivers into groups 

with discrete sets of nutrient concentration criteria. The REC Source-of-flow classification 

subdivides New Zealand’s rivers (order ≥ 3) into 21 classes based on differences in catchment 

climate and topography (Table 1). Source-of-flow classes discriminate differences in the 

drivers of periphyton including climate (Snelder and Biggs, 2002), hydrological indices 

(Snelder et al., 2005), physical and chemical characteristics of the water column (Larned et 

al., 2016) and climate (Snelder et al., 2014). For example, climate categories CD, CW and CX 

are associated with lower temperatures and solar radiation than climate categories WD, WW 

and WX. The frequency of high flows varies systematically with climate categories (e.g., CD < 

CW < CX). In addition, within a climate class there is systematic variation in high flow 

frequency across topography categories (e.g., Lk < L < GM < M < H). The analysis was 

therefore expected to produce reasonably similar nutrient concentration targets within a REC 

Source-of-flow class, and large differences in concentration targets between classes, with the 

differences understandable in terms of the drivers of periphyton biomass. 

Table 1. Defining characteristics, categories, and membership criteria of the River 

Environment Classifications at each level used in this analysis. 

Level Defining 
characteristic 

Categories Notation Category membership criteria 

Level 1 Climate Warm-extremely-
wet 

WX Warm: mean annual temperature > 12°C 

Cool: mean annual temperature < 12°C  

Extremely Wet: mean annual effective 
precipitation > 1500 mm 

Wet: mean annual effective precipitation > 
500 and < 1500 mm  

Dry: mean annual effective precipitation < 
500 mm 

Warm-wet WW 

Warm-dry WD 

Cool-extremely-wet CX 

Cool-wet CW 

Cool-dry CD 

Level 2 Topography Glacial-mountain  GM GM: M and % permanent ice > 1.5% 

Mountain M M: > 50% annual rainfall volume above 1000 
m ASL 

Hill H H: 50% rainfall volume between 400 - 1000 
m ASL 

Low-elevation L L: 50% rainfall below 400 m ASL 

Lake Lk Lk: Lake influence index > 0.033  
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3.2 Regional council data 

Periphyton biomass has been measured in regional state of the environment monitoring 

programmes in some regions since about 2008 (e.g., in the Manawatū-Whanganui region). 

Since the inclusion of periphyton as an attribute in the NOF in the NPS-FM released in 2014, 

additional regional councils have initiated programmes of regular monitoring of periphyton 

biomass as chlorophyll and the available data is constantly expanding. The procedure used 

by all regional councils to collect periphyton samples for chlorophyll analysis is based on the 

quantitative method 1b described in Biggs and Kilroy (2000), which is the method now 

prescribed in the National Environmental Monitoring Standards (NEMS) for periphyton. 

Several councils also collect data from visual assessments of periphyton cover of the stream 

bed (as percentage cover) by different categories of periphyton (e.g., film, green filaments, 

cyanobacteria mats), providing high-level descriptions of community composition. Cover data 

were not used directly in the current analysis but were useful for cross-checking chlorophyll 

results.   

We obtained periphyton data (as chlorophyll, and percentage cover of the stream bed in some 

cases) and associated environmental data (i.e., water quality and habitat data from the same 

sites) from 11 regional councils (Table 2). We requested all available data, starting from the 

earliest periphyton observation up to the most recent available data, and inspected each 

dataset for appropriate variables and suitable monthly time series.  

For each periphyton monitoring site, we identified the corresponding segment of the digital 

drainage network based on site location descriptions and geographic coordinates. 

Table 2. Summary of data from periphyton monitoring sites received from regional councils. 

All sites had monthly time series of periphyton biomass as chlorophyll. Environment 

Canterbury data are divided into two datasets with different time periods. Only sites with at 

least 20 observations were included in the analysed dataset (see Section 3.1.1). Ongoing 

data collection means that sites with shorter records can be included in future analyses. 

*Data were not obtained because the record is still too short but listed for completeness. 

Note that three further councils (Gisborne District Council, Tasman District Council, Waikato 

Regional Council) do not collect monthly data on chlorophyll but may collect periphyton data 

as cover estimates or as chlorophyll at longer intervals. 

Regional council No. 
sites  

Mean number  
observations 

Mean 
duration 
(months) 

Number 
with flow 
data  

Data start 
year(s) 

Data end 
year (s) 

Auckland Council 12 7 9 9 2020 2021 

Bay of Plenty Regional Council 29 49 64 26 2015 2021 

Environment Canterbury 38 12 14 38 2020 2021 

Environment Canterbury 2 24 33 36 24 2011 2014 

Environment Southland 34 45 70 34 2015 2021 

Greater Wellington Regional 
Council 

16 42 55 15 2016 2021 

Hawkes Bay Regional Council 22 49 81 22 2008 - 2017 2013 - 2021 

Horizons Regional Council 67 95 116 48 2008 - 2017 2019 

Marlborough District Council 9 39 49 1 2016 2020 

Northland Regional Council 38 59 74 27 2014 2021 

Otago Regional Council 34 24 26 35 2019 2021 

Taranaki regional Council 12 35 40 12 2017 2021 

*West Coast Regional Council 10 NA NA NA 2020 2021 

https://www.nems.org.nz/documents/periphyton/
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3.2.1 Chlorophyll data  

Time series of chlorophyll (as mg m-2) values at each site were converted to the 92nd percentile, 

consistent with the definition of the periphyton attribute in the NPS-FM, and hereafter referred 

to as Chla92.  

The periphyton attribute in the NOF requires that the periphyton metric (the 92nd percentile of 

chlorophyll) is calculated from monthly data collected over at least three years. Because of 

this open-ended requirement (i.e., no maximum length of record) we used all available monthly 

periphyton data to calculate the metric.  

Data collection from some regional councils has commenced more recently than three years 

ago. To improve spatial coverage of the data the final dataset used for fitting the models 

included all sites with at least 20 observations. For details refer to Section 5.1.  

3.2.2 Treatment of “missing” chlorophyll data  

The time series of chlorophyll included gaps at most sites, with an overall average rate of 20% 

“missing” data. The rate of missing data varied across regions with highest rates in Southland 

and Hawkes Bay (approximately 35%).  

It is likely that high river flows explained many missed sampling occasions, and that had it 

been possible to collect a periphyton sample at these times the concentration of chlorophyll 

would have been low. Therefore, not accounting for such missing low values could lead to a 

dataset biased towards higher concentrations. However, the amount of periphyton on the 

riverbed at times of different flow magnitudes is actually unknown. There may also be other 

unknown reasons for missing a sampling occasion, such as logistics (e.g., site access) and 

the April 2020 national COVID-19 lockdown.  

In the absence of any consistent general rule for dealing with missing data, we chose to 

calculate the 92nd percentile from the available data only. This decision is unlikely to produce 

large differences compared to the alternative treatment of setting missing values to zero or 

some other nominal low value because the 92nd percentile is relatively insensitive to missing 

data values at the low end of the range.  

3.2.3 Water quality data 

Data for nine water quality variables were available for most sites (Table 3). The raw data in 

each regional council dataset were checked for consistency of units before amalgamating all 

data into a single combined dataset. For example, electrical conductivity was variously 

reported in mS m-1 or µS cm-1 and all data were converted to the latter unit. Nutrient data (N 

and P) were generally reported as mg L-1 in the raw data. We converted all these data to mg 

m-3 for the analyses to avoid the use of multiple decimal places, especially for DRP and TP.  

For each site with data, we used time series that comprised monthly observations (rather than 

quarterly or annual data) to ensure that the data were not biased towards a particular season. 

Summary statistics were calculated for each variable. All nutrient data (TN, DIN, TP, DRP, 

NH4-N) were converted to site median concentrations and EC, pH, turbidity and water clarity 

to site median values. For water temperature we calculated the 95th percentile value at each 

site (Temp95), to represent the peak summer temperature.    

3.2.4 Additional variables describing site physical conditions 

Most regional councils also assessed and recorded physical conditions at each site or carried 

out habitat assessments using methods such as that described by (Edgar et al., 1994). 
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Measures of shade at each site included densiometer readings, visual assessments of 

percentage shade, assignments of the amount of shade into categories (e.g., unshaded <20% 

shade; partial shade 20 – 60% shade; full shade, >60% shade), and riparian shade scores as 

part of a wider habitat assessment. We converted these different measures to a consistent 

categorical variable at each site by combining partial shade and shade into a single category.  

For the few sites where no shade assessment was provided, we manually assigned a shade 

category based on viewing the Google Earth image of the site at the coordinates provided. 

The accuracy of this method was confirmed by checking Google Earth images of a subset of 

sites for which shade data were available.  

Data on bed substrate composition were available at many sites as visual assessments in 

categories ranging from bedrock to sand and silt (e.g., method used by Jowett 1993). The 

substrate categories used varied across the regional datasets. An estimate of the percentage 

of the bed covered by fine sediment (sand or smaller) was available for almost all sites and 

was included as an independent variable.  

3.2.5 Variables with incomplete data 

The dataset included a range of variables for which data were not available at all sites. These 

variables could not be used in model development, but we were able to use the incomplete 

data to test hypotheses that might explain differences in Chla92 between sites.  

Several councils provided data on visual estimates of the proportion of the bed covered by 

different categories of periphyton assessed as described in Kilroy et al. (2013). We used mean 

and maximum cover by didymo (%) and cyanobacteria (assumed to be Microcoleus). Both of 

these periphyton taxa can potentially cause unexpectedly high chlorophyll densities compared 

to other periphyton (Kilroy et al. 2009, Hart et al. 2013). 

We also used the mean proportion (as a %) of the bed covered by coarse sediment (boulders 

(> 128 mm across) and/or bedrock), which was available at about 70% of sites.   

3.2.6 Hydrological data 

The hydrological data sets supplied by regional councils consisted of time series of continuous 

flows from gauging stations that were at, or close to, the periphyton monitoring sites. We also 

used data from several NIWA hydrology stations that were close to periphyton monitoring 

sites. All gauging stations were located on a segment of the digital drainage network based 

on station location descriptions and geographic coordinates. Flow data were converted to time 

series of mean daily flows. Measured hydrological data were available for 77% of the 

periphyton monitoring sites.  

The time series of daily mean flows were used to compute 10 hydrological indices that 

characterize four aspects of the flow regime that characterise disturbance: (1) variation of 

flows, (2) magnitude and duration of annual extreme flows, (3) frequency and duration of high 

and low flow pulses (4) rate and frequency of changes of flow (Olden and Poff, 2003; Snelder 

and Booker, 2013). These indices were derived for two durations: (1) the period of record 

associated with the periphyton observations and (2) the full period of record available.  

Only complete years of data were used to calculate the flow metrics, with “water years” running 

from 1 October to 30 September, and the year named according to the latter 9 months (e.g., 

1 October to 31 December 2000 are placed in the 2001 water year). This definition of water 

year ensures that summer and autumn low flows (which can be important for periphyton 

accrual) are not split across years. We searched all records for gaps in the time series longer 
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than 27 days and removed the year of record in which these gaps occurred. Selection of 27 

days ensured that in any year there is at least one flow observation in every month.  

The magnitude and duration of annual extreme flows was represented by the mean annual 

maximum and minimum flows over durations of 7 and 30 days (Max7, Max30, MALF7, 

MALF30) and the standard deviation of flows. These statistics were calculated by first 

estimating the maximum and minimum of a 7- and 30-day moving average flow in each year 

of record for each site and the standard deviation of daily flows. Max7, Max30, MALF7, and 

MALF30 were the mean of these annual values divided by the mean daily flow for the entire 

record. We divided the standard deviation of the daily flows by the mean daily flow and refer 

to this as sdQ (note that the standardisation by the mean flows means the sdQ is the coefficient 

of variation of daily flows). Rivers with high sdQ, Max7 and Max30 have large high flows 

compared to base flow and tend to have low and sustained periods of low flow (i.e., periods 

without disturbance; Figure 2). Similarly, rivers with high MALF7 and MALF30 and low sdQ 

have sustained baseflow and sites with low MALF7 and MALF30 and high sdQ have low and 

sustained periods of low flow.  

The frequency of high flows was represented by the mean number of events per year that 

exceeded n times the long-term median flow (FREn). We calculated FREn for values of n of 

2,3, and 4. If the time interval between an event dropping below the threshold and the next 

event rising above the threshold was less than 5 days, only a single event was counted. Rivers 

with high FREn have frequent high flows and therefore high disturbance (short accrual periods; 

Figure 2).  

Rates of change in flow was represented by the number of negative differences in flow 

between days (i.e., the number of days on which flow was less than that of the previous day; 

nNeg). The values of nNeg were calculated for each site by first counting the number of days 

in each year for which the flow reduced on the subsequent day. For each site, nNeg is the 

mean of these values over all years. Rivers with large values of nNeg have high rates of 

increasing flow and therefore the rising limbs of their hydrographs are steep. Sites with low 

values of nNeg have lower rates of increasing flow and therefore gentle rising limbs. In New 

Zealand, large rivers, spring fed systems and snow melt fed systems tend to have lower nNeg. 

Rivers with high nNeg are ‘flashy’ and occur in regions that experience stormy high rainfall 

climate and where the runoff response to rainfall is fast. Rivers with high nNeg have high 

disturbance (short accrual periods; Figure 2).  

The frequency of changes of flow was represented by Reversals. Reversals were calculated 

for each site as the number of negative and positive changes in flow conditions from one day 

to the next. Sites with low values of Reversals have infrequent changes in flow conditions and 

therefore long rising and falling limbs. Rivers with high Reversals have high disturbance (short 

accrual periods; Figure 2).  

3.3 Modelled data 

Modelled data that apply to every segment of the digital river network were required in order 

to estimate nutrient criteria applicable to segments in the 21 Source-of-flow classes (see 

Section 2.3.2). Some modelled variables were also used as potential independent variables 

in the initial models. 

3.3.1 FENZ variables 

Variables describing aspects of the physicochemical and geological environment are available 

for every segment of the digital river network from the Freshwater Ecosystems of New Zealand 
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(FENZ) Geodatabase (Leathwick et al., 2010). FENZ variables associated with the REC 

network include at least 120 variables, developed during the production of a multivariate river 

classification for the Department of Conservation (Wild et al. 2005). We used only two 

variables that describe solar radiation from the FENZ dataset (see section 3.4 ) 

3.3.2 Network predictions of hydrological indices 

Hydrological indices were obtained for all monitoring sites from predictions made for all 

segments of the digital river network in previous studies (Booker and Snelder, 2012; Snelder 

and Booker, 2013). These predicted indices were the same as those derived from hydrological 

records pertaining to each monitoring site (see Section 3.2.6). The benefit of the predicted 

hydrological indices over those derived by this study is that they were available for all 

monitoring sites, not just the 77% of sites with measured hydrological data. 

Potentially useful hydrological variables also included predictions of the flow at each segment 

that would initiate periphyton removal (Haddadchi et al., 2020). 

3.3.3 Other predictions of independent variables  

In addition to modelled data that were already available (Sections 3.3.1 and 3.3.2) it was 

necessary to obtain modelled data across the digital network for independent variables used 

in the periphyton – environment models, for which modelled data were not already available 

in the FENZ database. This included using predictions generated in recent modelling efforts 

(e.g., Whitehead 2018), and generating new predictions as part of this project. Further details 

are provided below (Section 4.6). 

3.4 Selection of potential independent variables 

The preliminary set of potential independent variables for the regression models is shown in 

Table 3. The selection was assembled based on both the conceptual model (Figure 2) and 

knowledge gained from previous studies (e.g., Larned et al., 2015; Matheson et al., 2016; 

Snelder et al., 2019, 2014; Kilroy et al. 2018).  

The water quality and habitat data obtained from regional councils (Section 3.2) were used to 

represent aspects of the processes that lead to either periphyton accrual or removal (Figure 

2). The four nutrient forms (TN, DIN, TP and DRP), temperature (Temp95), visual clarity (Clar) 

and turbidity (Turb) represent resources (i.e., nutrients, temperature and light). Electrical 

conductivity (EC) is not explicitly represented in the conceptual model but has been identified 

as a variable that integrates several higher-level catchment processes (such as catchment 

enrichment, temperature and flow) (Biggs 1990). EC has also featured as a significant 

independent variable in previous periphyton – environment models using smaller datasets 

(e.g., Kilroy et al., 2018, 2020).  

Site measurements of Shade (Shade) represent resources (temperature and light). Site 

measurement of fine sediment cover (FineSed) may differentiate sites in terms of potential 

disturbance by changes in flow.  

From FENZ, we selected solar radiation in June (i.e., winter) and December to represent 

between-site variation in potential insolation, which is an important factor controlling 

periphyton biomass (as chlorophyll) accrual (Figure 2). These variables were derived by Wild 

et al. (2005) from a grid of estimated solar radiation that accounted for latitudinal variation in 

sunlight and interception by cloud cover (Leathwick et al., 2003). 
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The initial selection of hydrological indices included all those described in Section 3.2.6, 

calculated from the three alternative sources of the hydrological data (i.e., the record 

pertaining to the period of periphyton observations, the full hydrological record, and the 

modelled data).  

Periphyton removal flows from Haddadchi et al. (2020) were not included in the initial selection 

because the predictions were available only for 75% of segments in the river network.  

Table 3. Preliminary selection of potential independent variables for the regression models 

Abbreviation Variable Units Source 

TN Total nitrogen mg m-3 Monitoring data 

DIN Dissolved inorganic nitrogen mg m-3 Monitoring data 

TP Total phosphorus mg m-3 Monitoring data 

DRP Dissolved inorganic phosphorus mg m-3 Monitoring data 

Temp95 95th percentile of water temperature degrees C Monitoring data 

Clar Visual clarity of the water column m Monitoring data 

Turb Turbidity of the water column NTU Monitoring data 

NH4N Ammoniacal nitrogen mg m-3 Monitoring data 

EC Electrical conductivity μS cm-1 Monitoring data 

FineSed Proportion of fine substrate % Monitoring data 

Shade Proportion shade categorical Monitoring data 

SolarRadJune Solar radiation in June W m-2 FENZ database 

SolarRadDec Solar radiation in December W m-2 FENZ database 

Max7 Mean annual 7 and 30-day high flow 
divided by mean flow 

Unitless 

Three separate 
sources: daily flow 
records pertaining to 
the period of 
periphyton 
observations and the 
full hydrological 
record, and modelled 
data. 

Max30 

MALF7 Mean annual 7 and 30-day low flow 
divided by mean flow MALF30 

FRE2 
Number of events per year that 
exceeded two, three and four times 
the long-term median flow 

Year-1 FRE3 

FRE4 

nNeg 
Number of negative differences in flow 
between days 

Year-1 

Reversals Number of hydrologic reversals Year-1 

sdQ 
Standard deviation of daily flows 
divided by mean flow 

Unitless 
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3.5 Independent dataset 

We used an independent dataset to validate the criteria derived by this study. The independent 

dataset represented periphyton biomass and nutrient concentration data from river water 

quality monitoring sites belonging to the National Water Quality Monitoring Network 

(NRWQN). The NRWQN comprises 77 sites located on 48 of New Zealand’s rivers, which 

broadly represent variation in main-stem rivers across New Zealand (Davies-Colley et al., 

2011). Since 1989 a range of water quality variables and a visual assessment of the cover of 

filamentous and mat forming algae has been carried out monthly at NRWQN sites and flows 

have been monitored continuously (Davies-Colley et al., 2011; Smith and McBride, 1990).  

Data from the NRWQN were used by Snelder et al. (2019) to derive the existing periphyton 

nutrient criteria. Snelder et al. (2019) used data for the time-period 1989 to 2010 (22 years) 

but excluded 11 NRWQN sites for various reasons. The sites AK1, AK2 and GS1 (see Snelder 

et al., (2014) for site codes) were excluded because they are located on deep rivers with silty 

beds  and do not support conspicuous periphyton biomass. Sites RO2 and RO6 were excluded 

due to many missing periphyton observations. Sites WH3 and WH4 were excluded because 

they are dominated by macrophytes. Three sites on large rivers including the Waikato (HM2, 

HM4 and HM5) and the Clutha (DN4) rivers were excluded due to logistical difficulties in 

sampling periphyton and artificially fluctuating water levels. 

Records were split for some of the 66 retained sites into two portions to account for significant 

changes that had occurred at the site through the time-period. The two portions of the record 

were treated as separate sites in the analyses that follow and each portion is referred to as 

representing a training site. Five sites (HM1, RO4, WA6, WN3, and DN2) were split due to 

changes in site locations that were required for operational reasons. Five sites (RO3, HV5, 

WN2, TK2 and DN1) were split due to very obvious changes in mean water quality. Thirteen 

sites in the South Island (NN3, NN5, GY1, CH1, TK3, TK4, TK6, AX1, AX2, AX3, AX4, DN4 

and DN9) were split because they were colonized by the invasive alga Didymosphenia 

geminata (Kilroy et al., 2009). The abundance of D. geminata responds to factors that differ 

from those that promote blooms of other algae in New Zealand rivers (Bothwell et al., 2014). 

For this reason, the portion of the record prior to the establishment of D. geminata was retained 

and the second portion was discarded. Site TK1 was split due to the pre-commissioning failure 

of the Opuha dam and the subsequent establishment of D. geminata. After excluding some 

sites and splitting others there was a total of 78 sites comprising either the entire record of the 

NRWQN site or part thereof, which we hereafter refer to as the training sites. 

 

Monthly observations of periphyton cover in two categories (mats and filaments) had been 

made by visual assessment at the retained sites since 1989. For details of these observations 

see (Snelder et al., 2019). The cover estimates were aggregated into a single metric called 

weighted composite cover (WCC), which is defined as 0.5 x average cover by mats + average 

cover by filaments (Matheson et al., 2012). The weighting of the two periphyton categories is 

based on the guideline that filaments and mats are problematic if they exceed 30% and 60% 

of the visible stream bed (generally < 0.75 m deep) respectively (Ministry for Environment, 

2000). For this study we converted the 92nd percentile of observations of WCC at each site to 

an estimate of equivalent chlorophyll concentration (i.e., equivalent to the Chla92 measure for 

monitoring sites used in this study). The conversion was made using Equation 1 (the R2 for 

the fitted model was 0.61; for further details see Snelder et al., 2019).  

𝑙𝑜𝑔10(𝑐ℎ𝑙𝑜𝑟𝑜𝑝ℎ𝑦𝑙𝑙 𝑎)  = 0.398 + 0.235(√𝑊𝐶𝐶)    Equation 1   
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4 Analysis methods 

4.1 Overview of analyses 

The analyses were aimed at defining an appropriate statistical model that explained between-

site variation in the 92nd percentile of observed chlorophyll (Chla92) as a function of 

independent variables and then using that model to derive nutrient criteria. These analyses 

are summarised in Figure 6 as an eight-step process. This process uses the data described 

in Section 3 and was informed by the conceptual model that is described in Section 2. Details 

of the eight steps are described in the following sections.  

An additional step was to generate a national model of current periphyton state (as Chla92). 

The purpose of this step was to facilitate discussion of the outcomes of the OLS models 

generated using observed independent variables. 

 

Figure 6. Schematic diagram summarising the analytical process for deriving and validating 

the criteria.  

Data
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4.2 Refine selection of potential independent variables and apply 
transformations 

The initial set of potential independent variables listed in Table 1 was reviewed and refined by 

removing one of any pair of variables that had a Pearson’s correlation coefficient of greater 

than 0.8. When removing variables, we sought to retain variables that had been used in 

previous studies in New Zealand including those of Biggs (2000); Matheson et al. (2016); 

Snelder et al. (2019, 2014). The exception to this was the four nutrient variables (TN, DIN, TP 

and DRP) because only one of these was ever used as an independent variable in a model.  

There were two reasons for this procedure. First, high correlation indicates redundancy in the 

preliminary selection of potential independent variables, the removal of which simplified the 

model input data. Second, correlation between independent variables in a regression model 

means the model may not produce reliable predictions when the value of an independent 

variable is changed (Zuur et al., 2010). This was particularly important in this study for the 

independent variables representing nutrient concentrations because the criteria derivation 

process involved using the inverted model to predict nutrient concentration given the Chla92 

threshold of interest. 

At this step we also determined transformations to apply to the response and independent 

variables. Transformations were applied to the response Chla92 to make the data distribution 

as normal as possible. Transformations were applied to the independent variables to linearise 

their relationships with the response.  

4.3 Examine influence of alternative sources of hydrological indices 

The hydrological indices used in our models could be obtained from three alternative sources. 

The first two sources were based on observed flows at the monitoring sites and pertained to 

two periods: (set 1) the period of record associated with the periphyton observations and (set 

2) the full period of record available. The third source (set 3) was model predictions for all 

segments of the digital river network made by previous studies (Booker and Snelder, 2012; 

Snelder and Booker, 2013). 

We anticipated that there might be differences in the degree to which indices in sets 1, 2 and 

3 can explain between-site variation in Chla92. For example, set 1 (based on the period of 

record associated with the periphyton observations) might explain more variation than set 2 

(full period of record) because the former represents the flow conditions that the periphyton 

was exposed to. Alternatively, the long-run hydrology represented by set 2 may explain more 

variation than set 1. This outcome might occur if Chla92 is linked to hydrologically determined 

geomorphic conditions at sites and these conditions are strongly associated with long-run 

hydrology (set 2). We also anticipated that the predicted indices might explain variation in 

Chla92 because national scale models of a range of hydrological indices have been shown to 

have reasonable accuracy (e.g., (Booker and Snelder, 2012; Booker, 2013). If this were the 

case, there would be an advantage in that a larger number of sites could be included in our 

models (i.e., we could include sites that are not associated with measured flows).  

We investigated which hydrological data source produced the best models by fitting OLS 

models, using the approach described in section 4.4.1. We offered the model fitting procedure 

all the selected potential independent variables and repeated this three times for each nutrient. 

At each repetition, the source of the hydrological indices was altered, being set 1, 2 or 3. We 

restricted the fitting dataset to those sites that had all three sets of hydrological data so that 

all models were comparable. 
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For each nutrient, we compared model performance across the three models based on the 

variation explained (i.e., model R2 value). We also assessed whether the difference in the R2 

values between all pairs of models for each nutrient were statistically significant by comparing 

the residual sums of squares (RSS) using analysis of variance (ANOVA). In addition, we 

assessed whether differences in model performance were of practical significance using the 

root mean square deviation (RMSD), as described in Section 4.4.1 below).  

4.4 Fit and examine regression models 

4.4.1 OLS regression models 

Variable selection has an important role in the model building process. In practice, it is 

common to have a large number of candidate independent variables available, and they are 

included in the initial stage of modelling for the consideration of removing potential modelling 

bias (i.e., increasing the variation explained by the model, Hastie et al., 2001). However, it is 

undesirable to keep irrelevant independent variables in the final model because this makes it 

difficult to interpret, may decrease predictive performance and may include redundant and 

correlated variables. We therefore fitted the OLS models in two steps.  

First, ‘full’ models that included all the independent variables (appropriately transformed, as 

described in Section 4.2; refer to Section 5.2 for details) but only one of the four nutrients (TN, 

DIN, TP, DRP), were fitted.  

At the second step, standard forward and backward stepwise variable elimination was applied 

to the saturated models to identify the most parsimonious models. In this procedure, the 

Akaike information criterion (AIC; Akaike, 1973) was used to apply a penalised log-likelihood 

method to evaluate the trade-off between the degrees of freedom and fit of the model as 

independent variables were added or removed (Crawley, 2002). We considered the use of 

other model variable selection procedures including best subsets and least absolute shrinkage 

and selection operator. In our experience these alternative procedures do not result in 

significantly different variable selections and have the disadvantage of being more 

complicated. Independent variables that were retained in the model after the stepwise variable 

elimination can be regarded as making significant contributions to model prediction accuracy 

(Shmueli, 2010). 

After fitting the models, we first assessed the effects of collinearity between independent 

variables in each model using variance inflation factors (VIF; Zuur et al., 2010). Collinearity is 

the existence of correlation between the independent variables and leads to problems with the 

reliability of predictions and in interpreting the regression models. When collinearity is low, the 

signs of the regression coefficients fitted to each independent variable can be reliably 

interpreted as representing the directions of their relationships with the response. We 

calculated the VIF values for all independent variables in each model and compared these to 

the most stringent threshold of 2 indicated by Zuur et al. (2010). If all independent variables 

had VIF values less than 2, we compared the directions of the relationships indicated by the 

fitted coefficients with the directions indicated by the conceptual model.  

After fitting the OLS models, we also considered whether they were consistent with the 

conceptual model (Figure 2). A positive association between the model response (i.e., Chla92) 

and the nutrient concentration was necessary for using the model to derive criteria at the 

subsequent step. We then examined the signs of the other fitted coefficients to confirm that 

there were also consistent with the conceptual model.  
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The performance of the OLS models was measured by comparing the observed Chla92 with 

independent predictions made by a leave-one-out cross validation (LOOCV) of the models 

and measuring the degree of agreement using three statistics: R2, bias and the root mean 

square deviation (RMSD). The R2 value is the coefficient of determination derived from a 

regression of the observations against the predictions. The R2 value shows the proportion of 

the total variance explained by the regression model but is not a complete description of model 

performance (Piñeiro et al., 2008). Bias measures the average tendency of the predicted 

values to be larger or smaller than the observed values. Percent bias (PBIAS) is computed as 

the sum of the differences between the observations and predictions divided by the sum of 

the observations (Moriasi et al., 2015). Optimal PBIAS is zero, positive values indicate 

underestimation bias and negative values indicate overestimation bias (Piñeiro et al., 2008). 

RMSD is the mean deviation of predicted values with respect to the observed values and 

quantifies the characteristic (i.e., mean) error of the predictions (Moriasi et al., 2015). 

Consistency with the conceptual model was also examined graphically by using the models to 

predict the response along a gradient in nutrient concentration for each of the 21 Source-of-

flow class (see Section 2.3.2). To make these predictions we first extracted the mean values 

of each of the independent variables in the model for each of the 21 Source-of-flow class 

classes. We then used the mean value of each independent variable to typify each class and 

used the model to predict the class response to increments in a gradient in nutrient 

concentrations that reflected the observed range of each nutrient in our dataset.  

Predictions made using the fitted models represent the mean of the probability distribution at 

each increment of the nutrient concentration. However, based on the assumption that the 

residuals are normally distributed, the model was used to make predictions for specific 

percentiles of the prediction probability distribution. We refer to these predictions as 𝐶ℎ𝑙𝑎92̂ , 

the ‘hat’ symbol indicating that this is a model prediction and Chla92 indicating the prediction 

is of the 92nd percentile of chlorophyll (mg m-2). The predictions were estimated from the model 

by setting the response to be prediction intervals. The prediction intervals were set so that the 

upper confidence limit provided predictions at percentiles of the probability distribution that 

were consistent with the nominated levels of under-protection risk as follows: 

𝑃𝑟𝑒𝑑𝑖𝑐𝑡𝑖𝑜𝑛 𝐼𝑛𝑡𝑒𝑟𝑣𝑎𝑙 = 1 − 2 × 
𝐿𝑒𝑣𝑒𝑙 𝑜𝑓 𝑢𝑛𝑑𝑒𝑟-𝑝𝑟𝑜𝑡𝑒𝑐𝑡𝑖𝑜𝑛 𝑟𝑖𝑠𝑘

100%
  Equation 2 

For example, the criteria corresponding to a 20% level of under-prediction risk are defined by 

the 80th percentile of the prediction probability distribution (i.e., 20% of predictions are 

expected to exceed this value). Following equation 2, the values that define the criteria for 

the 20% level of under-prediction risk are equivalent to the upper prediction interval of the 

60% (i.e.,  1 − 2 × 20/100) symmetric prediction confidence interval. 

 The predictions corresponding the upper confidence intervals from the model were back-

transformed as follows: 

𝐶ℎ𝑙𝑎92̂ = 𝐶𝐹 +  (𝑃𝑟𝑒𝑑𝑖𝑐𝑡𝑖𝑜𝑛𝑠)4    Equation 3 

where CF was the correction factor for retransformation bias based on the method of Duan 

(1983), and Predictions are the upper confidence limit produced by the fitted model. Note that 

a fourth-root transformation was applied to Chla92 and therefore the back-transformation is to 

raise to the fourth power.  

The 𝐶ℎ𝑙𝑎92̂  values for a given percentile of the probability distribution were plotted against 

nutrient concentration for each Source-of-flow class. Based on the conceptual model, our 

expectation was that for a given nutrient concentration, classes with higher resources (i.e., 
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high light and temperature) and lower disturbance (e.g., low FRE3 or sdQ) would have higher 

𝐶ℎ𝑙𝑎92̂  values.  

4.4.2 Quantile regression models 

Most applications of QR to the development of nutrient criteria are based on simple bivariate 

models describing the relationship between a nutrient concentration and a trophic state 

descriptor such as biomass (e.g., Phillips et al. 2018). To be useful in this study, we needed 

to define multivariate QR models that explain variation in Chla92 as a function of the factors 

represented by the conceptual model. A model that included variables representing resources 

(i.e., nutrients, light and temperature) and disturbance (i.e., hydrological regime and substrate) 

could be inverted and used as described in Section 2 to derive criteria for REC classes. 

Furthermore, to be useful, quantile regression models would be needed for a range of 

quantiles to define criteria representing different levels of under-protection risk. We were 

nominally interested in the 10%, 20% and 30% levels of under-protection risk because these 

have been defined using the method of Snelder et al. (2019). These levels of under-protection 

risk correspond to regression models of 0.7, 0.8 and 0.9 quantiles.  

Variable selection and elimination procedures for quantile regression models exist (e.g., Peng 

and Wang, 2015; Wu and Liu, 2009). However, the dataset we had was relatively small, 

especially in the context of attempting to estimate models describing extreme percentiles (i.e., 

0.8 and 0.9) where a large sample size is required for estimation of the model parameters. We 

therefore used a simpler approach to assessing whether quantile regression was able to 

provide useful models. For each nutrient, we took the independent variables that were retained 

by the corresponding OLS model and used these to fit a QR model.  

We inspected the fitted QR models by first determining which of the independent variables 

were significant terms in the fitted model. We considered an independent variable was 

significant if its fitted p-value was < 0.05. QR models do not have the equivalent of the variation 

explained (R2). We also considered whether the fitted model was consistent with the 

conceptual model (Figure 2). A positive and significant association between the model 

response (i.e., Chla92) and the nutrient concentration term was necessary for using the model 

to derive criteria at the subsequent step. Consistency of the other fitted independent variables 

with the conceptual model was assessed by checking the signs of the coefficients and 

graphically by predicting the response along gradients in nutrient concentration for each 

Source-of-flow class (see section 4.4.1).  

Using the fitted QR models, we made predictions of the response along a gradient in nutrient 

concentration for each REC Source-of-flow class. The predictions (i.e., 𝐶ℎ𝑙𝑎92̂ ) were plotted 

against nutrient concentration for each Source-of-flow class and for each regression quantile. 

As for the OLS models, we expected that for a given nutrient concentration, Source-of-flow 

classes with higher resources (i.e., high light and temperature) and lower disturbance (e.g., 

low FRE3 or sdQ) would have higher predicted values (i.e., 𝐶ℎ𝑙𝑎92̂ ).  

4.4.3 Random forest models  

Random Forest (RF) modelling is a machine learning regression and classification method 

(Cutler et al., 2007). Whereas OLS and QR models quantify the value of the response variable 

as a linear combination of independent variables, RF models are based on an ensemble of 

classification and regression trees (CART; Breiman et al., 1984). RF models are therefore not 

able to be expressed as simple equations, like a linear regression, and the underlying 

relationships are non-parametric.  
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RF models are generally used for ‘predictive’ statistical modelling rather than more traditional 

‘explanatory’ modelling. Predictive statistical models have the objective of predicting a 

response value (Y) given input values (X) and are based on using a training dataset to ‘learn’ 

how to most accurately predict a new observation of Y given X. Explanatory modelling can be 

considered a process of testing the degree to which observation data is consistent with a 

causal theoretical model (Shmueli, 2010).  

In this study we used RF models in two ways.  

1) RF models were used as a non-parametric alternative to OLS and QR models to assess 

the degree to which a completely data-driven and non-parametric model is consistent with 

our conceptual model (Figure 2). We considered that significant differences between the 

structure and/or predictions made by RF compared to the parametric models would 

suggest that details of our OLS and QR models may be incorrect or missing.  

2) RF models were used to make predictions of both Chla92 and several independent 

variables that had been observed at monitoring sites, but which were not available for 

other locations in the national river network. The details for these second applications of 

RF in this study are provided in sections 4.6 and 4.10. 

Because RF models are tree-based and non-parametric, they do not predict values of the 

response that are outside of the range of the observations. However, extrapolation of the 

models into unsampled environmental conditions would be needed to produce a 

comprehensive set of criteria. Therefore, we anticipated that RF models would be 

inappropriate for deriving criteria because coverage of the range of environmental conditions 

by the fitting data was incomplete compared to the range that exists across the whole country.  

RF models are widely used in environmental science (e.g., Messager et al., 2021) and have 

been used extensively in New Zealand for predicting river and lake water quality based on 

observations obtained from routine monitoring (e.g., Unwin et al., 2010; Whitehead, 2018). 

For detailed descriptions of RF models and their diagnostic tools readers are directed to 

Breiman (2001) and Cutler et al. (2007). The brief description below of some aspects of RF 

models allows the use of, and results obtained from, RF models in this study to be understood.  

RF models are free from distributional assumptions and automatically detect and fit non-linear 

relationships and high-order interactions. RF models achieve high prediction accuracy by 

basing predictions on an ensemble of single CART models (a forest) (Breiman, 2001). 

Because they are focussed on predictive statistical modelling, the performance of RF models 

is generally quantified based on a set of predictions for observations in the training dataset 

that is independent of the fitting process. During the fitting process, RF model predictions are 

made for a subset of observations that are excluded from the fitting process; these excluded 

observations are known as out-of-bag (OOB) observations. To quantify model performance, 

the predicted response of the OOB observations is compared with the independent predictions 

made by the model and the degree of agreement is expressed using four statistics described 

in Section 4.4.1 

The relationships between response and independent variables3 in RF models can be 

represented by importance measures and partial dependence plots (Breiman, 2001; Cutler et 

 
3 The independent variables used in predictive statistical models such as random forest models are generally called predictors. 

In this report we refer to them consistently as independent variables for two reasons. First, we are using RF as a non-

parametric alternative to OLS and QR and in this context we are considering whether differences in biomass between sites can 

be explained in a manner that is consistent with the conceptual model. Second, we are using RF models to make predictions of 
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al., 2007). To assess the importance of each independent variable, the values of the response 

variable are randomly permuted for the OOB observations, and predictions are obtained from 

the tree for these modified data. The importance of an independent variable is indicated by 

the degree to which prediction accuracy decreases when the response variable is randomly 

permuted. Importance is defined in this study as the loss in model performance (i.e., the 

increase in the mean square error; MSE) when predictions are made based on the permuted 

OOB observations compared to those based on the original observations. The differences in 

MSE between trees fitted with the original and permuted observations are averaged over all 

trees and normalized by the standard deviation of the differences (Cutler et al., 2007).  

A partial dependence plot is a graphical representation of the marginal effect of an 

independent variable on the response when the values of all other independent variables are 

held constant (at their respective mean values). The benefit of holding the other independent 

variables constant is that the partial dependence plot effectively ignores their influence on the 

response variables. Partial dependence plots do not perfectly represent the effects of each 

independent variable, particularly if explanatory variables are highly correlated or strongly 

interacting, but they do provide an approximation of the modelled predictor-response 

relationships that are useful for model interpretation (Cutler et al., 2007). 

RF models include any of the original set of independent variables that are chosen during the 

model fitting process. However, marginally important independent variables may be redundant 

(i.e., their removal does not affect model performance) and their inclusion complicates model 

interpretation. We used cross validation and a backward elimination procedure to remove 

redundant independent variables from the models (Svetnik et al., 2004). The procedure 

recursively removes the least important independent variables to identify a ‘reduced’ model. 

We chose to reduce the models such that their predictive performance was the smallest error 

rate (Breiman et al., 1984).  

We fitted RF models that described the observed periphyton Chla92 as a function of the 

potential independent variables. Although RF models do not depend on distributional 

assumptions, transformation of the response variable to an approximately symmetric 

distribution improves model performance. We used the same transformation as used in the 

OLS regression models when fitting the RF models to periphyton Chla92. We fitted four 

separate models, each model having one nutrient (TN, DIN, TP or DRP) as one of the potential 

independent variables. We evaluated the four fitted reduced models using the performance 

statistics: R2, PBIAS and RMSD and assessed the fitted relationships using independent 

variable importance scores, partial plots and graphically by predicting the response along 

gradients in nutrient concentration for each Source-of-flow class (see section 4.4.1).  

The predictions for any percentile of prediction probability distribution were estimated as: 

𝐶ℎ𝑙𝑎92̂ = 𝐶𝐹 +  (𝜇 + 𝑍 × 𝑅𝑀𝑆𝐷)4    Equation 4 

where CF was the correction factor for retransformation bias based on the method of Duan 

(1983), μ is the prediction returned from the model which represents the mean of the 

probability distribution, RMSD is the characteristic model error, and Z represents increments 

in the number of standard deviations from the mean for the standard normal distribution. For 

example, the 80th and 90th percentiles of the probability distribution can be obtained using Z 

values of 0.84 and 1.28, respectively. 

 
several independent variables that are subsequently used to make predictions of periphyton biomass. Referring to independent 

variables avoids having to refer to predicting predictors, which would be confusing.  
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4.5 Choose models to use to define criteria 

As set out in Section 2.2, to be useful for defining nutrient criteria, models need to explain 

variation in Chla92 using a combination of independent variables whose relationships with the 

response are consistent with the conceptual model (including a positive association between 

the nutrient concentration and Chla92) and have adequate statistical performance. Based on 

these requirements, at the fourth step, we selected a set of either the OLS or QR regression 

models (i.e., four models, each using one of TN, DIN, TP and DRP to represent nutrient 

concentration) from models described above to define nutrient criteria. Our prior expectation 

was that QR would be a better choice if they were found to be adequate and if not, we expected 

that OLS could be used based on previous experience (Snelder et al., 2019). 

4.6 Spatial modelling of independent variables 

At the fifth step in our derivation of nutrient criteria (Figure 6), we used the fitted models to 

predict nutrient concentrations that would achieve the Chla92 thresholds of interest for REC 

Source-of-flow classes. For this step we required the values of the independent variables used 

in the periphyton models for all segments of the digital river network. Some values of the 

independent variables were already available for all segments of the digital river network 

including the variables obtained from FENZ and the predicted hydrological indices. However, 

only the measured data were available for some independent variables that were used to 

model periphyton Chla92. The variables were: EC, FineSed, Temp95 and the water quality 

measures Clar, Turb, NH4N (see Table 3 for details). 

We used available predictions of Clar, Turb and NH4N made by Whitehead (2018). These 

predictions were trained on a national dataset of water quality data that comprised between 

587 and 882 sites, depending on the variable (Whitehead, 2018). The predictions pertained to 

median values of all water quality variables (i.e., the same statistic used to define the water 

quality independent variables in this study) for the five-year period ending 2017. Whitehead 

(2018) used RF models and quantified model performance using the statistics described in 

section 4.4.3. These data represent the most up-to-date and spatially comprehensive 

estimates available for these water quality variables. 

We fitted new RF models to the variables EC, FineSed and Temp95 measured at the 

periphyton monitoring sites. The RF models were fitted using a selection of potential 

independent variables that are available for all segments of the digital river network (FENZ; 

Leathwick et al., 2010) and model performance was quantified using the statistics described 

in section 4.4.3. Where necessary, we transformed the response variable for each model to 

an approximately symmetric distribution to improve model performance. 

We compared and evaluated the performance of the models against the criteria proposed by 

Moriasi et al. (2015) (Table 4). The fitted models were then used to make predictions for all 

120,000 segments of the digital river network with order ≥ 3. Where variables had be 

transformed as part of the fitting process they were back-transformed to the original variable 

scale and, where necessary, were corrected for retransformation bias using the smearing 

estimate (Duan, 1983). 
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Table 4: Performance ratings for the models used to make spatial predictions of the 

independent variables in this study. The performance ratings are from Moriasi et al. (2015). 

Performance Rating R2 NSE PBIAS 

Very good R2 ≥ 0.70 NSE > 0.65 |PBIAS| <15 

Good 0.60 < R2 ≤ 0.70 0.50 < NSE ≤ 0.65 15 ≤ |PBIAS| < 20 

Satisfactory 0.30 < R2 ≤ 0.60 0.35 < NSE ≤ 0.50 20 ≤ |PBIAS| < 30 

Unsatisfactory R2 < 0.30 NSE ≤ 0.35 |PBIAS| ≥ 30 

 

4.7 Generate criteria for REC classes 

4.7.1 OLS regression 

Conceptually, the fitted OLS models were used to derive nutrient criteria for each Source-of-

flow class as described in Section 2.3. Rather than inverting the models, an equivalent 

approach to deriving the criteria based on interpolation was used for each of the four nutrients 

in five stages.  

1. For each river segment in each Source-of-flow class, predictions at the upper 

confidence limit were obtained from the fitted model for increments in a gradient in 

nutrient concentrations that reflected the observed range of the nutrient in our dataset.  

2. Predictions for the upper confidence limit of four prediction intervals were obtained. 

The prediction intervals were consistent with the six levels of under-protection risk 

(50%, 30%, 20% 15%, 10% and 5%) based on Equations 2 and 3 (see Section 4.4.1). 

The derived predictions can be understood as the percentiles of the predicted 

response distribution shown in Figure 4.  

4. For each threshold of interest, an associated nutrient concentration was interpolated 

from the paired predicted upper confidence limit - nutrient gradient data for the six 

levels of under-protection risk (50%, 30%, 20% 15%, 10% and 5%).  

5. Finally, the mean of the nutrient concentrations derived at stage 4 over all segments 

in each Source-of-flow class were obtained for each combination of biomass threshold 

and level of under-protection risk. These mean concentrations are the nutrient criteria 

for the Source-of-flow classes corresponding to each biomass threshold and level of 

under-protection risk. 

A feature of obtaining criteria for every Source-of-flow class is that the models are sometimes 

being used to make predictions that are outside of the range of the observations (i.e., the 

predictions represent extrapolation from the observations). This is because Source-of-flow 

classes encompass all rivers and streams in New Zealand, but the fitting dataset represents 

a restricted range of environments. The assumption underlying the derivation of the criteria 

therefore is that the fitted relationships (i.e., the rate of change in Chla92 with change in 

independent variables) in the unsampled environmental space are consistent with the 

environmental space that is represented by the monitoring sites.  

It is not possible to test the validity of this assumption because of the lack of data. However, 

the representativeness of the monitoring sites of all rivers and streams in New Zealand was 

assessed to provide some insight into the parts of the environmental space that are poorly 

represented. A graphical comparison was used to gauge how well the monitoring sites 
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represented environmental variation in stream and rivers at the national scale. 

Representativeness is the degree to which the distribution of monitored sites over the range 

of the independent variables used in the models matched the distribution of all river network 

segments over the range of the same environmental variable. Poor representativeness 

indicates potentially reduced reliability of the model predictions because certain sets of 

environmental conditions are not represented in the fitting data.  

Histograms of the proportions of monitoring sites numbers over the ranges of the independent 

variables that were included in the OLS models were visually compared with histograms of 

the proportions of all segments over the same independent variables. Note that 

representativeness of monitoring sites is different from model bias, which is defined in Section 

4.4.1.  

For some combinations of nutrient (i.e., TN, DIN, TP, DRP), Source-of-flow class and level of 

under-protection risk (i.e., 50%, 30%, 20% 15%, 10% and 5%), we expected that the model 

predictions would not exceed the biomass threshold even at the maximum of the observed 

values of the nutrient in our dataset based on criteria derived by Snelder et al. (2019). In these 

cases, the result returned at stage 4 in the process described above (the interpolation of the 

nutrient concentration associated with the biomass threshold) was the maximum of the 

relevant observed nutrient value. Similarly, for some combinations of nutrient, Source-of-flow 

class and level of under-protection risk, the mean of the nutrient concentrations over all 

segments (i.e., the result returned at stage 5 in the process described above) was the 

maximum of the observed values. The interpretation of nutrient criteria that are equal to the 

maximum of the observed values is therefore that the biomass threshold is not expected to be 

exceeded even at the given (i.e., maximum observed) nutrient concentration.  

4.7.2 Quantile regression 

Criteria can be derived from fitted QR models by inverting the fitted models as described in 

Section 2.3. Conceptually, criteria for the four levels of under-protection risk (50%, 30%, 20% 

and 10%) could be derived from robust QR models of 0.5, 0.7, 0.8 and 0.9 quantiles. As for 

the criteria derivation based on OLS models, the mean of the criteria obtained for each 

segment in each Source-of-flow class could be used to represent the best estimate of the 

criteria for the class. However, in this study the QR models were not considered to be 

sufficiently robust for deriving criteria (see Section 5.4.2). 

4.8 Comparison with existing criteria 

At step seven we compared the derived criteria with those derived by Snelder et al. (2019). 

Snelder et al. (2019) derived criteria for the same Source-of-flow classes as this study, for two 

nutrient forms, TN and DRP and for two levels of under-protection risk,10% and 20%. The two 

sets of criteria were compared graphically using scatter plots.   

4.9 Validation 

The derived criteria were validated using the independent NRWQN dataset. The validation 

was performed by inverting the criteria to predict the biomass (as 92nd percentile of chlorophyll) 

at the NRWQN sites based on the Source-of-flow class and the observed nutrient 

concentration. Biomass was predicted for each site using each of the four nutrient forms and 

each of the four levels of under-protection risk, resulting in 24 sets of predictions. For each set 

of predictions, the predicted biomass was compared to the observed biomass graphically 

using scatter plots. Theoretically, 5%, 10%, 15%, 20%, 30% and 50% of the NRWQN sites 

were expected to have observed biomass that exceeded the predicted biomass when the 



 

 Page 42 of 121 

predictions were made based on the corresponding levels of under-protection risk. We 

evaluated this expectation by calculating the proportion of sites for which observed biomass 

exceeded the predicted for the 24 sets of predictions. 

4.10 National RF model of current periphyton state  

We fitted a final RF model to the site values of Chla92. The purpose of this model was to 

produce the best possible predictions of current periphyton state from the observation dataset 

using a model that was not subject to some of the constraints associated with the OLS or QR 

model. Because this model was not constrained to have a single nutrient or to be a linear 

combination of the explanatory variables, it might explain more variation in Chla92 than the 

OLS or QR model. In turn, this might help to identify limitations associated with the OLS or QR 

models and, therefore, the criteria. 

We aimed to use the fitted RF model to make predictions of current periphyton state for all 

segments of the digital river network (stream order ≥ 3). Therefore, the model had access to 

all available independent variables including all four nutrients (i.e., TN, DIN, TP and DRP from 

(Whitehead, 2018). In addition, we offered the modelling fitting process additional potential 

independent variables from the FENZ Geodatabase (Leathwick et al., 2010), which described 

catchment characteristics (Table 5).  

We used the fitted RF model to predict the current 92nd percentile chlorophyll for every 

segment of the digital network based on Equation 2 (see Section 4.4.1). We note that 

predictions will be made for some segments that might not be realised due to shading or fine 

grained and unstable substrates. The current 92nd percentile chlorophyll for any percentile of 

the probability distribution could be obtained from the model predictions. For example, the 80th 

and 90h percentile biomass values (i.e., the biomass exceeded 20% and 10% of time) were 

obtained from Z values of 0.84 and 1.28, respectively. 
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Table 5. Additional potential independent variables offered to the national RF model of 

current Chla92 across river network.  

Independent 
variable 
type 

Variable Abbreviation  Units 

Geography & 
topography 

Geographic coordinate East Xcoord Metres 

Geographic coordinate North Ycoord Metres 

Stream Order StreamOrder Unitless 

Catchment area usCatArea km2 

Segment mean elevation segElev m ASL 

Percentage of catchment occupied by lakes usLake % 

Mean catchment elevation usElev m ASL 

Mean catchment slope usSlope degrees 

Distance to the coast DistToCoast km 

Mean segment slope SegSlope degrees 

Distance to furthest headwater segment DistToHead km 

Climate & 
flow 

Mean segment June air temperature segTmin degrees C 

Mean segment January air temperature. segTwarm degrees C 

Mean catchment June air temperature usTmin degrees C 

Mean catchment January air temperature usTwarm degrees C 

Mean annual catchment rainfall usRain mm 

Mean catchment coefficient of variation of annual rainfall usRainvar mm/yr 

Mean catchment rain days > 10 mm usRainDays10 days/mo 

Mean catchment rain days > 200 mm usRainDays20 days/mo 

Mean catchment rain days > 100 mm usRainDays100 days/mo 

Mean annual catchment potential evapotranspiration usPET mm/yr 

Estimated mean flow MeanFlow m3/s 

Geology Mean catchment induration (hardness) of regolith usHard Ordinal 

Mean catchment phosphorous content of regolith usPhos Ordinal 

Mean catchment particle size of regolith usPsize Ordinal 

Mean catchment calcium content of regolith usCalc Ordinal 

Land cover Proportion of catchment occupied by combination of high 
producing exotic grassland, short-rotation cropland, 
orchard, vineyard and other perennial crops (LCDB5 
classes 40, 30, 33) 

usIntensiveAg % 

Proportion of catchment in low producing grassland 
(LCDB5 class 41) 

usPastoralLight % 

Proportion of catchment in native forest (LCDB5 class 69) usNativeForest % 

Proportion of catchment in built-up areas, urban parkland, 
surface mines, dumps and transport infrastructure 
(LCDB5 classes 1, 2, 6, 5) 

usUrban % 

Proportion of catchment in scrub and shrub cover (LCDB5 
classes 50, 51, 52, 54, 55, 56, 58) 

usScrub % 

Proportion of catchment occupied by lake and pond, river 
and estuarine open water (LCDB5 classes 20, 21, 22) 

usWetland % 

Proportion of catchment in exotic forest (LCDB3 class 71) usExoticForest % 

Proportion of catchment occupied in bare or lightly-
vegetated cover (LCDB5 classes 10, 12, 14, 15, 16) 

usBare % 
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5 Results 

5.1 Patterns in periphyton biomass and relationships with potential 
independent variables 

The complete regional council dataset included 326 sites with at least one biomass 

observation, 251 sites with >20 biomass observations and 218 sites with ≥30 biomass 

observations (Figure 7). Sites in the Auckland region had 8 observations or fewer. Only one 

site in the Otago region had >30 observations but 19 sites had >20 observations. The 251 

sites with >20 biomass observations were retained in the dataset for modelling.   

Of the 251 sites that were retained for modelling, two and three were located on segments of 

the digital network of stream order one and two, respectively. The remaining sites were 

reasonably evenly distributed across segments of order three to seven (Table 6). 

Table 6. Distribution of periphyton monitoring sites retained for modelling across segments 

of different stream order. 

Stream order Number of sites  

1 2 

2 3 

3 32 

4 83 

5 63 

6 43 

7 25 
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Figure 7. Map of the monitoring sites colour-coded according to number of biomass 

observations. Note that only sites with >20 observations were retained for modelling. 

Mean Chla92 across all sites with >20 observations was 89 mg m-2 (Figure 8). Sixty sites had 

Chla92 >120 mg m-2 and 20 sites had Chla92 >200 mg m-2. Site Chla92 was highly variable 

with no discernible geographic pattern (Figure 9). Site Chla92 >200 mg m-2 did not occur at 

any sites in Southland, Taranaki or Bay of Plenty but occurred in the other regions that were 

represented by data.  
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Figure 8. Distribution of 92nd percentile values of chlorophyll at the 251 monitoring sites with 

> 20 sampling occasions. The vertical red lines indicate biomasses of 50, 120 and 200 mg 

m-2, which correspond to the thresholds for the NOF periphyton attribute B, C and D bands, 

respectively.  
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Figure 9. Map of the 251 monitoring sites with > 20 sampling occasions graded according to 

the NOF periphyton attribute state bands.  

The site values of the Chla92 and mean chlorophyll (hereafter ChlaMean) were strongly 

correlated (Figure 10 A). Based on Snelder et al. (2014) we estimated the 92nd percentile of 

the distribution of chlorophyll observations using the exponential distribution: 

𝐶ℎ𝑙𝑎92̂ =  −𝑙𝑜𝑔 (𝑃𝑟) × 𝜇    Equation 5 

where Pr (0  ≤  Pr < 1) is the probability that biomass is exceeded given the mean (μ>0). 

𝐶ℎ𝑙𝑎92̂  is estimated by setting Pr to 0.082 (because 100% - 92% = 8.3%). The consistency of 

the plot of 𝐶ℎ𝑙𝑎92̂  versus the observed 92nd percentile of the observations (i.e., Chla92), 

indicates that the observations within sites approximately followed an exponential distribution 
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for all sites (Figure 10 B). Consistent with this, sites that were graded D tended to have high 

mean values of chlorophyll and multiple individual observations that exceeded >200 mg m-2 

(Figure 11). This indicates that all sites had chlorophyll distributions that were approximately 

exponentially distributed and that the temporal dynamics of biomass are similar at all sites.  

 

 

 

 

Figure 10. Relationships between the mean and 92nd percentile of chlorophyll at sites with 

>20 biomass observations. Panel A shows the relationship between the 92nd percentile of 

observed chlorophyll (Chla92) and the mean of the observed values (ChlaMean). Panel B 

shows the relationship between the 92nd percentile of observed chlorophyll and the same 

value calculated from the mean of the observed values based on the exponential 

distribution. The error bars indicate the 95% confidence interval for the estimated 92nd 

percentile values. The red dashed line is one to one.  
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Figure 11. Time series showing biomass observations at the 20 sites at which Chla92 > 200 

mg m-2, indicated by the lower red dashed lines. The upper red dashed lines at 400 mg m-2 

highlight the sites with highest biomass. 
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When viewed across all sites, relationships between Chla92 and site median values of the 

nutrients TN and DIN were wedge-shaped and quantile regressions at the 70% quantile were 

statistically significant (p < 0.05, Figure 12). This indicates a limiting relationship between 

biomass and nitrogen at the national scale but with other factors influencing the Chla92 

response. Quantile regressions at the 70% quantile between Chla92 and site median values 

of the nutrient forms TP and DRP were not statistically significant (Figure 12).  

 

 

Figure 12. Relationships between Chla92 and nutrient concentrations at the 251 monitoring 

sites with > 20 sampling occasions. The red lines are quantile regressions fitted to the 70% 

quantiles. The slopes of these quantile regressions had p-values of 0.03, 0.02, 0.14 and 

0.17 for TN, DIN, TP and DRP, respectively.  

When viewed across all sites, relationships between the Chla92 and site median values of 

EC, Temp95, and Clar were wedge-shaped and quantile regressions at the 70% quantile were 

statistically significant (Figure 13). This indicates a limiting relationship between Chla92 and 

electrical conductivity, water temperature and water clarity at the national scale but with other 
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factors influencing the Chla92 response at each site. Quantile regressions at the 70% quantile 

between the Chla92 and site median values of Turb, SolarRadDec and FineSed were not 

statistically significant (Figure 13).  

 

 

Figure 13. Relationships between Chla92 and potential independent variables at the 251 

monitoring sites with > 20 sampling occasions. The red lines are quantile regressions fitted 

to the 70% quantiles. The slopes of these quantile regressions had p-values of <0.001,0.01, 

0.68 and 0.65 for EC, Temp95, Turb, and FineSed, respectively. Note that the variables 

shown were included in at least one of the models that were chosen for derivation of nutrient 

criteria. 

When viewed across all sites, there were wedge-shaped relationships between Chla92 and 

two hydrological indices that were derived from daily flows pertaining to the observation period, 

MALF30_cat and Reversals (Figure 14). Quantile regressions of Chla92 against these two 

indices at the 70% quantile were statistically significant. This indicates a limiting relationship 

between Chla92 and these hydrological characteristics at the national scale but with other 
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factors influencing the Chla92 response at each site. Quantile regressions at the 70% quantile 

between the Chla92 and site median values of FRE3 and nNeg were not statistically significant 

(Figure 14).  

 

Figure 14. Relationships between Chla92 and hydrological indices that were potential 

independent variables at the 251 monitoring sites with > 20 sampling occasions. The red 

lines are quantile regressions fitted to the 70% quantiles. The slopes of these quantile 

regressions had p-values of 0.58, <0.001, 0.09, and 0.56 for FRE3, MALF30, Reversals, and 

Nneg, respectively. Note that the variables shown were included in at least one of the 

models that were chosen for derivation of nutrient criteria. 

5.2 Potential independent variables 

The nutrients TP and DRP were strongly correlated (0.94) as were TN and DIN (0.98) (Figure 

15). However, the nitrogen forms (TN and DIN) were only weakly correlated (between 0.18 

and 0.35) with the phosphorus forms (TP and DRP)). Because models were going to be fitted 

using only one nutrient as a potential independent variable, all nutrients were retained.  
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From initial potential independent variables (Table 3), we retained electrical conductivity (EC) 

because it had low correlation (≤ |0.6|) with all other potential independent variables including 

the four nutrients (Figure 15). We retained FineSed and Shade, which had low correlations (≤ 

|0.4|) with all other independent variables. Ammoniacal nitrogen (NH4N) had low correlation 

(≤ |0.4|) with other potential independent variables including the four nutrients and was 

retained. Because they were correlated > |0.8|, we retained SolarRadDec and discarded 

SolarRadJune. SolarRadDec had low correlation (≤ |0.6|) with all other potential independent 

variables. Visual water clarity (Clar) and Turbidity were only weakly correlated with each other 

and, because they had low correlation (≤ |0.5|) with other potential independent variables, 

were retained. Water temperature (Temp95) had low correlation (≤ |0.5|) with other potential 

independent variables and was retained.  

We retained the hydrological indices nNeg and Reversals because they had low correlation 

(< |0.5|) with any other potential independent variables. Because they were correlated > |0.8|, 

we retained FRE3 and discarded FRE2, and FRE4 (Figure 15). Because they were correlated 

> |0.8|, we retained sdQ and discarded Max7, Max30, MALF7, and MALF30. The retained 

potential independent variables offered to the models are shown in Table 7. 
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Figure 15. Pearson’s correlation coefficients for all pairs of the preliminary selection of 

independent variables. The dependent variables (ChlaMean, Chla92) are also included, for 

reference. Each cell in the matrix represents the correlation between a pair of independent 

variables (shown on the x and y-axes). The colour indicates the strength and direction of the 

correlation. The variables are arranged in the matrix into groups with high correlation.  
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Table 7. Independent variables retained for model fitting. 

Variable Abbreviation Transformation 

Nutrient TN, DIN, TP, DRP Log (base 10) 

Electrical conductivity EC  

95th percentile of water temperature Temp95  

Visual clarity of the water column Clar  

Turbidity of the water column Turb  

Ammoniacal nitrogen NH4N  

Proportion of fine substrate FineSed  

Proportion shade Shade  

Solar radiation SolarRadDec  

Number of events per year that exceeded 
three times the long-term median flow 

FRE3  

Number of negative differences in flow 
between days 

nNeg  

Number of hydrologic reversals Reversals  

Standard deviation of daily flows divided by 
the mean flow 

sdQ  

 

5.3 Influence of the alternative sources of hydrological indices 

For a set of 192 sites that were common to all three datasets (see Section 4.3), the 

hydrological indices derived from the daily flow records produced the highest R2 values for the 

fitted OLS models for all nutrients (Table 8). For TP and DRP the models fitted to the indices 

derived from the flow record pertaining to the period of periphyton observations had higher R2 

values than the indices derived from the full flow record for each site.  

Lower R2 values for models that were fitted using the modelled hydrological indices were 

always significantly different to (lower than) models fitted to the indices pertaining to the 

observation period hydrological indices and the full duration dataset at α=0.05 (Table 9). The 

models fitted to the modelled hydrological indices were not always significantly different from 

(lower than) models fitted using indices derived from the full hydrological record at α=0.05 

(Table 9).  

Table 8. Comparison of R2 values for OLS models explaining between site periphyton 
Chla92 as function of selected variables and the nutrients as indicated.  

Source of hydrological indices TN DIN TP DRP 

Full record 0.40 0.39 0.35 0.35 

Observation record 0.40 0.39 0.38 0.36 

Modelled  0.35 0.35 0.33 0.33 
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Table 9. Significance of differences in variation explained between models fitted using 

different sources of hydrological indices. Blank cells indicate invalid self-comparisons.  

Nutrient Source data Full Observation 

TN Observation 0.40  

Modelled 0.011 0.003 

DIN Observation 0.18  

Modelled 0.03 0.007 

TP Observation 0.001  

Modelled 0.15 0.003 

DRP Observation 0.02  

Modelled 0.15 0.003 

 

Differences in the performance of the models fitted to the three alternative sources of the 

hydrological indices as quantified by model uncertainty were small. For example, for TN the 

model fitted to the indices pertaining to the observation period hydrological indices had a 

significantly higher R2 value than the model fitted to modelled hydrological indices (R2 of 0.40 

and 0.35, respectively, Table 8, Table 9). However, the performance differences translated 

into only minor differences in the confidence in predictions made using the models. For 

example, the width of the 95% confidence intervals for a site with estimated Chla92 of 90 mg 

m-2 differed very little between models (Table 10).  

We judged that differences in model performance achieved with the three alternative sources 

of hydrological indices were of little to no practical significance. Therefore, the modelled 

indices were used in final model development so that all 251 sites with >20 periphyton 

observations could be included. 

Table 10. Differences in the width of the 95% confidence intervals for models fitted using 

different sources of hydrological indices  The values shown in each cell are the lower and 

upper 95% confidence intervals for a site with estimated Chla92 of 90 mg m-2.  

Nutrient Source data 

Full Observation Modelled 

TN 16 - 304 16 - 300 15 - 307 

DIN 15 - 306 16 - 302 15 - 306 

TP 14 - 316 15 - 307 15 - 314 

DRP 14 - 316 15 - 307 15 - 314 

 

5.4 Periphyton biomass models 

5.4.1 Ordinary least squares regression models 

The LOOCV R2 values for the fitted OLS models ranged between 0.38 and 0.27 (Table 11). 

Quantile-quantile (Q-Q) plots indicate that the distributions of the regression residuals of the 

four models were reasonably consistent with the theoretical normal distribution (Figure 16). 

This indicates that the residual values from a linear regression are reasonably normally 

distributed. The model may therefore be used to predict the entire probability distribution 

based on the theoretical normal distribution. This also indicates that the fourth root 

transformation applied to the model response (Chla92) was appropriate.  
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Table 11. Performance of the OLS models of periphyton biomass pertaining to each nutrient. 

Performance was assessed using LOOCV.  

Nutrient N R2 PBIAS RMSD 

TN 251 0.38 0.02 0.54 

DIN 251 0.38 0.02 0.54 

TP 251 0.34 0.00 0.56 

DRP 251 0.27 0.07 0.59 

 

 

 

Figure 16. Quantile-quantile plots comparing the OLS regression residuals of the four OLS 

models to normal distributions.  

All variables fitted in all four OLS models had VIF values ≤1.9, indicating low collinearity 

between independent variables (Table 12). The highest VIF values for the nutrients fitted in 

each of the four models was 1.6. These low VIF values indicate that the models are robust for 
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inferring the direction of the relationships between the independent variables and biomass and 

for making predictions about how biomass changes with changing nutrient concentration.  

The signs of the coefficients fitted to the OLS model independent variables were consistent 

with the conceptual model in Section 2.2 (Table 12). For example, for all four models the 

response (Chla92) was positively associated with nutrient concentration and temperature 

(Temp95), which represent resource supply (Figure 2). It is noted also that the structure of the 

models (i.e., the variables that were retained in the models) and the signs of the coefficients, 

were consistent with previous studies using different datasets and different descriptors of 

biomass abundance (Snelder et al., 2019, 2014). All four models included the ordered 

categorical variable Shade with negative coefficients. Because the ordering applied to this 

variable was unshaded < shaded, the negative coefficient indicates that, all other variables 

being equal, biomass is higher at unshaded than shaded sites. This is consistent with the 

conceptual model because it indicates that biomass increases with increasing resource 

supply. 

For all four models, the response was negatively associated with frequency of high flows 

(FRE3) and changes in flow (Reversals), which represent disturbance (Figure 2). All of the 

models also included flow variability (sdQ) with positive coefficients (Figure 2). Large values 

of sdQ indicate sites with large flow ranges and therefore prolonged periods of low flow 

(without disturbance) that allow for biomass accrual. Note that sdQ was strongly correlated 

with MALF7 and MALF30 (Figure 15) which are direct measures of the intensity of low flow 

periods. Three of the four models included electrical conductivity (EC) with a positive 

coefficient. We assume that EC represents aspects of resource supply; it is weakly correlated 

with the nitrogen and phosphorus concentrations and may represent additional micro-

nutrients.  

The models indicated that Chla92 increases at a high rate with increasing nutrient 

concentration at low biomass, but the rate decreases as concentrations and biomass increase 

(Figure 17). A Chla92 ceiling (i.e., only very small increases in Chla92 with increase in nutrient 

concentration) occurred at “saturating” nutrient concentrations of approximately 1000 mg m-3 

for the TN and DIN models, approximately 50 mg m-3 for the TP and approximately 25 mg m-

3 for the DRP model (assessed subjectively from Figure 17 taking into account the distribution 

of the data shown by the rug on the nutrient (x) axis and the predicted response). Because 

the nutrient term in all models is the log transformed concentration, the models predict that 

biomass continues to increase with increasing nutrient concentration above the ceiling but at 

gradually reducing rates (Figure 17).  

The Chla92 ceiling varied appreciably between Source-of-flow classes (Figure 18). For 

example, at the saturating DIN concentration of approximately 1000 mg m-3 and unshaded 

locations, the modelled response at the 80th percentile of the predicted probability distribution 

varied between 50 mg m-2 (for the CX/GM Source of flow class) to 220 mg m-2 (for the WD/L 

Source of flow class; Figure 18). Similarly, at the saturating TP concentration of approximately 

50 mg m-3 the modelled response at the 80th percentile of the predicted probability distribution 

varied between 71 mg m-2 (for the CX/GM Source of flow class) to 205 mg m-2 (for the WD/L 

Source of flow class; Figure 18).  

The ceiling in Chla92 occurred at around the 80th percentile of the distribution of the TN and 

DIN values and the 90th percentile of the TP and DRP values (rug plot shown in Figure 17). 

The ceiling occurred at between the 70th and 90th percentile of the biomass observations, 

depending on the Source-of-flow class. Therefore, the modelled relationship between Chla92 
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and nutrient concentrations was well informed by the data over the steep initial response to 

increasing nutrient concentration up to the ceiling. 

The models indicated that the probability distribution about the mean prediction is wide (Figure 

17). For example, for a TN concentration of 1000 mg m-3, the mean of the predicted response 

is 90 mg chlorophyll m-2, and the 70th, 80th and 90th percentiles of the distribution were 128, 

156 and 202 mg chlorophyll m-2, respectively.  
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Table 12. Fitted coefficients for OLS regression models pertaining to each nutrient variable. For each independent variable the first values 

are the fitted coefficient (including its sign) and the second value in parentheses is the VIF-value. NA indicates the independent variable was 

not included in the model.  

Nutrient Intercept log10(Nutrient) Temp95 FRE3 Shade Turb EC Reversals sdQ nNeg FineSed 

TN 2.34 0.33 (1.4) 0.03 (1.4) -0.02 (1.9) -0.16 (1.1) -0.03 (1.1) 0 (1.4) -0.01 (1.5) 1.03 (1.7) NA NA 

DIN 2.42 0.25 (1.2) 0.03 (1.4) -0.02 (1.9) -0.17 (1.1) -0.03 (1.1) 0 (1.4) -0.01 (1.5) 1.19 (1.6) NA NA 

TP 5.44 0.21 (1.6) 0.04 (1.5) -0.02 (2.2) -0.15 (1.2) -0.04 (1.1) 0 (1.7) -0.02 (2) 1.52 (1.7) -0.01 (1.9) NA 

DRP 8.09 0.32 (1.2) 0.05 (1.4) -0.03 (2.1) -0.12 (1.2) NA NA -0.02 (2.1) 2.68 (1.5) -0.02 (1.7) -0.01 (1.1) 

 



 

 Page 61 of 121 

 

 

Figure 17. Predicted 92nd percentile chlorophyll based on the OLS models as a function of 

nutrient concentration for the four nutrients.  The predictions represent a site having the 

mean value of each predictor from the fitting data set. The lower (solid) blue line represents 

the mean of probability distribution. The successive blue lines indicate the 70th, 80th and 90th 

percentiles of the predicted probability distribution. The red “rug” indicates the data density 

on both axes. The black vertical dashed lines indicate the approximate saturating 

concentrations, which were assessed subjectively taking into account the distribution of the 

data shown by the rug on the nutrient (x) axis and the predicted response.  

Predictions made using the OLS models for each REC Source-of-flow class were broadly 

consistent with the conceptual model and expectations for each class (Figure 18). Predictions 

based on all four OLS models (i.e., including TN, DIN, TP and DRP, respectively), indicated 

that classes with low resource supply (i.e., low temperature) and high hydrological disturbance 

such as CX/GM, CX/M, CX/H and CX/L had low biomass compared to classes with high 

resource supply and low disturbance such as WD/L and WD/Lk (Figure 18). In addition, within 
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Source-of-flow classes, for a given nutrient concentration, predicted biomass was higher when 

shade status was unshaded compared to shaded (Figure 19).  

 

 

Figure 18. Predicted 92nd percentile chlorophyll at the 80th percentile of the probability 

distribution as a function of nutrient concentration based on the OLS models for the four 

nutrients and all Source-of-flow classes. The colour scheme used for REC Source-of-flow 

indicates an approximate gradient in resources and disturbance as defined by the 

conceptual model with the darker blue colour indicating low resources and high disturbance 

and the yellow colours indicating the opposite.  
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Figure 19. Predicted 92nd percentile chlorophyll at the 80th percentile of the probability 

distribution for two levels of the shade status variable. These predictions were based on the 

OLS model that incorporates TN as the nutrient and are for the four Source-of-flow classes 

indicated. 

The OLS models generally underpredicted the highest Chla92 values (i.e., high biomass 

values had large regression residuals; Figure 20). The underpredicted sites were not 

associated with low numbers of biomass observations (Figure 20) nor were they associated 

with any of the incompletely measured site characteristics (Figure 21). This indicates that the 

independent variables for which we had incomplete data do not explain differences in Chla92 

between sites (see Section 3.2.5). 
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Figure 20. Observed versus predicted values for the OLS regression models.  Each point 

represents a site, and the colour indicates the number of biomass observations. The black 

dashed line is one to one.  
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Figure 21. Observed versus predicted values for the OLS regression models showing 

incompletely measured site characteristics. Each point represents a site, and the colour 

indicates value of five additional characteristics that were not available for all sites. Grey 

points indicate the characteristic was not available for the site. The black dashed line is one 

to one.  

5.4.2 Quantile regression models 

All or most independent variables that were included in the OLS models (Table 12) tended to 

be significant model terms for the quantile regression models at the 50% quantile (Table 13). 

This was expected because the 50% quantile was close to the mean response modelled by 

the OLS regression and all independent variables offered to the QR were significant terms in 

the OLS model. However, for the higher quantile models, fewer independent variables were 

included as significant model terms (Table 13). For example, for the DIN models, four 

independent variables were included as significant model terms (at α=0.05) in the 50% 

quantile model but only two variables (Nutrient and EC) were included in the 70% and 80% 

quantile models and no variables were significant in the 90% quantile model.  

Nutrient concentration was included as a significant model term in all TN models and all but 

the 90% quantile model for DIN. However, the only other model that included nutrient 

concentration as a significant model term was the 50% quantile TP model. Because inclusion 

of nutrient concentration in the model is a requirement for using the model to derive criteria, 

non-inclusion precluded further use of many of the quantile regression models.  
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All quantile regression models predicted increasing biomass with increasing nutrient 

concentration which is consistent with the conceptual model (Figure 22). However, the 

predicted responses were not very consistent with our expectations with respect to differences 

between Source-of-flow classes. For classes with lower resources (i.e., low light and 

temperature) and higher disturbance (e.g., high FRE3 or sdQ) the 50% quantile models 

generally exhibited lower biomass for a given nutrient concentration (Figure 22). But there was 

a less obvious pattern for classes with higher resources with some high resource, low 

disturbance classes having low biomass and vice versa. The modelled patterns in biomass 

across Source-of-flow classes became more inconsistent with expectations for the higher 

quantile models (Figure 23). For example, for the 80% quantile TP model, biomass decreased 

with increasing nutrient concentration, which is the opposite of the expectation based on the 

conceptual model (Figure 2). 

The conclusion from the inspection of the quantile regression models is that they were not fit 

for purpose. These results are likely because fitting an accurate model to the more extreme 

percentiles (70%, 80% and 90%) requires a larger sample size than the available dataset. In 

addition, all other things being equal, dataset size requirements increase with the number of 

significant fitted terms variables. Therefore, the limitations of the size of the dataset were 

exacerbated by the multiple variables that are associated with the biomass response, as 

evidenced by the OLS models.  
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Figure 22. Predicted biomass as a function of nutrient concentration based on the 50% 
quantile QR models for the four nutrients for all Source-of-flow classes. The colour scheme 
used for REC Source-of-flow indicates an approximate gradient in resources and 
disturbance as defined by the conceptual model with the darker blue colour indicating low 
resources and high disturbance and the yellow colours indicating the opposite.  
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Figure 23. Predicted biomass as a function of nutrient concentration based on the 80% 

quantile QR models for the four nutrients for all Source-of-flow classes. The colour scheme 

used for REC Source-of-flow indicates an approximate gradient in resources and 

disturbance as defined by the conceptual model with the darker blue colour indicating low 

resources and high disturbance and the yellow colours indicating the opposite.  
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Table 13. Fitted coefficients for quantile regression models pertaining to each nutrient variable. For each independent variable the first value is the fitted 

coefficient (including its sign, if negative) and the second value in parentheses is the p-value. NA indicates the independent variable was not included in the 

model.  

Nutrient Quantile Intercept log10(Nutrient) Temp95 FRE3 Shade Turb EC Reversals sdQ nNeg FineSed 

TN 

50 2.51 (0) 0.44 (0) 0.02 (0.34) -0.02 (0.48) 0.15 (0.1) -0.07 (0.03) 0.003 (0) -0.01 (0.06) 0.7 (0.35) NA NA 

70 3.46 (0) 0.3 (0.01) 0.03 (0.17) 0 (0.86) 0.12 (0.15) -0.07 (0.02) 0.003 (0) -0.02 (0.03) 0.58 (0.43) NA NA 

80 3.57 (0) 0.23 (0.05) 0.01 (0.66) -0.02 (0.33) 0.11 (0.22) -0.06 (0.18) 0.002 (0.007) -0.01 (0.12) 1.35 (0.17) NA NA 

90 2.87 (0.05) 0.19 (0.25) 0.02 (0.47) -0.03 (0.32) 0.1 (0.34) -0.03 (0.61) 0.002 (0.081) -0.01 (0.44) 1.73 (0.15) NA NA 

DIN 

50 2.38 (0.01) 0.35 (0) 0.02 (0.43) -0.02 (0.32) 0.19 (0.03) -0.07 (0.03) 0.003 (0) -0.01 (0.22) 1 (0.21) NA NA 

70 3.55 (0) 0.19 (0.03) 0.02 (0.27) -0.01 (0.71) 0.08 (0.39) -0.05 (0.07) 0.003 (0) -0.02 (0.06) 0.9 (0.27) NA NA 

80 3.42 (0) 0.18 (0.03) 0.01 (0.49) -0.02 (0.33) 0.12 (0.24) -0.05 (0.17) 0.002 (0.011) -0.01 (0.19) 1.59 (0.15) NA NA 

90 3.28 (0.02) 0.16 (0.24) 0.02 (0.35) -0.02 (0.41) 0.15 (0.11) -0.05 (0.33) 0.003 (0.053) -0.01 (0.26) 1.6 (0.17) NA NA 

TP 

50 7.92 (0) 0.09 (0.62) 0.04 (0.13) -0.01 (0.6) 0.1 (0.29) -0.04 (0.17) 0.003 (0) -0.02 (0.01) 1.44 (0.07) -0.02 (0.08) NA 

70 7 (0) 0.06 (0.74) 0.02 (0.37) 0 (0.93) 0.08 (0.36) -0.05 (0.05) 0.003 (0.001) -0.02 (0.02) 1.2 (0.15) -0.01 (0.16) NA 

80 6.82 (0.02) -0.04 (0.86) 0.01 (0.78) 0 (0.98) 0.05 (0.62) -0.03 (0.42) 0.003 (0.009) -0.02 (0.04) 1.33 (0.16) -0.01 (0.33) NA 

90 4.99 (0.2) -0.12 (0.66) 0.03 (0.24) -0.01 (0.66) 0.07 (0.57) -0.08 (0.11) 0.003 (0.024) -0.01 (0.45) 1.79 (0.1) -0.01 (0.54) NA 

DRP 

50 10.47 (0) 0.21 (0.14) 0.07 (0.01) -0.04 (0.24) 0.09 (0.36) NA NA -0.02 (0.05) 1.83 (0.03) -0.03 (0) 0 (0.99) 

70 10.62 (0) 0.06 (0.7) 0.03 (0.19) -0.02 (0.51) 0.02 (0.85) NA NA -0.02 (0.06) 3.07 (0) -0.03 (0) -0.01 
(0.03) 

80 9.06 (0) 0.16 (0.4) 0.03 (0.23) -0.03 (0.25) -0.05 
(0.65) 

NA NA -0.02 (0.07) 3.37 (0) -0.02 (0.02) -0.01 
(0.04) 

90 12.13 (0) 0.32 (0.09) 0 (0.97) -0.02 (0.36) 0.04 (0.74) NA NA -0.02 (0.02) 3.54 (0) -0.03 (0.02) -0.02 (0) 
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5.4.3 Random forest models 

The R2 values for the fitted RF models varied from 0.40 to 0.39 for the TN, DIN, TP and DRP 

models respectively (Table 14). These R2 values pertain to predictions made for the OOB 

sample and therefore indicate the models’ performance when predicting to sites that were not 

included in the model fitting process. The RF models therefore performed marginally better 

than the OLS models by this measure and in terms of RMSD.  

Table 14. Performance of the RF models of periphyton biomass pertaining to each nutrient.  

Nutrient N R2 PBIAS RMSD 

TN 251 0.40 0.16 0.53 

DIN 251 0.39 0.14 0.54 

TP 251 0.40 -0.09 0.53 

DRP 251 0.40 -0.06 0.53 

 

The TN and DIN models retained all 14 independent variables as significant predictors, but 

the TP and DRP models retained only seven variables (Table 15). The nutrient was the first 

and second most important independent variable for the TN and DIN models, respectively, but 

was not retained when offered to the TP and DRP models.  

The directions of the relationships fitted to the RF model independent variables were 

consistent with the conceptual model (Figure 24). For example, for the TN and DIN models, 

the response (Chla92) was positively associated with nutrient concentration (Nutrient), 

electrical conductivity (EC) and temperature (Temp95), which represent resource supply 

(Figure 2). All models had a negative association between biomass and the hydrological 

indices FRE3, Reversals and nNeg, which represent disturbance (Figure 2). All models 

included a positive association with flow variability (sdQ), which represents the intensity of low 

flow periods (i.e., lack of disturbance; Figure 2). The independent variable Shade was retained 

in the TN and DIN models with a negative relationship. Because the ordering applied to this 

variable was unshaded < shaded, the negative relationship indicates that, all other variables 

being equal, biomass is higher at unshaded than shaded sites.  It is noted that the directions 

of the relationship fitted by the RF models were the same for the OLS models and models 

developed in other studies (Snelder et al., 2019, 2014).  
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Table 15. Order of importance of the independent variables fitted by the RF models 

pertaining to each nutrient. NA indicates the independent variable was not included in the 

model.  

Independent 
variable  

TN DIN TP DRP 

EC 2 1 1 1 

Nutrient 1 2 NA NA 

sdQ 3 3 2 3 

Temp95 4 4 3 2 

MALF7 6 5 4 4 

FRE3 5 6 5 5 

Reversals 7 7 6 6 

nNeg 8 8 7 7 

SolarRadDec 9 9 NA NA 

FineSed 10 10 NA NA 

Clar 11 11 NA NA 

Turb 12 12 NA NA 

NH4N 13 13 NA NA 

Shade 14 14 NA NA 
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Figure 24. Partial plots for the RF models pertaining to each nutrient. Each panel indicates 

the marginal contribution to periphyton biomass of an independent variable. The overall 

order of importance of each independent variable is shown in Table 15. Note that some 

panels have only 2 or 3 nutrient forms plotted because the predictor was not retained in the 

models for the other nutrient forms. 

Like the OLS models, the RF models generally underpredicted the highest observed Chla92 

values (i.e., high values had large regression residuals; Figure 25). The underpredicted sites 

were not associated with low numbers of biomass observations (Figure 25) nor were they 

associated with any of the incompletely measured site characteristics (Figure 26). This 

indicates that the independent variables for which we had incomplete data do not explain 

differences in Chla92 between sites (see Section 3.2.5). 
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Figure 25. Predicted versus observed values for the RF regression models. Each point 
represents a site, and the colour indicates the number of biomass observations. The black 
dashed line is one to one. See Table 14 for regression performance statistics.  
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Figure 26. Observed versus predicted values for the RF regression models showing 

additional characteristics. Each point represents a site, and the colour indicates value of five 

incompletely measured site characteristics. Grey points indicate the characteristic was not 

available for the site. The black dashed line is one to one.  

 

Predictions of biomass made using the RF models for each REC Source-of-flow class were 

broadly consistent with the conceptual model and expectations for each class (Figure 27). 

Predictions based on the TN and DIN RF models indicated that classes with low resource 

supply (i.e., low temperature) and high hydrological disturbance such as CX/GM, CX/M, CX/H 

and CX/L had low biomass compared to classes with high resource supply and low 

disturbance such as WD/L and WD/Lk (Figure 27).  

The predictions of biomass along a gradient in nutrient concentration made using the RF 

models were not as smooth as the OLS predictions (compare Figure 27 with Figure 22 ). This 

is because the RF models are non-parametric. Biomass increased rapidly with increasing TN 

and DIN concentration until a ceiling occurred at nutrient concentration of approximately 1000 

mg m-2 after which there was a slightly negative relationship (Figure 24). Note that the TN and 

DIN concentrations at the ceiling, and the Chla92 ceiling, for the RF models (Figure 24) was 

very similar to that for the OLS models (Figure 18).  
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Figure 27. The 80th percentile of the predicted distribution of Chla92 as a function of nutrient 

concentration based on the RF models for TN and DIN and for all Source-of-flow classes. 

Note that the RF models that were offered DRP and TP did not include these nutrients and 

are therefore not shown. The colour scheme used for REC Source-of-flow indicates an 

approximate gradient in resources and disturbance as defined by the conceptual model with 

the darker blue colour indicating low resources and high disturbance and the yellow colours 

indicating the opposite. The red “rug” indicates the data density on both axes. Note that the 

x-axis has been truncated at 1500 for clarity.  
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5.5 Choice of models to define criteria 

Step 4 of the analysis process outlined in Figure 6 is to choose a set of regression models 

(i.e., four models, each using one of TN, DIN, TP and DRP to represent nutrient concentration) 

to derive the nutrient criteria. We selected the four OLS models as the most robust and credible 

models with which to derive nutrient criteria. The QR models were not robust or credible given 

that the models for the more extreme percentiles (70%, 80% and 90%) did not include many 

independent variables as significant terms (Table 13) and the predicted responses were 

inconsistent with the conceptual model (Figure 23). We had not anticipated using the RF 

models to derive the nutrient criteria because of limitations in how this type of model can 

extrapolate predictions for unsampled environmental conditions (see Section 4.4.3). 

5.6 Modelled independent variables 

There were no existing estimates for digital river network segments for three independent 

variables that were included in at least one of the fitted OLS models. The variables were: EC, 

FineSed and Temp95. Spatial models of these independent variables were therefore fitted 

and used to make predicted values for all network segments that could be used at the 

subsequent nutrient criteria derivation step. 

Prior to fitting the models, distributions of EC and FineSed were made more symmetric by 

log10- and logit-transformation of the variables (the model responses), respectively. No 

transformation was necessary for the temperature variable (Temp95).  

The RF models of EC and Temp95 had good performance (Table 16), as indicated by the 

criteria of Moriasi et al. (2015) (0.60 < R2 ≤ 0.70, 15 ≤ |PBIAS| < 20). The FineSed model had 

satisfactory performance (0.30 < R2 ≤ 0.60, 20 ≤ |PBIAS| < 30).  

At the subsequent nutrient criteria derivation step, predictions of water quality made by 

Whitehead (2018) and hydrological indices made by Booker and Snelder (2012) and Snelder 

and Booker (2013) were also used. These models also had at least satisfactory performance 

based on the criteria of Moriasi et al. (2015).  

Table 16. Performance of the RF models used to make spatial predictions of the independent 

variable EC, FineSed and Temp95. N indicates the number of sites used to fit the model. 

Transformation indicates the transformation applied to the modelled response, and which are 

applicable the reported RMSD values in the table.  

Modelled 
variable 

N R2 NSE PBIAS RMSD Transformation 

EC 251 0.63 0.62 0.09 0.15 log10 

FineSed 251 0.43 0.43 0.08 0.58 logit 

Temp95 251 0.70 0.70 -0.39 0.81 none 

 

Patterns in the predicted values of EC, FineSed and Temp95 are shown in Figure 28. The 

maps indicate generally higher EC in low elevation locations which may be associated with 

relatively higher groundwater inputs. Patterns in Temp95 are broadly consistent with the 

expectation that higher values will be associated with lower elevation and lower latitudes.  
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Figure 28. Predicted values for three independent variables (EC, FineSed and Temp95) that were included in the biomass models.  
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5.7  Nutrient criteria for each Source-of-flow class 

The distributions of monitoring sites across the environmental gradients represented by the 

independent variables retained in the OLS models were generally consistent with the 

distribution of all network segments nationally across the same gradients (Figure 4). For some 

environmental gradients, there was moderate over- and under-representation. For example, 

monitoring sites (represented by the blue histograms in Figure 29) were under-represented in 

environments characterised by cold temperature (low values of Temp95) and were over-

represented in environments characterised by warm temperature (high values of Temp95). 

Monitoring sites were slightly over-represented in environments characterised by low 

Reversals and under-represented in environments characterised by low nNeg.  

The plots shown in Figure 29 indicate that there are no monitoring sites representing segments 

with high FRE3 and low solar radiation (SolarRadDec). Model predictions for segments with 

high FRE3 and low solar radiation are therefore outside of the range of the observations and 

represent extrapolation from the modelled relationships. The criteria may therefore be less 

reliable in these environments. 
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Figure 29. Histograms comparing the distributions of the ten independent variables included 

in the OLS models for all segments of the river network and the monitoring sites. The 

network segments are represented by the red histograms and the monitoring sites are 

represented by the blue histograms. Similarities in the distributions shown in the two 

histograms in each panel provide an indication of the degree to which environmental 

variation across the monitoring sites represent environmental variation across all rivers and 

streams in New Zealand; complete representativeness would be indicated by exact matches 

between the histograms.  
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The OLS models were used to predict periphyton biomass across the range in nitrogen and 

phosphorus concentrations observed in our site data (i.e., up to 4,500, 3,800, 300 and 230 mg 

m-3 for TN, DIN, TP and DRP, respectively). From these predictions, the criteria corresponding 

to biomass thresholds of 50 mg m-2, 120 mg m-2, and 200 mg m-2 were derived for six levels 

of under-protection risk (50%, 30%, 20% 15%, 10% and 5%) as described in Section 4.7.1. 

Because Shade was included as an explanatory variable in all four nutrient OLS models, 

separate look-up tables of nutrient criteria were derived for shaded and unshaded locations. 

The criteria for the 20% level of under-protection risk are shown as examples for shaded and 

unshaded locations and all Source-of-flow classes in Figure 30. The criteria show three 

patterns that are consistent with the conceptual model. Firstly, criteria are lower for the lower 

biomass thresholds than the higher thresholds. Secondly, criteria are higher for Source-of-

flow classes with low resource supply (i.e., low temperature) and high hydrological disturbance 

such as CX/GM, CX/M, CX/H and CX/L compared to classes with high resource supply and 

low disturbance such as WD/L and WD/Lk. Thirdly, within Source-of-flow classes for a given 

biomass threshold, criteria are higher for shaded locations compared to unshaded (Figure 30, 

Figure 31).  

For each nutrient, the maximum possible value for a criterion is the maximum observed 

nutrient concentration (i.e., 4,500, 3,800, 300 and 230 mg m-3 for TN, DIN, TP and DRP, 

respectively). Criteria that are equal to these values indicate that on average the model did 

not predict that the threshold was reached even when the nutrient concentration was 

maximum.  

The complete set of criteria for all thresholds, Source-of-flow classes and levels of under-

protection risk for shaded and unshaded locations are provided as tables in Appendix A.  
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Figure 30. Nutrient criteria for REC Source-of-flow classes and a 20% under protection risk. 

The grey lines indicate the approximate nutrient concentrations at which the biomass ceiling 

occurs. For each nutrient, the maximum possible value for a criterion is the maximum 

observed nutrient concentration (i.e., 4,500, 3,800, 300 and 230 mg m-3 for TN, DIN, TP and 

DRP, respectively).  
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Figure 31. DIN criteria for REC Source-of-flow classes and four levels of under-protection 

risk and three biomass thresholds for shaded and unshaded sites.The grey lines indicate the 

approximate nutrient concentrations at which the biomass ceiling occurs. The maximum 

possible value for a criterion is the maximum observed DIN concentration (3,800 mg m-3). 

 

5.8 Comparison with existing criteria 

The criteria derived by this study are compared to those derived by Snelder et al. (2019) on 

Figure 32 and Figure 33. The Snelder et al. (2019) criteria did not discriminate between 

shaded and unshaded locations. Because the NRWQN sites used by Snelder et al. (2019)  

were generally on large rivers, it has been assumed the Snelder et al. (2019) criteria apply to 

unshaded locations. Therefore, the appropriate comparison is with this study's unshaded 

criteria. 
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For TN and the of 50 mg m-2 threshold and the 10% and 20% levels of under-protection risk, 

the criteria derived by this study were appreciably lower (all Source-of-flow classes plot below 

the one-to-one line on Figure 32). In contrast, for TN and the of 200 mg m-2 threshold and the 

10% and 20% levels of under-protection risk, the criteria derived by this study were 

appreciably higher (most Source-of-flow classes plot above the one-to-one line on Figure 32). 

The two sets of criteria showed a greater level of agreement for the 120 mg m-2 threshold for 

both the 10% and 20% levels of under-protection risk (Source-of-flow classes plot close to and 

either side of the one-to-one line on Figure 32).  

Similar patterns in differences in the two sets of criteria are seen for DRP (Figure 33).  

 

Figure 32. Comparison of TN criteria derived by this study to those of Snelder et al. (2019).  

The rows are two levels of under protection risk (20% and 10%). The red line is one to one. 

The grey lines indicate the approximate nutrient concentration at which the biomass ceiling 

occurs. The maximum possible value for a criterion on the y-axis (this study) is the maximum 

observed TN concentration (4,500 mg m-3). 
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Figure 33. Comparison of DRP criteria derived by this study to those of Snelder et al. (2019). 

The rows are two levels of under protection risk (20% and 10%).  The red line is one to one. 

The grey lines indicate the approximate nutrient concentration at which the biomass ceiling 

occurs. The maximum possible value for a criterion on the y-axis (this study) is the maximum 

observed DRP concentration (230 mg m-3). 

 

5.9 Validation of the criteria 

The observed and predicted values of the 92nd percentile periphyton biomass at the 78 sites 

in the independent dataset based on the four nutrient forms are shown as scatter plots in 

Figure 34. Theoretically, 5%, 10%, 15%, 20%, 30% and 50% of the independent sites should 

have observed biomass that exceeds the predicted biomass when the predictions are made 
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based on the corresponding levels of under-protection risk (i.e., should lie above the red line 

on Figure 34).  

 

The data shown in Figure 34 indicate that the proportions of sites for which observed 

biomass exceeds the predicted increases systematically as the under-protection risk 

increases for all four nutrient forms. Table 17 indicates that the proportion of sites for which 

observed biomass exceeds the predicted is approximately as expected according to the 

level of under-protection risk for all four nutrient forms. Overall, the proportions of sites for 

which observations exceed predictions are slightly higher than expected based on the level 

of under-protection risk. Snelder et al. (2019) showed that there are large uncertainties 

associated with both the observations and predictions. Given these uncertainties, it is likely 

that the independent data are consistent with the derived nutrient targets (i.e., the 

predictions are within the uncertainty of both the observations and the predictions).  

 

  



 

 Page 86 of 121 

 

 

Figure 34. The observed and predicted values of the 92nd percentile periphyton biomass at 

the 78 NRWQN sites in the independent dataset where predicted values are derived from 

the nutrient criteria for under-protection risks of 5, 10,15, 20, 30 and 50%. Panel labels 

indicate the under-protection risks and the nutrient form (TN, DIN, TP and DRP). The red 

diagonal (one to one) line represents agreement between the predictions and observations. 

The points lying below the red line indicate sites for which the observed biomass was less 

than that predicted by the targets and vice versa.  
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Table 17. Performance of the criteria based on independent dataset. of sites (%) for which 

observed biomass exceeds the predicted for the four levels of under-protection risk. 

Under protection risk (%) Nutrient form 

TN DIN TP DRP 

5 10 12 10 8 

10 15 18 19 17 

15 22 23 23 23 

20 26 31 29 27 

30 35 37 37 38 

50 54 63 56 62 

 

5.10 National current periphyton state model 

The national current periphyton state model was not subject to the same constraints as the 

OLS or QR models. It therefore represents that best possible prediction of current periphyton 

state and might help to identify limitations associated with the OLS or QR models and, 

therefore, the criteria. The R2 value for the fitted RF model of national periphyton current state 

was 0.45. The model had low bias (PBIAS = -0.1%) and an RMSD of 0.51. These performance 

statistics pertain to predictions made for the OOB sample and therefore indicate the models’ 

performance when predicting to sites that were not included in the model fitting process. 

Quantile-quantile (Q-Q) plots indicate that the distributions of the regression residuals of the 

national periphyton current state model were reasonably consistent with the theoretical normal 

distribution (Figure 35). This indicates that the model’s residual values are reasonably 

normally distributed. The model may therefore be used to predict the entire probability 

distribution based on the theoretical normal distribution.  
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Figure 35. Quantile-quantile plot comparing the RF national periphyton biomass model 
regression residuals to the normal distribution. 

The model retained 26 independent variables, whose relationships with the model response 

(Chla92) are described by the partial plots shown in (Figure 36). Chla92 was positively 

associated with concentrations of the nutrients TN and DIN, Temp95, and EC, which is 

expected because these variables represent resource supply (Figure 2). Chla92 was 

negatively associated with frequency of high flows (FRE2 and FRE3), which represent 

disturbance (Figure 2). Biomass was positively associated with Max30 and sdQ, which 

indicate sustained periods of low flow (i.e., periods without disturbance; Figure 2). Similarly, 

biomass was negatively associated with MALF30, low values of which indicate sustained 

periods of low flow (i.e., periods without disturbance; Figure 2). 

Several catchment characteristics were included in the national model, and these can be 

understood as representing gradients in resource supply and disturbance. For example, 

Chla92 was positively associated with usIntensiveAg. Catchments with high values of 

usIntensiveAg will tend to have higher temperatures and higher nutrient supply (i.e., high 

resources; Figure 2). Biomass was negatively associated with usNativeForest, usSlope and 

usRain.  Catchments with high values of usNativeForest, usSlope and usRain will tend to have 

lower temperatures and nutrient supply (i.e., low resources; Figure 2) and more frequent high 

flows (i.e., high disturbance; Figure 2).  

 

Figure 36. Partial plots for the RF model predicting 92nd percentile chlorophyll using all 

available predictors. Each panel indicates the marginal contribution of the independent 

variable to the response. The 14 most important predictors that were retained by the 

reduced RF are shown.  
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The RF model generally underpredicted the highest observed biomass values (i.e., high 

biomass values had large residuals; Figure 37). The underpredicted sites were not associated 

with low numbers of biomass observations (Figure 37) nor were they associated with any of 

the incompletely measured site characteristics (Figure 38). This indicates that the independent 

variables for which we had incomplete data do not explain differences in Chla92 between sites 

(see Section 3.2.5). 

  

Figure 37. Observed versus predicted values for the national periphyton biomass RF 

regression model.  Each point represents a site, and the colour indicates the number of 

biomass observations. The black dashed line is one to one. 
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Figure 38. Observed versus predicted values for the national periphyton RF model showing 

incompletely measured site characteristics. Each point represents a site, and the colour 

indicates value of five additional characteristics that were not available for all sites. Grey 

points indicate the characteristic was not available for the site. The black dashed line is one 

to one. 

The fitted RF model was used to make predictions of current 92nd percentile of chlorophyll for 

all segments of the national digital river network of stream order ≥3. These predictions were 

then converted to the probability the segment belongs to each of the four NOF attribute states 

(Figure 39).  

The percentage of river segments (stream order ≥3) having different ranges of probability of 

being in the NOF D attribute state (i.e., 92nd percentile of chlorophyll > 200 mg m-2) are 

tabulated in Table 18. The predictions indicate that 1%, 5% and 13% of the river network has 

>30%, 20-30% and 10-20% probability of being in the NOF D attribute state (i.e., below the 

NOF bottom line), respectively.  

Table 18. Predicted percentage of river segments of order ≥3 belonging to ranges of 

probabilities of being in the NOF D attribute state (below the bottom line). 

Probability range Proportion of network segments (%) 

<0.01 47 

0.01-0.1 34 

0.1-0.2 13 

0.2-0.3 5 

>0.3 1 
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Figure 39. National predictions of current 92nd percentile of chlorophyll for river network 

segments of stream order ≥3.  The maps show the probabilities of network segments 

belonging to each of the NOF periphyton attribute bands. Note, the colour scale is capped at 

a probability of 0.3. 
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6 Discussion 

6.1 Approach to defining nutrient criteria 

The models used in this study to define the nutrient criteria aimed to explain between-site 

differences in the characteristic peak periphyton biomass (i.e., the 92nd percentile of monthly 

samples) as a function of between-site differences in the mean intensity of processes 

represented by the conceptual model (i.e., biomass accrual and loss). The models therefore 

do not involve any representation of time. The median nutrient concentration is used as an 

independent variable in the models because it is an appropriate measure of average difference 

in nutrient enrichment between sites. The median concentrations incorporate seasonal and 

flow-driven fluctuations in nutrient concentrations (e.g., high concentrations during winter and 

low concentrations driven by instream uptake when periphyton biomass is high). Similarly, the 

hydrological indices are measures of the general difference in levels of disturbance between 

sites. This approach, as opposed to more temporally detailed approaches (such as using only 

data leading up to peak biomass in summer) is justified by the observation that periphyton 

biomass rarely shows consistent seasonality (see Appendix C). It is likely that high biomass 

is most strongly associated with periods of sustained low or base flow, and these can occur at 

any time of the year. This indicates that models would not be improved by any discretisation 

of time. There have been attempts to represent time in regression-based periphyton models, 

for example, by incorporating antecedent nutrient concentration (e.g., nutrient concentrations 

averaged over one or more sample occasions prior to a biomass observation) (Kilroy et al., 

2018). However, this approach has not been applied to derivation of generalised nutrient 

criteria because the dynamics are complex and monthly sampling is insufficient to describe 

the processes involved (see review by Kuczynski, 2019). While there have been some efforts 

to model periphyton dynamics using detailed mechanistic models (e.g., Suplee et al., 2015), 

these methods are at early stages of development, are generally applied at a site-specific 

level, and are not suitable for deriving the nation-wide criteria that this study aimed to produce. 

We developed models that incorporated both the dissolved inorganic and total forms of 

nitrogen and phosphorus. TN and TP often show the best relationships with periphyton 

biomass (both in New Zealand and internationally, (e.g., Dodds, 2007; Smith and Tran, 2010; 

Snelder et al., 2014). In this study, the OLS models based on TN and DIN performed similarly 

but the TP model performed better than the DRP model. In practice, analysts and modelers 

need to convert between total and dissolved forms of nutrients, depending on the questions 

being addressed and there are methods to do this. For example, catchment models will 

generally need to consider the total forms nitrogen and phosphorus in order to conserve mass, 

but criteria may need to be specified in terms of dissolved inorganic nitrogen and phosphorus. 

We produced criteria for both dissolved and total forms of both nutrient, which provides a 

flexible set of tools for users. 

Variation in between-site periphyton biomass explained by the statistical models developed in 

this study was low. For the OLS models that were used to define the criteria, LOOCV R2 values 

varied between 0.27 and 0.38 (Table 11). The consequence of low variation explained by the 

statistical models is that predictions of biomass have large uncertainty. For example, a 

prediction for the 92nd percentile chlorophyll of 90 mg m-2 made with a the OLS models defined 

in this study has a 95% confidence interval of approximately 15 mg m-2 to 300 mg m-2 (Table 

10) and the 70th, 80th and 90th percentiles of the distribution are 128, 156 and 202 mg m-2, 

respectively.  
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The model uncertainty means that there is not a single specific criterion that will ensure that a 

target level of biomass is not exceeded. Instead, there is a probability distribution that 

describes the risk that the target level of biomass at a site will be exceeded for a given nutrient 

concentration. We refer to this probability as under-protection risk. It is important that nutrient 

criteria describe, as much as possible, the risk of under-protection and allow decision-makers 

to choose the level of risk that is acceptable. The nutrient criteria derived in this study provide 

for choice in the level of under-protection risk that is acceptable. 

The under-protection risk refers to a specific river location. Choosing a level of under-

protection risk means that, across a domain of interest comprising many sites, a proportion of 

locations can be expected to have biomass higher than the nominated target despite being 

compliant with the criteria. The corollary to this is that the objective underlying the criteria is to 

maintain periphyton biomass at or below the nominated thresholds at a proportion of sites 

within a domain that is the complement of the under-protection risk. For example, under-

protection risks of 30%, 20% and 10% correspond to objectives to maintain biomass below 

the target level at 70%, 80% or 90% of sites across the domain, respectively. 

Defining objectives in terms of risk of under-protection acknowledges that there are large 

uncertainties associated with the statistical (OLS) models used to define criteria by this study 

at the site-scale. However, because these models explain some variation, they can describe 

broad-scale variation in the response of benthic chlorophyll to water column nutrient 

concentrations (Dodds et al., 2002; Snelder et al., 2019, 2014). The large site-scale 

uncertainties are due to the complexity of processes controlling periphyton growth and loss 

and to the incomplete representation of these processes by the independent variables in the 

regression models.  

The approach to developing nutrient criteria in this study combines the models’ description of 

broad-scale variation with the assumption that, rather than requiring the target biomass 

condition at all sites, the management objective is to limit the risk that periphyton biomass will 

exceed the target level. The approach therefore uses the model in a manner that is appropriate 

to its precision and encourages management to define management objectives in terms that 

are tractable. 

6.2 Quality of the models and comparison with other studies 

The performance of the OLS and RF models defined by this study are similar to that found in 

past national studies of this type in New Zealand (Kilroy, Snelder, et al., 2020; Kilroy and 

Stoffels, 2019; Snelder et al., 2019, 2014). The R2 values are also consistent with results of 

similar studies overseas. For example, Dodds et al. (2002) and Dodds (2006) explained a 

maximum of 40% of mean biomass (chlorophyll) for observations made at North American 

sites representing diverse environmental conditions. Other studies have found no meaningful 

relationship between periphyton abundance and nutrient concentrations (e.g., Lewis and 

McCutchan, 2010; Welch et al., 1988). A conclusion from this is nutrient-periphyton biomass 

relationships are complex and our understanding and ability to predict biomass is limited.  

The models developed in this study were very consistent, both structurally and in terms of 

performance, with previous national-scale studies using different datasets and descriptors of 

biomass abundance. For example, Snelder et al. (2019, 2014) derived OLS models that 

included log (base 10) transformed nutrient concentrations (TN and DRP), light and 

temperature terms and the hydrological indices (FRE3, nNeg, MALF7). The same or similar 

independent variables were included in the models produced by this study with the directions 

of the relationships between the independent variables and biomass being the same in all 
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studies and consistent with the conceptual model (Figure 2). Thus, multiple national-scale 

studies involved checking many independent variables and resulted in retaining the same, or 

similar, selections. This provides confidence that the independent variables used in this study 

are widely applicable at the national scale. 

Higher performing statistical models than those developed by this study have been derived in 

some national and regional studies in New Zealand. For example, using monthly data 

collected over a period of at least a year at 30 river sites throughout New Zealand, Biggs 

(2000) was able to explain over 70% of the variation in maximum chlorophyll from a 

combination of mean DIN or DRP concentrations and FRE3. The dataset was limited to a 

specific river type, primarily in the CW/H REC class. At a regional scale, models explaining 

between-site variation in Chla92 with R2 > 0.75 were derived for data from the Manawatu-

Whanganui region (Kilroy et al., 2018). Better performance of regional models compared to 

national models could be because of the more limited ranges of conditions that are 

represented within regions compared to across the whole country 

International studies that have identified relatively strong relationships (R2 > 0.4) between 

chlorophyll and nutrients and other independent variables have generally been based on small 

datasets (N < 30 sites) associated with gradients of nutrient concentrations starting from a 

relatively low minimum (e.g., TN < 100 mg m-3) (e.g., Carr et al., 2005; Munn et al., 2010). In 

addition, variables that are surrogates for nutrient concentrations, such as catchment land use 

(as percentage cover) sometimes explain considerably more of the variance in chlorophyll 

than proximal predictors (including nutrients) described in the conceptual model in Figure 2 

(e.g., Austin et al., 2015; Taylor et al., 2004). However, models that do not use proximate 

measures of nutrient supply (e.g., median concentrations) are not useful for deriving nutrient 

criteria.  

The dataset used in the current study is unique in that it has a large spatial coverage (251 

sites) and the dependent variable (Chla92) was derived from time series of observations over 

at least 2 years (and in most cases over 3 years), as well robust data describing all 

independent variables (including nutrient concentrations). To our knowledge, studies with 

similar geographic coverage have derived the dependent variable from synoptic data (a single 

sampling occasion) and relied on inclusion of large-scale variables (e.g., ecotypes) to achieve 

similar explanatory skill as that seen in the present study (Urrea-Clos et al., 2014). 

6.3 Assumptions and limitations of the approach 

The key statistical assumptions were: 

• that the sample data (i.e., the monitoring sites) are representative of the population 

(i.e., all rivers in New Zealand), and  

• that the residuals of the regression models are normally distributed. 

The first assumption is important because obtaining criteria for every Source-of-flow class 

required using statistical models to make predictions outside the range of the observations 

(i.e., extrapolation from the observations). This is because Source-of-flow classes encompass 

all rivers and streams in New Zealand, but the fitting dataset represent a restricted range of 

environments. We assumed that the fitted relationships were representative of all rivers, but it 

was not possible to know if this was true. However, some insight into whether the assumption 

is robust was obtained by considering how representative the monitoring sites were of national 

scale variation in the explanatory variables included in the models.  
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Our analysis of representativeness indicated that the criteria derivation process has not 

involved large extrapolations from the environmental conditions represented by the monitoring 

sites (Figure 29). Locations that are most poorly represented are rivers with high-frequency 

high flows (FRE3) and low solar radiation (SolarRadDec), which are characteristic conditions 

in western and mountainous regions of the country. The poor representation of rivers in the 

western and mountainous regions of the country is evident from the geographic distribution of 

monitoring sites (Figure 7). 

The analysis of representativeness (Figure 29) only considers the representativeness of the 

monitoring sites in one-dimension (i.e., with respect to the variable shown on the x-axis), 

whereas the true representativeness of the sample needs to be considered within the multi-

dimensional space defined by all the independent variables. More complex methodologies 

exist to determine the reliability of the model predictions by considering the degree to which 

predictions are based on interpolation or extrapolation (Booker and Whitehead, 2018). 

Generally, the smaller the training set size the greater degree to which model predictions are 

based on extrapolation and the lower the overall prediction reliability. However, conducting 

this type of analysis was beyond the scope of the current project. 

The assumption that regression model residuals are normally distributed is a condition shared 

by many types of statistical model. The robustness of the results and conclusions of a study 

to violations of these assumptions depends on the questions being asked of the analysis. In 

the current study, we relied on the prediction confidence interval to provide an accurate 

representation of the probability that a stated biomass threshold will be exceeded. The 

accuracy of the prediction confidence intervals will be affected by deviations from the normality 

of the regression residuals. Our regression residuals were reasonably normally distributed 

(e.g., Figure 16), but some residual bias was evident particularly for sites with high biomass 

(e.g., Figure 20). The extent to which these violations of the statistical assumptions are a 

problem has not been formally evaluated. However, we have undertaken several analyses to 

validate the derived criteria (see Section 6.6), which provides some level of confidence that 

violation of the assumptions has not led to gross inaccuracies.  

The development of the statistical models produced by this study was guided by a conceptual 

model that summarises our understanding of periphyton biomass dynamics (Figure 2). 

However, the representation of the conceptual model by the statistical models is subject to 

two specific limitations; coarse representation of the controlling processes and use of 

surrogate measures related to periphyton accrual or loss.  

Most of the input variables (including the dependent and independent variables) to the 

statistical model are single values that represent a summary of temporally variable conditions 

(e.g., 92nd percentile of chlorophyll, median nutrient concentrations, hydrological indices) 

calculated from time-series data. This means that the processes described by the conceptual 

model are represented by coarse-grained data that represent only the characteristic condition 

of the response and the driving processes at each site. In reality, the processes of periphyton 

accrual and loss described by Figure 2 occur continuously. The independent variables to the 

statistical models are therefore representing differences in the average intensity of the 

processes between sites, rather than the processes themselves.  

The independent variables are also surrogate measures of the processes they represent. For 

example, while high flows can ultimately be responsible for removing biomass, the processes 

on the riverbed that cause that loss are actually drag caused by high water velocities and 

scour caused by bed sediment movement (Hoyle et al., 2017; Neverman et al., 2018). The 

hydrological indices used to represent disturbances that lead to the loss of periphyton are 
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therefore only surrogates for these processes. The use of surrogate independent variables is 

a limitation that will contribute to unexplained variation.  

6.4 Under-predicted high periphyton biomass values 

Our models tended to under-predict high values of Chla92 (> 200 mg m-2). Informal 

assessments indicated that the high biomass that the models under-predicted at some sites 

could not be attributed to aspects of the periphyton community (as determined from visual 

assessments of cover on the stream bed), the number of biomass observations or the nature 

of the bed sediment (e.g., Figure 21). Further inspection of the dataset showed that some sites 

with high biomass were downstream of waste-water treatment plants (e.g., at least four high 

biomass sites in the Manawatu - Whanganui region were downstream of treatment plants).  In 

some cases, high Chla92 associated with treatment plants may be attributable to elevated 

concentrations of NH4-N (e.g., Kilroy, Brown, et al., 2020), and to elevated concentrations of 

other contaminants (e.g., Aristi et al. 2015). However, in this study, all models were offered 

median NH4-N as an independent variable, and it was never included as a significant model 

term.  

The distributions of chlorophyll observations at all sites were approximately exponentially 

distributed (Figure 10, panel A). This indicates that the temporal dynamics of biomass are 

similar at all sites but that biomasses are generally (i.e., including the mean and maximum 

biomass) higher at some sites. It may be that we are unable to account for the high biomass 

at some sites because high Chla92 is caused by multiple different factors at different sites, 

including unidentified factors. Thus, it is likely that no single model term could better predict 

high biomass sites at this stage and more research is needed to understand the drivers of 

high biomass.  

6.5 Relationship between biomass and nutrient concentration 

All of our models indicated that the increase in biomass with increasing concentration of all 

nutrients (i.e., TN, DIN, TP and DRP) is initially high but reaches a biomass ceiling beyond 

which the response to nutrient concentrations is minor (e.g., OLS models - Figure 17, QR 

models - Figure 22), or there is no further response (RF models - Figure 27). The biomass 

ceiling depends on site characteristics other than nutrient concentrations with a higher 

biomass ceiling where resources other than nutrients (e.g., light and temperature) are high 

and disturbance is low (e.g., Figure 18).  

A nutrient concentration beyond which there is no further increase in the biomass response 

(i.e., the ceiling) could be interpreted as a “saturating concentration”. For the OLS and QR 

models, the saturating concentrations were assessed subjectively from the plotted model 

predictions (Figure 17). Saturating concentrations were subjectively assessed to be 

approximately 1,000 mg m-3 for TN and DIN, approximately 50 mg m-3 for TP and 

approximately 25 mg m-3 for DRP (Figure 17). For the RF models, the saturating 

concentrations for TN and DIN were variable across the Source-of-flow classes (Figure 27) 

and varied between approximately 500 mg m-3 and >1,000 mg m-3. For the OLS and QR 

models, the assessment of the saturating concentration is strongly influenced by the form of 

the regression model and in particular the log (base 10) transformation of the nutrient term. 

This means that for the OLS and QR models, modelled biomass does not actually reach a 

ceiling with increasing nutrient concentration. Therefore, the saturating concentration 

suggested above indicates where a “practical” ceiling occurs. The RF model is not constrained 

in the same way as the OLS and QR models. For the RF model there is a biomass ceiling 

evident in the plot with a slightly negative association between nutrient concentration and 
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biomass at higher nutrient concentrations (Figure 27). However, the exact location of the 

saturating concentration is subject to uncertainty because the data are limited at this point 

(see rug on Figure 27).  

It is noted that because all the biomass models include multiple explanatory variables, 

objective definition of the saturating concentration is considerably more complicated than is 

the case for simple bivariate relationships. In other studies, identification of significant break 

points (i.e., changes in rates of change) in simple bivariate relationships between chlorophyll 

and environmental variables (including nutrient concentrations) was subject to high 

uncertainty (e.g., Dodds et al., 2002; Dodds, Smith, et al., 2006). Given the high dimensionality 

of the biomass models (as indicated by the numerous significant explanatory variables) any 

objective identification of the saturating concentration will have considerable uncertainty.  

Saturation of periphyton growth occurs as the nutrient concentration increases to a point at 

which another growth-critical factor becomes limiting. Although there will be absolute upper 

limits to saturating concentrations of nitrogen and phosphorus for stream periphyton (e.g., 

when all other resources are non-limiting), in reality, saturating concentrations will vary 

because of the influence of other limiting factors such as light and temperature. If phosphorus 

is in short supply, then a growth response beyond a certain concentration of nitrogen (when 

phosphorus becomes limiting) is not expected, and vice versa for nitrogen (e.g., Lewis et al., 

2008). Thus, the ceiling for Chla92 observed in the OLS and RF relationships could represent 

the point at which peak biomass at some sites stops responding to nitrogen or phosphorus 

and starts being limited by some other factor, potential candidates being the alternate nutrient 

(i.e., phosphorus or nitrogen, respectively). Consideration of the ratios of TN:TP and DIN:DRP 

(calculated from median values at each site) as very approximate indicators of the limiting 

nutrient (e.g., as used by McDowell et al. 2009) suggested that limitation by the alternative 

nutrient might explain some cases of lower-than-expected Chla92. However, we note that 

robust assessment of N or P limitation of periphyton biomass requires more detailed analyses, 

including field experiments. In the context of the models and derived nutrient criteria, the 

influence of nutrient limitation in influencing periphyton biomass is less important than the 

effects on biomass of increasing nutrient concentrations (either N or P) up to levels 

corresponding to the biomass ceiling. The chances of achieving periphyton objectives will be 

increased by meeting the nutrient criteria for both N and P. 

The nutrient concentrations corresponding to the biomass ceiling are generally consistent with 

concentrations reported in the international literature to be saturating for periphyton growth. 

For example, in a meta-analysis of nutrient limitation experiments with periphyton responses 

measured as the ratio of chlorophyll in enriched versus control treatments, an upper saturation 

concentration for DIN of about 1400 mg m-3 was suggested, although responses to increases 

in DIN started to level off above about 280 mg m-3 (Keck and Lepori, 2012). Using a large 

dataset, Dodds et al. (2006) suggested saturation points for TN and TP corresponding to 

breakpoints in the relationship between log (maximum chlorophyll) and log TN or log TP, of, 

respectively 367 – 602 and 27 – 62 mg m-3; maximum chlorophyll at the suggested saturation 

point for TN was, on average, ~150 mg m-2. Keck and Lepori (2012) observed a flattening off 

(or breakpoint) in the TP versus chlorophyll response relationship TP between 30 and 60 mg 

m-3. Peak biomass of periphyton in large accumulations (diatoms and green filamentous algae 

such as Stigeoclonium sp., up to 300 mg m-2) was observed to saturate at DRP concentrations 

> 25 mg m-3; at higher concentrations other factors limited biomass accrual, such as physical 

instability of the mat (e.g., spontaneous sloughing) or light limitation within the mat (Bothwell, 

1989).  
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Assuming the nutrient and periphyton data used in the current study were representative of 

nutrient – biomass relationships in New Zealand’s rivers, we expect the decreasing 

responsiveness of biomass to increasing nutrient concentration, and the nutrient 

concentrations at which the biomass ceiling occurs, are likely to be repeatable and robust 

findings of this study (Ardon et al., 2020). This is because the region of decreasing 

responsiveness and the biomass ceiling is well informed by the data. For example, the ceiling 

in biomass occurs at around the 80th percentile of the distribution of the TN and DIN values 

and the 90th percentile of the TP and DRP values (rug plot shown in Figure 18).  

The RF model of current biomass nationally also indicated that biomass reaches a ceiling in 

its response to increasing TN and DIN concentrations (Figure 36). The result of this ceiling is 

that the model predicted a relatively small proportion of the network currently has an 

appreciable risk of exceeding the 200 mg m-2 biomass threshold (Figure 39).  

We know from the dataset that a proportion of sites do exceed a biomass threshold of 200 mg 

m-2 by a large margin (Figure 8). However, our model indicates that these large biomass sites 

are not due to high nutrient concentrations (see Figure 12). We were unable to explain why 

these sites have such high biomass from the available data (e.g., Figure 21), as discussed 

above.  

6.6 Credibility of the nutrient criteria 

Confidence in the nutrient criteria is based in part on their consistency with the conceptual 

model (Figure 2). Consistent with expectations, concentration criteria are higher in 

environments with lower resources and higher disturbance. For example, climate categories 

that have lower temperatures and solar radiation (i.e., CD, CW and CX) have higher 

concentration criteria than climate categories with higher lower temperatures and solar 

radiation (i.e., WD, WW and WX). This is consistent with the conceptual model because where 

non-nutrient resources are lower, we expect biomass accrual to be lower and therefore higher 

nutrients are required to achieve a given biomass threshold. Concentration criteria are also 

generally higher in climate categories that have more frequent high flows (e.g., CD < CW < 

CX). Concentration criteria also increased systematically across topography categories that 

have more frequent high flows (e.g., Lk < L < GM < M < H). These patterns are consistent with 

the conceptual model because where disturbance is higher, we expect biomass loss to occur 

more frequently and therefore higher nutrients are required to achieve a given biomass 

threshold within the resulting shorter accrual periods. Our models also produced higher 

concentration criteria for shaded sites than unshaded sites. This is consistent with the 

conceptual model because where shading reduces light and temperature and where these 

resources are lower, we expect biomass accrual to be lower.    

We validated the derived criteria using the only other national-scale dataset of periphyton 

abundance that is currently available. These data are based on visual observation of cover at 

NRWQN sites but were converted to an equivalent measure of the 92nd percentile of 

chlorophyll based on an empirical model. The validation essentially used the criteria to predict 

the proportion of under-protected sites in the independent dataset. There were similar 

proportions of under-protected sites in the independent dataset compared to the under-

protection risks indicated for the criteria (Figure 34). This was true for all four nutrient forms 

and levels of under-protection risk (Table 17). This validation therefore provides confidence 

that the criteria perform well. It is noted that the validation exercise includes unquantified 

uncertainties associated with the criteria themselves and with the estimates of Chla92 values 

for the validation sites. 
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This study had an objective of exploring the use of quantile regression (QR) instead of OLS to 

define nutrient criteria. Arguably, criteria derived using QR models have the advantage of 

being easier to explain because the level of under-protection risk is directly linked to the 

quantile being modelled (Figure 5). However, we found that QR models could not be used to 

define criteria for all Source-of-flow classes because fitting an accurate multivariable QR 

model to the extreme percentiles (i.e., 70%, 80% and 90%) required a larger sample size than 

was available in this study.  

There were some Source-of-flow classes in our dataset with ≥30 sites for which we were able 

use a QR modelling approach based on simple bivariate relationships (i.e., Chla92 versus 

nutrient concentration). Some of these models were statistically significant and consistent with 

the conceptual model (i.e., there were positive relationships between Chla92 and nutrient 

concentration). For those cases where we were able to use QR modelling, the nutrient criteria 

we derived were reasonably comparable with those derived using the OLS models (see 

Appendix B for details). Although limited in scope, the comparability of the criteria derived 

using the QR models to those based on the OLS is an extra validation exercise that provides 

confidence in our results.  

Because the OLS models are parametric and represent biomass as a log-transformed function 

of nutrient concentration, some of our derived criteria represent concentrations that are higher 

than the concentrations associated with the biomass ceiling discussed in Section 6.5. In 

addition, for some combinations of nutrient, Source-of-flow class and level of under-protection 

risk the model predictions would not exceed the biomass threshold even at the maximum of 

the range of observed site median nutrient concentrations represented in our dataset (see 

examples in Figure 19 for 20% under-protection risk). For these combinations, our criteria are 

appreciably higher than the saturating concentrations of approximately 1,000 mg m-3 for TN 

and DIN, 50 mg m-3 for TP and 25 mg m-3 for DRP and, where necessary, were limited to the 

maximum of the relevant observed site median nutrient concentrations.  

For all nutrients, the derived criteria typically had high values, relative to saturating 

concentrations, for Source-of-flow classes that represent rivers with strong physical controls 

on periphyton biomass, such as high flow variability, unstable bed sediment, and low 

temperature (e.g., CX/GM. CX/H, CW/M, CW/H). These river tend to have relatively low 

nutrient concentrations (Whitehead, 2018) and low biomass (Kilroy et al., 2019). Therefore, 

the sites in our dataset that represent these types of river did not cover a wide range of nutrient 

concentrations. This means that the models were poorly informed about the nutrient – biomass 

relationship at sites with strong physical controls on periphyton biomass and the derived 

criteria should be interpreted cautiously. In other words, the model was poorly informed about 

how chlorophyll might respond to high nutrient concentrations at sites where periphyton was 

strongly controlled by physical factors. It is possible that physical conditions limit maximum 

biomass in rivers with strong physical controls even when the nutrient concentrations are high. 

However, because our method involved extrapolation of the model into environmental 

conditions that are poorly represented by the fitting data, the uncertainty of criteria for Source-

of-flow classes that represent rivers with strong physical controls on periphyton biomass is 

particularly high. 

We consider there is high uncertainty about whether biomass can be managed by restricting 

nutrient concentrations to levels greater than the saturating concentrations. This point was 

made in one of the few examples we know of in the literature where nutrient controls were 

demonstrated to achieve reductions in periphyton biomass in a river; in that study it was 

concluded that: “...nutrient reductions in rivers can be successful in controlling algal biomass 
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but require achievement of concentrations below saturation and likely close to natural 

background” (Suplee et al., 2012). In other words, where a biomass threshold is exceeded at 

a site, it is likely that biomass reduction can be expected only if nutrient concentrations are 

reduced to below the saturating value. Nutrient criteria higher than the saturating values 

indicate combinations of conditions where periphyton biomass is strongly controlled by non-

nutrient factors. Under such conditions, even when nutrient concentrations are greater than 

saturating levels, the biomass threshold(s) may not be exceeded. 

6.7 Criteria uncertainty 

The under-protection risk should not be confused with the uncertainty of the nutrient criteria. 

Snelder et al. (2019) used Monte Carlo simulations to quantify the uncertainty associated with 

the nutrient criteria derived in their study. We have not quantified criteria uncertainty in this 

study, but we acknowledge that the criteria are uncertain. By this we mean that, for a stated 

under-protection risk, we do not know exactly what is the true proportion of sites that will 

exceed the target biomass threshold when concentrations are held to the criteria.  

A key reason that we have not attempted to define the uncertainty of the criteria is that our 

models were unable to explain sites with high biomass. This means that we have an imperfect 

understanding of the error distribution of our models and cannot accurately represent this error 

distribution in an analysis such as a Monte Carlo simulation.  

The inability of our models to explain sites with high biomass impacts on the definition of the 

criteria. This is because the model residuals are not perfectly normally distributed (e.g., Figure 

16) and therefore there are uncertainties associated with the predicted biomass probability 

distribution. We consider that these uncertainties are irreducible with current data and 

knowledge. However, the validation exercise indicates that violation of the assumptions has 

not led to gross inaccuracies. We therefore do not consider that the uncertainties should be a 

barrier to using the criteria. Furthermore, we recommend that the choice of level of under-

protection risk should reflect the significance of the resources being managed and the 

consequences of exceeding the target biomass thresholds. 

6.8 National predictions 

Predictions from an RF model of Chla92 across all segments in the network highlighted that 

the risk of exceeding the biomass threshold defining the NOF bottom line is low (Figure 39). 

This is a similar result to that of Kilroy et al. (2019). Because the present study’s model was 

not able to accurately predict chlorophyll observations at the high-biomass sites, and there 

were limited numbers of high-biomass sites in our dataset, we need to consider the estimate 

of locations that are below the NOF bottom line as uncertain. However, the results of the 

national predictions and the identification of the biomass ceiling, indicates that the NOF bottom 

line (i.e., Chla92 > 200 mg/m2) is a high level of biomass at any site and is rarely exceeded. 
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7 Conclusions 

In this study we developed look-up tables for nutrient criteria for target periphyton attribute 

states for the 21 Source-of-flow classes that encompass all New Zealand rivers. The criteria 

include four levels of under-protection risk that quantify the proportion of sites for which 

biomass is predicted to exceed the stated target despite compliance with the nutrient criteria. 

The level of risk of under-protection that is used to when the criteria are applied is not 

scientifically defined and is a subjective (‘normative’) choice. 

The criteria are uncertain in that, for a stated under-protection risk, we do not know the precise 

proportion of sites that will exceed the target biomass threshold when concentrations are held 

to the criteria. However, validation of these derived criteria using an independent dataset 

indicates that they perform well. We therefore do not consider that the uncertainties should be 

a barrier to using the criteria. 

The models developed in this study indicate that there is an initially high rate of increase in 

periphyton biomass with increasing nutrient concentrations for each of the nutrients we 

considered (TN, DIN, TP and DRP), but periphyton biomass reaches a “ceiling” beyond which 

there is no further response to increasing nutrient concentrations.  Our study indicates that 

from a practical perspective, in most REC Source-of-flow classes a 92nd percentile chlorophyll 

biomass of 200 mg m-2 would rarely be exceeded because of nutrient enrichment. We refer to 

the nutrient concentration beyond which there is no further biomass response as the 

“saturating concentration”. The models developed by this study indicated that the saturating 

concentrations are approximately 1,000 mg m-3 for TN and DIN, approximately 50 mg m-3 for 

TP and approximately 25 mg m-3 for DRP. The stated saturating concentrations are 

approximate because they were derived subjectively from simplified graphical representations 

of the models defined by this study. We are not aware of statistical methods that could be 

used to identify the saturating concentrations based on our models more objectively. If such 

methods do exist, any estimate of the saturating concentration will have large uncertainties 

because our models have considerable unexplained variation.  
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Appendix A Nutrient concentration criteria for periphyton 
biomass thresholds derived from the OLS models 
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Table 19. Criteria derived from the OLS model for TN for three levels of under-protection risk (5%, 

10% and 15%) at shaded and unshaded locations. Criteria greater than the saturating concentration 

of approximately 1,000 mg m-3 indicate combinations of conditions where periphyton biomass is 

strongly controlled by non-nutrient factors. Under such conditions, even when nutrient 

concentrations exceed saturating levels, the biomass threshold(s) may not be exceeded.  

Under-
protection risk 

SoF Unshaded 
50 mg m-2 

Unshaded 
120 mg m-2 

Unshaded 
200 mg m-2 

Shaded 
50 mg m-2 

Shaded 
120 mg m-2 

Shaded 
200 mg m-2 

5 CX/GM 6 570 4,176 32 2,335 4,496 

5 CX/M 4 382 3,599 21 1,599 4,457 

5 CX/H 3 252 3,047 14 1,120 4,050 

5 CX/L 2 195 3,127 10 891 4,254 

5 CX/Lk 2 219 2,799 11 975 4,055 

5 CW/GM 1 66 1,390 3 303 4,342 

5 CW/M 2 154 2,135 8 657 4,200 

5 CW/H 1 47 885 2 216 2,632 

5 CW/L 1 28 625 2 134 2,034 

5 CW/Lk 1 56 1,183 3 263 3,400 

5 CD/M 1 121 1,934 6 545 4,127 

5 CD/H 1 57 910 3 258 2,315 

5 CD/L 1 7 182 1 36 806 

5 CD/Lk 1 61 1,272 3 283 2,972 

5 WX/L 1 33 749 2 159 2,753 

5 WX/H 1 45 1,009 2 216 3,116 

5 WW/H 1 26 609 1 127 2,383 

5 WW/L 1 23 541 1 110 2,006 

5 WW/Lk 1 36 868 2 176 2,752 

5 WD/L 1 13 312 1 62 1,048 

5 WD/Lk 1 27 662 2 132 1,947 

10 CX/GM 27 2,089 4,490 130 4,072 4,500 

10 CX/M 18 1,416 4,432 86 3,426 4,500 

10 CX/H 12 978 3,980 57 2,888 4,436 

10 CX/L 9 774 4,215 43 2,938 4,432 

10 CX/Lk 10 834 3,998 47 2,595 4,436 

10 CW/GM 2 254 4,115 13 1,137 4,500 

10 CW/M 6 568 4,090 32 1,867 4,496 

10 CW/H 2 183 2,419 9 735 3,975 

10 CW/L 1 112 1,833 6 512 3,460 

10 CW/Lk 2 221 3,142 11 981 4,306 

10 CD/M 5 466 4,006 24 1,682 4,495 

10 CD/H 3 223 2,155 12 787 3,576 

10 CD/L 1 31 694 2 147 2,136 

10 CD/Lk 3 241 2,765 12 1,073 4,134 

10 WX/L 1 134 2,476 6 614 4,209 

10 WX/H 2 179 2,926 9 819 4,167 

10 WW/H 1 105 2,109 5 489 3,953 

10 WW/L 1 95 1,786 4 444 3,580 

10 WW/Lk 2 162 2,573 7 750 4,143 

10 WD/L 1 61 976 3 285 2,051 

10 WD/Lk 2 121 1,805 6 570 3,447 

15 CX/GM 70 3,498 4,500 327 4,420 4,500 

15 CX/M 46 2,639 4,498 217 4,188 4,500 

15 CX/H 30 2,113 4,303 145 3,626 4,499 

15 CX/L 23 1,894 4,368 112 3,994 4,496 

15 CX/Lk 25 1,846 4,327 118 3,599 4,500 

15 CW/GM 7 623 4,500 33 2,580 4,500 

15 CW/M 17 1,175 4,457 80 3,255 4,500 

15 CW/H 5 420 3,512 24 1,587 4,356 

15 CW/L 3 278 2,936 14 1,162 3,924 

15 CW/Lk 6 545 4,170 28 2,045 4,437 

15 CD/M 13 1,057 4,442 62 3,120 4,500 

15 CD/H 6 497 3,054 30 1,486 4,128 

15 CD/L 1 79 1,480 4 368 2,964 

15 CD/Lk 6 600 3,812 31 2,038 4,401 

15 WX/L 3 335 3,722 17 1,447 4,491 

15 WX/H 5 441 3,732 22 1,946 4,500 

15 WW/H 3 263 3,517 13 1,198 4,379 

15 WW/L 3 245 3,071 12 1,048 3,937 

15 WW/Lk 4 434 3,790 21 1,645 4,362 

15 WD/L 2 173 1,654 8 633 2,633 

15 WD/Lk 3 323 2,869 15 1,237 3,941 
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Table 20. Criteria derived from the OLS model for TN for three levels of under-protection risk (20%, 

30% and 50%) at shaded and unshaded locations. Criteria greater than the saturating concentration 

of approximately 1,000 mg m-3 indicate combinations of conditions where periphyton biomass is 

strongly controlled by non-nutrient factors. Under such conditions, even when nutrient 

concentrations exceed saturating levels, the biomass threshold(s) may not be exceeded. 

Under-
protection risk 

SoF Unshaded 
50 mg m-2 

Unshaded 
120 mg m-2 

Unshaded 
200 mg m-2 

Shaded 
50 mg m-2 

Shaded 
120 mg m-2 

Shaded 
200 mg m-2 

20 CX/GM 146 4,153 4,500 678 4,495 4,500 

20 CX/M 97 3,554 4,500 451 4,449 4,500 

20 CX/H 64 3,026 4,454 302 4,019 4,500 

20 CX/L 50 3,205 4,447 237 4,236 4,500 

20 CX/Lk 52 2,749 4,457 244 4,033 4,500 

20 CW/GM 14 1,269 4,500 68 4,271 4,500 

20 CW/M 35 2,017 4,499 165 4,155 4,500 

20 CW/H 11 809 4,044 50 2,517 4,459 

20 CW/L 6 563 3,527 30 1,917 4,192 

20 CW/Lk 12 1,088 4,326 59 3,284 4,490 

20 CD/M 27 1,819 4,497 130 4,073 4,500 

20 CD/H 13 858 3,668 63 2,239 4,365 

20 CD/L 2 164 2,252 8 744 3,529 

20 CD/Lk 14 1,202 4,184 66 2,864 4,468 

20 WX/L 7 680 4,273 36 2,611 4,500 

20 WX/H 10 899 4,250 47 3,016 4,500 

20 WW/H 6 538 4,007 27 2,225 4,495 

20 WW/L 5 505 3,642 26 1,892 4,132 

20 WW/Lk 10 912 4,218 47 2,807 4,433 

20 WD/L 4 359 2,154 20 1,063 3,089 

20 WD/Lk 7 694 3,527 35 1,901 4,146 

30 CX/GM 487 4,472 4,500 2,097 4,500 4,500 

30 CX/M 323 4,364 4,500 1,409 4,500 4,500 

30 CX/H 217 3,849 4,500 999 4,389 4,500 

30 CX/L 170 4,146 4,500 796 4,405 4,500 

30 CX/Lk 172 3,883 4,500 796 4,406 4,500 

30 CW/GM 47 3,517 4,500 221 4,500 4,500 

30 CW/M 115 3,819 4,500 518 4,487 4,500 

30 CW/H 35 2,058 4,427 164 3,799 4,499 

30 CW/L 21 1,519 4,073 98 3,257 4,428 

30 CW/Lk 41 2,666 4,477 194 4,267 4,500 

30 CD/M 91 3,730 4,500 423 4,488 4,500 

30 CD/H 45 1,878 4,278 206 3,363 4,483 

30 CD/L 6 533 3,274 28 1,854 4,158 

30 CD/Lk 46 2,433 4,446 218 4,025 4,500 

30 WX/L 25 2,002 4,500 119 4,016 4,500 

30 WX/H 33 2,549 4,500 154 3,972 4,500 

30 WW/H 19 1,670 4,475 91 3,803 4,500 

30 WW/L 19 1,443 4,047 89 3,409 4,338 

30 WW/Lk 37 2,292 4,414 174 4,123 4,493 

30 WD/L 17 871 2,874 79 1,915 3,726 

30 WD/Lk 26 1,597 4,066 126 3,254 4,303 

50 CX/GM 2,813 4,500 4,500 4,265 4,500 4,500 

50 CX/M 1,953 4,500 4,500 3,788 4,500 4,500 

50 CX/H 1,530 4,458 4,500 3,249 4,500 4,500 

50 CX/L 1,288 4,454 4,500 3,629 4,500 4,500 

50 CX/Lk 1,204 4,470 4,500 3,031 4,500 4,500 

50 CW/GM 329 4,500 4,500 1,531 4,500 4,500 

50 CW/M 724 4,499 4,500 2,319 4,500 4,500 

50 CW/H 237 4,059 4,500 962 4,462 4,500 

50 CW/L 146 3,537 4,462 675 4,204 4,500 

50 CW/Lk 290 4,334 4,500 1,286 4,496 4,500 

50 CD/M 619 4,498 4,500 2,109 4,500 4,500 

50 CD/H 305 3,691 4,497 998 4,374 4,500 

50 CD/L 42 2,280 4,298 200 3,558 4,492 

50 CD/Lk 333 4,203 4,500 1,434 4,471 4,500 

50 WX/L 180 4,285 4,500 821 4,500 4,500 

50 WX/H 228 4,269 4,500 1,074 4,500 4,500 

50 WW/H 135 4,013 4,500 637 4,496 4,500 

50 WW/L 141 3,658 4,387 624 4,143 4,489 

50 WW/Lk 313 4,245 4,500 1,251 4,440 4,500 

50 WD/L 155 2,206 3,925 472 3,133 4,416 

50 WD/Lk 214 3,550 4,346 889 4,157 4,500 
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Table 21. Criteria derived from the OLS model for DIN for three levels of under-protection risk (5%, 

10% and 20%) at shaded and unshaded locations. Criteria greater than the saturating concentration 

of approximately 1,000 mg m-3 indicate combinations of conditions where periphyton biomass is 

strongly controlled by non-nutrient factors. Under such conditions, even when nutrient 

concentrations exceed saturating levels, the biomass threshold(s) may not be exceeded. 

Under-
protection risk 

SoF Unshaded 
50 mg m-2 

Unshaded 
120 mg m-2 

Unshaded 
200 mg m-2 

Shaded 
50 mg m-2 

Shaded 
120 mg m-2 

Shaded 
200 mg m-2 

5 CX/GM 2 514 3,674 12 2,563 3,800 

5 CX/M 1 323 3,380 7 1,782 3,793 

5 CX/H 1 186 2,836 4 1,310 3,532 

5 CX/L 1 112 3,077 2 918 3,643 

5 CX/Lk 1 156 2,759 3 1,128 3,590 

5 CW/GM 1 27 1,536 1 233 3,796 

5 CW/M 1 93 2,217 2 600 3,715 

5 CW/H 1 21 845 1 155 2,572 

5 CW/L 1 9 543 1 80 1,941 

5 CW/Lk 1 23 1,161 1 201 3,356 

5 CD/M 1 58 1,923 2 452 3,652 

5 CD/H 1 26 754 1 188 2,070 

5 CD/L 1 2 87 1 11 636 

5 CD/Lk 1 21 1,150 1 185 2,784 

5 WX/L 1 9 611 1 86 2,655 

5 WX/H 1 14 938 1 128 2,851 

5 WW/H 1 7 466 1 61 2,437 

5 WW/L 1 5 346 1 45 1,840 

5 WW/Lk 1 8 600 1 75 2,495 

5 WD/L 1 3 155 1 19 759 

5 WD/Lk 1 5 366 1 45 1,494 

10 CX/GM 8 2,254 3,800 77 3,638 3,800 

10 CX/M 5 1,508 3,787 48 3,296 3,800 

10 CX/H 3 1,067 3,465 27 2,765 3,781 

10 CX/L 2 709 3,612 16 3,005 3,781 

10 CX/Lk 3 894 3,520 21 2,638 3,797 

10 CW/GM 1 170 3,787 3 1,297 3,800 

10 CW/M 2 477 3,646 12 2,005 3,800 

10 CW/H 1 118 2,322 3 725 3,490 

10 CW/L 1 58 1,677 2 461 2,987 

10 CW/Lk 1 146 3,150 3 1,008 3,688 

10 CD/M 1 347 3,563 7 1,701 3,800 

10 CD/H 1 148 1,882 4 671 3,124 

10 CD/L 1 8 497 1 71 1,846 

10 CD/Lk 1 138 2,533 3 1,012 3,569 

10 WX/L 1 62 2,385 2 510 3,688 

10 WX/H 1 91 2,672 2 774 3,711 

10 WW/H 1 44 2,095 1 377 3,412 

10 WW/L 1 34 1,545 1 289 3,050 

10 WW/Lk 1 61 2,297 1 529 3,538 

10 WD/L 1 18 666 1 151 1,619 

10 WD/Lk 1 38 1,311 1 330 2,882 

15 CX/GM 30 3,296 3,800 267 3,788 3,800 

15 CX/M 19 2,681 3,800 167 3,725 3,800 

15 CX/H 11 2,199 3,700 97 3,254 3,800 

15 CX/L 6 2,039 3,713 58 3,487 3,800 

15 CX/Lk 8 1,911 3,738 75 3,315 3,800 

15 CW/GM 1 573 3,800 11 3,279 3,800 

15 CW/M 5 1,148 3,793 43 3,304 3,800 

15 CW/H 2 337 3,149 9 1,641 3,719 

15 CW/L 1 196 2,602 4 1,085 3,335 

15 CW/Lk 2 486 3,597 10 2,259 3,790 

15 CD/M 3 940 3,788 26 3,134 3,800 

15 CD/H 2 375 2,651 12 1,361 3,544 

15 CD/L 1 28 1,214 1 242 2,544 

15 CD/Lk 2 470 3,307 10 1,894 3,734 

15 WX/L 1 214 3,312 4 1,481 3,800 

15 WX/H 1 310 3,284 6 2,039 3,800 

15 WW/H 1 150 3,114 3 1,186 3,768 

15 WW/L 1 120 2,655 2 866 3,336 

15 WW/Lk 1 231 3,244 4 1,463 3,721 

15 WD/L 1 73 1,244 2 421 2,141 

15 WD/Lk 1 143 2,272 3 872 3,320 
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Table 22. Criteria derived from the OLS model for DIN for three levels of under-protection risk (20%, 

30% and 50%) at shaded and unshaded locations. Criteria greater than the saturating concentration 

of approximately 1,000 mg m-3 indicate combinations of conditions where periphyton biomass is 

strongly controlled by non-nutrient factors. Under such conditions, even when nutrient 

concentrations exceed saturating levels, the biomass threshold(s) may not be exceeded. 

Under-
protection 
risk 

SoF Unshaded 
50 mg m-2 

Unshaded 
120 mg m-2 

Unshaded 
200 mg m-2 

Shaded 
50 mg m-2 

Shaded 
120 mg m-2 

Shaded 
200 mg m-2 

20 CX/GM 83 3,655 3,800 719 3,800 3,800 

20 CX/M 52 3,334 3,800 451 3,792 3,800 

20 CX/H 30 2,798 3,784 264 3,506 3,800 

20 CX/L 18 3,079 3,784 160 3,632 3,800 

20 CX/Lk 23 2,689 3,799 200 3,571 3,800 

20 CW/GM 3 1,372 3,800 31 3,793 3,800 

20 CW/M 13 2,078 3,800 114 3,691 3,800 

20 CW/H 3 762 3,510 25 2,470 3,777 

20 CW/L 2 483 3,008 11 1,827 3,561 

20 CW/Lk 3 1,058 3,702 27 3,295 3,800 

20 CD/M 8 1,782 3,800 71 3,618 3,800 

20 CD/H 4 705 3,155 32 2,004 3,706 

20 CD/L 1 76 1,893 2 580 3,006 

20 CD/Lk 3 1,077 3,588 26 2,682 3,782 

20 WX/L 2 541 3,701 12 2,556 3,800 

20 WX/H 2 810 3,729 16 2,783 3,800 

20 WW/H 1 397 3,439 8 2,294 3,798 

20 WW/L 1 318 3,075 6 1,732 3,494 

20 WW/Lk 2 631 3,622 12 2,529 3,757 

20 WD/L 1 200 1,678 5 774 2,550 

20 WD/Lk 1 405 2,916 8 1,456 3,492 

30 CX/GM 428 3,798 3,800 2,308 3,800 3,800 

30 CX/M 267 3,769 3,800 1,552 3,800 3,800 

30 CX/H 156 3,377 3,800 1,158 3,759 3,800 

30 CX/L 95 3,561 3,800 806 3,759 3,800 

30 CX/Lk 115 3,434 3,800 901 3,786 3,800 

30 CW/GM 17 3,761 3,800 154 3,800 3,800 

30 CW/M 65 3,528 3,800 455 3,800 3,800 

30 CW/H 14 1,996 3,751 111 3,373 3,799 

30 CW/L 6 1,370 3,440 53 2,853 3,744 

30 CW/Lk 15 2,793 3,798 134 3,654 3,800 

30 CD/M 40 3,406 3,800 332 3,798 3,800 

30 CD/H 19 1,650 3,634 146 2,959 3,794 

30 CD/L 1 359 2,760 8 1,608 3,535 

30 CD/Lk 15 2,233 3,754 132 3,470 3,800 

30 WX/L 7 1,983 3,800 59 3,569 3,800 

30 WX/H 9 2,402 3,800 81 3,568 3,800 

30 WW/H 4 1,625 3,792 39 3,292 3,800 

30 WW/L 4 1,204 3,412 34 2,931 3,662 

30 WW/Lk 8 2,041 3,747 72 3,549 3,799 

30 WD/L 4 585 2,322 29 1,508 3,100 

30 WD/Lk 5 1,140 3,407 45 2,721 3,618 

50 CX/GM 2,790 3,800 3,800 3,721 3,800 3,800 

50 CX/M 2,039 3,800 3,800 3,507 3,800 3,800 

50 CX/H 1,651 3,786 3,800 2,956 3,800 3,800 

50 CX/L 1,358 3,787 3,800 3,288 3,800 3,800 

50 CX/Lk 1,300 3,799 3,800 2,947 3,800 3,800 

50 CW/GM 245 3,800 3,800 1,827 3,800 3,800 

50 CW/M 636 3,800 3,800 2,493 3,800 3,800 

50 CW/H 164 3,518 3,800 986 3,779 3,800 

50 CW/L 83 3,015 3,767 629 3,572 3,800 

50 CW/Lk 213 3,713 3,800 1,357 3,800 3,800 

50 CD/M 502 3,800 3,800 2,243 3,800 3,800 

50 CD/H 218 3,172 3,799 885 3,712 3,800 

50 CD/L 12 1,918 3,630 108 3,031 3,795 

50 CD/Lk 216 3,599 3,800 1,365 3,786 3,800 

50 WX/L 95 3,705 3,800 748 3,800 3,800 

50 WX/H 127 3,735 3,800 1,107 3,800 3,800 

50 WW/H 61 3,447 3,800 546 3,799 3,800 

50 WW/L 58 3,089 3,699 452 3,504 3,791 

50 WW/Lk 144 3,644 3,800 987 3,757 3,800 

50 WD/L 75 1,734 3,259 302 2,590 3,724 

50 WD/Lk 87 2,938 3,652 600 3,499 3,800 
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Table 23. Criteria derived from the OLS model for TP for three levels of under-protection risk (5%, 

10% and 20%) at shaded and unshaded locations. Criteria greater than the saturating concentration 

of approximately 50 mg m-3 indicate combinations of conditions where periphyton biomass is 

strongly controlled by non-nutrient factors. Under such conditions, even when nutrient 

concentrations exceed saturating levels, the biomass threshold(s) may not be exceeded. 

Under-
protection 
risk 

SoF Unshaded 
50 mg m-2 

Unshaded 
120 mg m-2 

Unshaded 
200 mg m-2 

Shaded 
50 mg m-2 

Shaded 
120 mg m-2 

Shaded 
200 mg m-2 

5 CX/GM 0 53 283 0 184 300 

5 CX/M 0 41 281 0 161 300 

5 CX/H 0 26 244 0 131 289 

5 CX/L 0 17 268 0 118 293 

5 CX/Lk 0 14 202 0 82 275 

5 CW/GM 0 3 161 0 23 299 

5 CW/M 0 8 206 0 48 296 

5 CW/H 0 2 101 0 16 221 

5 CW/L 0 1 58 0 7 160 

5 CW/Lk 0 1 87 0 10 220 

5 CD/M 0 3 124 0 22 277 

5 CD/H 0 1 46 0 9 132 

5 CD/L 0 0 6 0 0 40 

5 CD/Lk 0 0 55 0 5 186 

5 WX/L 0 1 104 0 11 235 

5 WX/H 0 1 142 0 16 245 

5 WW/H 0 1 73 0 7 225 

5 WW/L 0 0 44 0 4 161 

5 WW/Lk 0 0 56 0 4 169 

5 WD/L 0 0 12 0 1 49 

5 WD/Lk 0 0 27 0 2 99 

10 CX/GM 1 186 300 6 277 300 

10 CX/M 0 161 300 4 273 300 

10 CX/H 0 132 289 2 234 300 

10 CX/L 0 120 293 1 261 300 

10 CX/Lk 0 81 276 1 188 295 

10 CW/GM 0 22 299 0 127 300 

10 CW/M 0 46 296 1 181 300 

10 CW/H 0 15 219 0 83 281 

10 CW/L 0 6 158 0 45 234 

10 CW/Lk 0 10 221 0 69 291 

10 CD/M 0 21 277 0 103 300 

10 CD/H 0 9 132 0 38 221 

10 CD/L 0 0 39 0 4 123 

10 CD/Lk 0 5 185 0 41 272 

10 WX/L 0 10 233 0 80 296 

10 WX/H 0 15 243 0 114 299 

10 WW/H 0 6 223 0 53 273 

10 WW/L 0 4 159 0 32 239 

10 WW/Lk 0 5 171 0 43 247 

10 WD/L 0 1 50 0 10 108 

10 WD/Lk 0 2 99 0 21 208 

15 CX/GM 3 256 300 25 298 300 

15 CX/M 2 246 300 18 298 300 

15 CX/H 1 208 298 11 273 300 

15 CX/L 1 234 299 7 285 300 

15 CX/Lk 1 157 292 6 245 299 

15 CW/GM 0 75 300 1 295 300 

15 CW/M 0 122 300 3 276 300 

15 CW/H 0 48 267 1 165 294 

15 CW/L 0 24 216 0 104 259 

15 CW/Lk 0 38 281 0 151 299 

15 CD/M 0 64 299 1 222 300 

15 CD/H 0 24 195 0 85 265 

15 CD/L 0 2 93 0 16 175 

15 CD/Lk 0 21 254 0 123 288 

15 WX/L 0 41 287 0 180 300 

15 WX/H 0 58 290 0 205 300 

15 WW/H 0 26 256 0 152 299 

15 WW/L 0 16 222 0 96 261 

15 WW/Lk 0 23 233 0 117 291 

15 WD/L 0 7 91 0 29 147 

30 WD/Lk 0 50 49 4 72 59 
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Table 24. Criteria derived from the OLS model for TP for three levels of under-protection risk (20%, 

30% and 50%) at shaded and unshaded locations. Criteria greater than the saturating concentration 

of approximately 50 mg m-3 indicate combinations of conditions where periphyton biomass is 

strongly controlled by non-nutrient factors. Under such conditions, even when nutrient 

concentrations exceed saturating levels, the biomass threshold(s) may not be exceeded. 

Under-
protection 
risk 

SoF Unshaded 
50 mg m-2 

Unshaded 
120 mg m-2 

Unshaded 
200 mg m-2 

Shaded 
50 mg m-2 

Shaded 
120 mg m-2 

Shaded 
200 mg m-2 

20 CX/GM 9 287 300 72 300 300 

20 CX/M 7 284 300 53 300 300 

20 CX/H 4 247 300 35 290 300 

20 CX/L 2 270 300 23 293 300 

20 CX/Lk 2 207 297 18 279 300 

20 CW/GM 0 173 300 3 300 300 

20 CW/M 1 216 300 9 297 300 

20 CW/H 0 104 286 2 223 298 

20 CW/L 0 58 242 1 162 277 

20 CW/Lk 0 91 295 1 227 300 

20 CD/M 0 132 300 3 280 300 

20 CD/H 0 48 237 1 138 286 

20 CD/L 0 6 139 0 41 215 

20 CD/Lk 0 61 277 1 190 297 

20 WX/L 0 105 299 1 237 300 

20 WX/H 0 144 300 2 246 300 

20 WW/H 0 73 285 1 227 300 

20 WW/L 0 45 247 0 164 273 

20 WW/Lk 0 63 271 1 177 296 

20 WD/L 0 17 120 0 53 176 

20 WD/Lk 0 33 220 0 103 263 

30 CX/GM 58 300 300 188 300 300 

30 CX/M 42 300 300 162 300 300 

30 CX/H 28 286 300 135 299 300 

30 CX/L 18 291 300 126 300 300 

30 CX/Lk 13 274 300 81 295 300 

30 CW/GM 2 299 300 18 300 300 

30 CW/M 6 294 300 42 300 300 

30 CW/H 2 209 297 13 277 300 

30 CW/L 1 145 273 5 228 293 

30 CW/Lk 1 209 300 8 289 300 

30 CD/M 2 272 300 19 300 300 

30 CD/H 1 124 282 8 215 298 

30 CD/L 0 32 204 0 114 266 

30 CD/Lk 0 175 295 4 270 300 

30 WX/L 1 222 300 9 294 300 

30 WX/H 1 235 300 12 297 300 

30 WW/H 0 212 300 5 266 300 

30 WW/L 0 145 270 3 235 287 

30 WW/Lk 0 166 296 5 254 300 

30 WD/L 0 47 168 2 105 223 

30 WD/Lk 0 91 260 2 202 281 

50 CX/GM 236 300 300 294 300 300 

50 CX/M 219 300 300 292 300 300 

50 CX/H 186 300 300 259 300 300 

50 CX/L 206 300 300 277 300 300 

50 CX/Lk 132 298 300 224 300 300 

50 CW/GM 43 300 300 236 300 300 

50 CW/M 81 300 300 248 300 300 

50 CW/H 27 288 300 125 299 300 

50 CW/L 12 246 297 71 281 300 

50 CW/Lk 19 298 300 112 300 300 

50 CD/M 40 300 300 171 300 300 

50 CD/H 16 246 300 61 289 300 

50 CD/L 1 147 283 8 223 298 

50 CD/Lk 11 280 300 84 299 300 

50 WX/L 20 300 300 132 300 300 

50 WX/H 27 300 300 170 300 300 

50 WW/H 11 290 300 93 300 300 

50 WW/L 9 251 291 60 276 298 

50 WW/Lk 15 287 300 85 297 300 

50 WD/L 8 129 243 23 183 284 

50 WD/Lk 8 226 285 45 266 298 
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Table 25. Criteria derived from the OLS model for DRP for three levels of under-protection risk (5%, 

10% and 15%) at shaded and unshaded locations. Criteria greater than the saturating concentration 

of approximately 25 mg m-3 indicate combinations of conditions where periphyton biomass is 

strongly controlled by non-nutrient factors. Under such conditions, even when nutrient 

concentrations exceed saturating levels, the biomass threshold(s) may not be exceeded. 

Under-
protection 
risk 

SoF Unshaded 
50 mg m-2 

Unshaded 
120 mg m-2 

Unshaded 
200 mg m-2 

Shaded 
50 mg m-2 

Shaded 
120 mg m-2 

Shaded 
200 mg m-2 

5 CX/GM 0 7 104 0 22 167 

5 CX/M 0 10 129 0 31 200 

5 CX/H 0 9 126 0 30 186 

5 CX/L 0 9 144 0 30 204 

5 CX/Lk 0 4 75 0 15 126 

5 CW/GM 0 1 34 0 5 91 

5 CW/M 0 2 44 0 7 114 

5 CW/H 0 1 32 0 5 83 

5 CW/L 0 1 15 0 2 43 

5 CW/Lk 0 1 18 0 2 52 

5 CD/M 0 0 9 0 1 29 

5 CD/H 0 0 4 0 0 12 

5 CD/L 0 0 2 0 0 5 

5 CD/Lk 0 0 4 0 0 12 

5 WX/L 0 1 30 0 4 84 

5 WX/H 0 1 32 0 4 98 

5 WW/H 0 1 16 0 2 53 

5 WW/L 0 0 8 0 1 27 

5 WW/Lk 0 0 7 0 1 23 

5 WD/L 0 0 1 0 0 2 

5 WD/Lk 0 0 1 0 0 3 

10 CX/GM 0 31 181 1 85 217 

10 CX/M 0 41 210 2 104 228 

10 CX/H 0 41 196 1 104 220 

10 CX/L 0 42 212 1 118 227 

10 CX/Lk 0 20 137 1 58 180 

10 CW/GM 0 7 114 0 22 223 

10 CW/M 0 10 134 0 30 201 

10 CW/H 0 6 99 0 21 164 

10 CW/L 0 3 53 0 9 107 

10 CW/Lk 0 3 65 0 11 123 

10 CD/M 0 2 38 0 6 100 

10 CD/H 0 1 15 0 2 43 

10 CD/L 0 0 7 0 1 23 

10 CD/Lk 0 1 16 0 2 50 

10 WX/L 0 6 101 0 20 164 

10 WX/H 0 6 121 0 20 189 

10 WW/H 0 3 69 0 10 150 

10 WW/L 0 2 35 0 5 82 

10 WW/Lk 0 1 30 0 4 69 

10 WD/L 0 0 3 0 0 10 

10 WD/Lk 0 0 5 0 1 16 

15 CX/GM 1 76 214 3 141 228 

15 CX/M 1 92 227 4 173 230 

15 CX/H 1 94 217 4 162 227 

15 CX/L 1 105 225 4 186 230 

15 CX/Lk 1 51 174 2 103 206 

15 CW/GM 0 18 214 1 57 230 

15 CW/M 0 25 194 1 73 222 

15 CW/H 0 17 154 1 53 201 

15 CW/L 0 8 97 0 25 152 

15 CW/Lk 0 9 114 0 30 173 

15 CD/M 0 5 87 0 16 172 

15 CD/H 0 2 37 0 6 83 

15 CD/L 0 1 19 0 3 57 

15 CD/Lk 0 2 43 0 6 103 

15 WX/L 0 16 156 0 51 203 

15 WX/H 0 16 181 0 54 221 

15 WW/H 0 8 138 0 28 189 

15 WW/L 0 4 73 0 15 131 

15 WW/Lk 0 4 62 0 12 110 

15 WD/L 0 0 9 0 1 26 

15 WD/Lk 0 0 13 0 2 43 
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Table 26. Criteria derived from the OLS model for DRP for three levels of under-protection risk 

(20%, 30% and 50%) at shaded and unshaded locations. Criteria greater than the saturating 

concentration of approximately 25 mg m-3 indicate combinations of conditions where periphyton 

biomass is strongly controlled by non-nutrient factors. Under such conditions, even when nutrient 

concentrations exceed saturating levels, the biomass threshold(s) may not be exceeded.   

Under-
protection 
risk 

SoF Unshaded 
50 mg m-2 

Unshaded 
120 mg m-2 

Unshaded 
200 mg m-2 

Shaded 
50 mg m-2 

Shaded 
120 mg m-2 

Shaded 
200 mg m-2 

20 CX/GM 2 121 225 7 179 230 

20 CX/M 3 148 230 10 208 230 

20 CX/H 3 142 226 10 194 229 

20 CX/L 3 166 229 10 210 230 

20 CX/Lk 1 86 198 5 134 218 

20 CW/GM 0 40 229 1 104 230 

20 CW/M 1 51 216 2 128 229 

20 CW/H 0 37 189 1 93 217 

20 CW/L 0 17 135 1 49 178 

20 CW/Lk 0 21 153 1 60 206 

20 CD/M 0 11 145 0 34 214 

20 CD/H 0 4 65 0 14 123 

20 CD/L 0 2 40 0 6 99 

20 CD/Lk 0 4 81 0 14 151 

20 WX/L 0 35 188 1 94 218 

20 WX/H 0 36 210 1 111 230 

20 WW/H 0 19 178 1 61 207 

20 WW/L 0 10 112 0 31 167 

20 WW/Lk 0 8 93 0 27 138 

20 WD/L 0 1 18 0 3 46 

20 WD/Lk 0 1 29 0 4 89 

30 CX/GM 8 184 230 29 218 230 

30 CX/M 12 212 230 37 228 230 

30 CX/H 11 197 229 38 220 230 

30 CX/L 12 212 230 39 227 230 

30 CX/Lk 5 138 220 18 181 229 

30 CW/GM 2 114 230 5 223 230 

30 CW/M 2 135 229 8 201 230 

30 CW/H 1 99 218 5 163 228 

30 CW/L 1 52 181 2 105 207 

30 CW/Lk 1 64 210 3 124 229 

30 CD/M 0 37 218 1 100 230 

30 CD/H 0 15 128 1 42 181 

30 CD/L 0 7 104 0 23 159 

30 CD/Lk 0 16 159 0 50 209 

30 WX/L 1 100 220 5 163 228 

30 WX/H 1 119 230 4 188 230 

30 WW/H 1 67 209 2 149 228 

30 WW/L 0 33 171 1 80 201 

30 WW/Lk 0 30 142 1 68 180 

30 WD/L 0 3 49 0 10 87 

30 WD/Lk 0 4 97 0 15 175 

50 CX/GM 71 228 230 135 230 230 

50 CX/M 84 230 230 163 230 230 

50 CX/H 88 227 230 154 230 230 

50 CX/L 100 230 230 180 230 230 

50 CX/Lk 45 207 230 95 223 230 

50 CW/GM 14 230 230 45 230 230 

50 CW/M 19 222 230 58 230 230 

50 CW/H 13 199 230 42 221 230 

50 CW/L 6 149 220 19 186 227 

50 CW/Lk 7 172 230 24 216 230 

50 CD/M 3 170 230 12 224 230 

50 CD/H 1 80 208 5 140 224 

50 CD/L 1 54 194 2 116 221 

50 CD/Lk 1 101 222 5 173 228 

50 WX/L 12 200 230 39 221 230 

50 WX/H 12 219 230 40 230 230 

50 WW/H 6 186 230 20 214 230 

50 WW/L 3 127 214 11 178 223 

50 WW/Lk 3 107 199 9 151 209 

50 WD/L 0 24 117 1 57 166 

50 WD/Lk 0 40 204 1 114 218 
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Appendix B Derivation of nutrient concentration criteria for 
selected Source-of-flow classes using quantile regression 

Four Source-of-flow classes in our dataset of 251 sites having at least 20 periphyton 

observations had ≥30 sites. We examined relationships between the 92nd percentile of 

biomass observations (Chla92) and nutrient concentration at these sites using scatter plots 

and fitted quantile regressions to these relationships for the 70%, 80% and 90% quantiles 

(Figure 40).  For some of the nutrients and Source-of-flow classes the relationships between 

Chla92 and nutrient concentrations were positive (i.e., consistent with the conceptual model; 

Figure 2).  

We assume that relationships between Chla92 and nutrient concentrations that were negative 

(i.e., inconsistent with the conceptual model) are due to other sources of variation in biomass 

that are not well constrained by grouping sites into Source-of-flow classes). For example, 

electrical conductivity (EC) varies appreciably within the Source-of-flow classes and was also 

generally positively related to biomass (Figure 41).  

 

Figure 40. Relationships between the 92nd percentile of biomass observations (Chla92) and 

nutrient concentrations for Source-of-flow classes having ≥30 sites. The red lines are 

quantile regressions fitted to the 70%, 80% and 90% quantiles. 
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Figure 41. Relationships between the 92nd percentile of biomass observations (Chla92) and 

electrical conductivity for Source-of-flow classes having ≥30 sites. The red lines are quantile 

regressions fitted to the 70%, 80% and 90% quantiles. 

For each class, we fitted quantile regressions to Chla92 using the combination of nutrient 

concentration and electrical conductivity (EC) as independent variables. We included EC 

because it was consistently included as a significant term in the quantile regression models 

based on all nutrients except DRP (Table 13). Where the relationship between the 92nd 

percentile of biomass observations (Chla92) and the nutrient concentration was positive (i.e., 

where the relationship was consistent with the conceptual model; Figure 2), we obtained 

concentration criteria from the QR models for each nutrient as described in Section 0; Figure 

5).  

The criteria derived using the QR models as described above are compared to the criteria 

derived using the OLS models (see Appendix A). Criteria for many combinations of nutrient 

and under-protection risk could not be derived because relationships between Chla92 and the 

nutrient concentration was negative. We assume that this is due to other sources of variation 

in biomass that are not well constrained by grouping sites into Source-of-flow classes. Where 

criteria were derived based on the QR models, they were reasonably consistent with those 

derived from the OLS models (points lie close to the one-to-one lines in Figure 42).  
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Figure 42. Comparison of concentration criteria for Source-of-flow classes having ≥30 sites 

derived using OLS and QR models.   
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Appendix C  Temporal patterns in the periphyton biomass 
observations 

The plot shown in Figure 43 shows the temporal patterns of periphyton biomass 

observations (as chlorophyll) made at the 251 sites with ≥30 biomass observations that were 

retained for modelling. These plots were made by taking each chlorophyll observation at 

each site and dividing it by the site mean chlorophyll concentration. These data are plotted 

by month to show the seasonal pattern of the observations on a standardised scale. The 

plots indicate some weak seasonality in the observations, but that high biomass (as a 

proportion of site-mean biomass) can occur at any time of the year.  

 

Figure 43. Temporal patterns in the periphyton (as chlorophyll) observations at the 251 sites 

with ≥30 biomass observations.  


