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Preamble: There are multiple ways to measure soil nitrogen (N) and phosphorus (P) individually, 

including: 

▪ Total P concentrations in soils. 

▪ Olsen P – a measure of plant available P in soil [1], commonly used as an indicator of 

soil fertility and of the risk of excess phosphorus loss to the wider environment [2]. 

Olsen P can be measured gravimetrically or volumetrically, with these methods 

producing different values, although it is possible to convert between them if the 

volume weight or bulk density of the soil is known [3]. The gravimetric method is 

specified for State of the Environment (SOE) reporting [40] while the volumetric 

method is predominantly used for fertiliser recommendations.  

▪ Anion sorption capacity/P retention – an inherent soil property that measures the 

ability of a soil to bind P in the soil matrix. This measure can inform soil 

characterisation and inherent risk of P loss from soils. Irrigation with high P-loading has 

been shown to decrease the anion sorption capacity of soils over time, leading to 

increased risk of P loss [4]. 

▪ Alternative estimates of plant available P, based on different extraction methods are 

also available e.g., Melich P, Bray P [5].  

▪ Several less common measures of soil P include using fractionation methods to identify 

organic and inorganic forms of soil P to inform the mechanisms controlling the plant 

availability of soil P over time [5], spectroscopy methods (e.g., NMR, XAS, NanoSIM) 

that identify P concentrations and bonding forms, and novel methods to trace soil P 

reactions (e.g., 33P isotope dilution, zymography, DGT) [6]. 

▪ Total N concentrations in soils. 

▪ C:N ratio – this measure can indicate whether there are potential N limitations to plant 

growth and has therefore been used to indicate mineralisation rates of organic matter 

in soils [7]. This measure provides information about the nature of the biological 

communities in soils – soils with higher C:N ratios have more fungal-dominated 

communities [8]. Other nutrients are also linked to SOC cycling, including P and S, 
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therefore nutrient stoichiometry of soil organic matter may be appropriate to use if 

considering organic matter cycling. 

▪ Anaerobically mineralisable N (AMN) has been used as a measure of the nitrogen 

available to plants over the course of a growing season and correlates well with 

microbial biomass [7,8]. 

▪ Hot water extractable N (HWEN) is suggested as a more robust, replacement measure 

for AMN, measuring biological activity in soils [9,10,11]. 

▪ Hot water extractable carbon (HWEC), like HWEN has been proposed as a replacement 

for AMN in regional soil quality monitoring, also used as a measure of biological 

activity in soils [12,13].  

▪ Mineral N, comprised of nitrate and ammonium forms of nitrogen in soils, measures 

the nitrogen available to plants and can be used as a measure of soil fertility. 

▪ Quick N – a measure developed to help with fertiliser decisions, that estimates the 

nitrate available in soils for plant uptake. 

▪ Nitrous oxide emission losses measure the loss of excess N as a greenhouse gas from 

soils to the atmosphere. 

 

State of knowledge of ‘Soil nitrogen (N) and phosphorus (P)’ attribute: Good / established but 
incomplete (movement to and impact on waterways), and Medium / unresolved (impact on 
ecological integrity on soil) 

There are a plethora of studies that provide information on the concentrations of P (typically as 

Olsen P) and N (various measures), primarily in agricultural soils (specifically, see sections A3 and B1). 

These studies most often assess the state, or relationship to agricultural production of pasture or 

plant crops, or to inform fertiliser requirements. There are few studies that assess the response of 

soil biota to P or N additions – with the response of the microbial community most frequently 

assessed. Studies that provide soil N and P under indigenous vegetation have also been undertaken 

and most often provide an assessment of state (noting that work on chronosequences has assessed 

nutrient cycling, ecosystem development and retrogression), rather than assessing impact of changes 

or additions over time. 

However, the primary concern about soil N and P is in agricultural areas and relates to impacts on 

aquatic systems, in particular freshwater systems. There is considerable knowledge about the factors 

influencing loss of P and N from soil to water, which is strongly influenced by land management 

practices. Movement of N and P to waterways requires that there is a transportation pathway of N 

and P from soil to water, and that there is a lack of attenuation processes along this pathway and is 

exacerbated by the presence of N and P that is surplus to plant requirements. There is also 

considerable knowledge of the effects of excess soil P and N on aquatic systems. 

 

Part A—Attribute and method  
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A1. How does the attribute relate to ecological integrity or human health? 

Ecological integrity. N and P are essential elements for the growth and functioning of all soil 

organisms, including plants. Beyond this critical role, P additions to soils affect soil microbes’ 

(bacteria and fungi) population composition and function. Strong correlations were identified 

between relative abundances of individual soil taxa and concentrations of Olsen P [14]. Prolonged 

soil P additions can lead to microbial growth becoming C and N limited, in the absence of additions of 

these elements [15], and decoupling of the interactions between plants and soil organisms, resulting 

in plant reliance of fertiliser P rather than on biological mineralisation of P [16]. Arbuscular 

mycorrhizal fungi functioning is suppressed by excess P can negatively affect the productivity and 

temporal stability of plant communities [17]. 

The primary concern associated with elevated P in soils is surface run-off and movement into surface 

waters, negatively affecting freshwater quality and aquatic ecosystems [18]. This loss to surface 

water occurs when nutrients surplus to plant requirements are present in the soil, there is a 

transport pathway from soil to surface water, and there is a lack of sufficient attenuation processes 

along this transport pathway to decrease the P (and N) lost [19]. These factors can be influenced by 

land use and management. Excess P and N can also leach into deeper soil horizons, and may enter 

groundwater, negatively affecting groundwater quality [20,21]. Leaching of P to groundwater has 

been observed in soils under intensive land use receiving P additions, and is more likely in soils that 

support rapid transport of P, i.e., soils that are sandy, stony, shallow, or recent with low anion 

sorption capacity [20]. 

Addition of N to soils through fertiliser, cow urine, and effluent applications also affects microbial 

community function. Fertiliser N additions can lead to lower levels of biological N fixation [22]. Excess 

soil N further negatively affects ecological integrity by resulting in leaching of nitrate to groundwater 

which negatively affects groundwater quality [23,24], runoff of N to surface water [25], and 

emissions of nitrous oxide, a greenhouse gas, to the atmosphere [26]. 

Human health. Effects on human health arise indirectly through contamination of surface water with 

excess soil nutrients resulting in the growth of harmful algae e.g., cyanobacteria. If groundwater 

sources used for drinking water become sufficiently polluted to exceed drinking water standards for 

nitrate and nitrite, there is a risk to human health through consumption of this water [27,28,29]. 

There are no human health effects directly associated with elevated soil P and N. 

A2. What is the evidence of impact on (a) ecological integrity or (b) human health? What is the spatial 
extent and magnitude of degradation? 

The impact of P and N additions to soil on the ecological integrity of soil is largely unknown. A 

handful of studies have addressed the relationship between soil P and N and soil biology, primarily 

bacteria and fungi composition and function (Section A1). One study assessed the impacts of long-

term P and N additions on soil biology, namely bacteria, fungi and earthworms [30], finding 

prolonged additions of both P and N decreased fungal biomass, N additions decreased microbial 

biomass, and higher earthworm abundance was associated with increasing P. 

The evidence of impact of P and N on the ecological integrity of freshwater is strong: Studies have 

established the management factors and transport pathways involved in the loss of soil P and N to 

surface and groundwater [2,18,20,31], and have demonstrated evidence of this occurring in New 

Zealand [21,23]. Specifically, where nutrient additions (including fertiliser, effluent and wate-water 
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applications) exceed plant requirements, and there is a transport pathway with limited attenuation 

of nutrients, the risk of negative impact on surface and groundwater quality increases due to the 

potential for transfer of soil P and N to drainage and to direct discharge to surface waters [19,21,32].  

The extent and magnitude of degradation of waterways due to excess soil P and N varies by land use, 

soil type, catchment characteristics, topography, and farm management practices. Losses are not 

uniform or nationally consistent, with some intensive land uses are more prone to excess nutrients in 

soils due to larger quantities of fertiliser used or effluent and/or waste-water applied to soils, e.g., 

dairy farming [23]. Losses from critical source areas on farms and from soils with low anion sorption 

capacity and/or macropore flow contribute disproportionally to total nutrient losses, and can be 

influenced by farm management practices [33,34].   

N-additions to soil also impact on greenhouse-gas emissions as 94% of New Zealand’s N2O emissions 

are from agriculture with N2O emissions from N fertiliser use making up approximately 3.9% of 

agricultural emissions [35].  

A3. What has been the pace and trajectory of change in this attribute, and what do we expect in the 
future 10 - 30 years under the status quo? Are impacts reversible or irreversible (within a 
generation)? 

There are limited studies that assess the change in soil P concentrations over time, and even fewer 

studies assessing the change in soil N over time. The most extensive study assessing P concentration 

over time analysed ~450,000 samples collected over 2001-2015 and processed by commercial 

laboratories [36]. This study found a national mean rate of increase in the median concentration of 

Olsen P in soils in different regions by land use and soil order group combinations of 1.2% [36]. 

Median concentrations varied from 9 to 52 mg/L in the different groups. Across the 124 

combinations, there were 32 significant trends – both increases and decreases – over this time 

period. In terms of specific land uses, Olsen P in soils under drystock and cropping sites increased 

between 1996-2018 while total N decreased in cropping and indigenous vegetation soils over this 

time period [37,38]. Analysis of data from the Greater Wellington region over 2000-2018 showed 

statistically significant increases in Olsen P concentrations in cropping systems and total N 

concentrations in drystock systems [39].   

The pace or trajectory of change in the future 10-30 years is unknown, and depends on the extent to 

which known management practices are adopted e.g., ensuring application of fertilisers is sufficient 

and not excessive for agricultural crop-growth. Elevated soil P and N is reversible, where ongoing 

inputs are reduced or stopped and plant growth uses the available P and N. Predicted median 

timeframes to decrease Olsen P in soils with elevated concentrations across New Zealand to a water-

extractable P concentration proposed as an environmental target of 0.02 mg/L has been assessed as 

within a year for most soils, while some land uses are predicted to take up to 11.8 years [36]. 

However, as some environmental targets are more conservative than the one used in the above 

prediction, timeframes for reductions to actual targets may be longer.  

The pace and trajectory of change of N and P in aquatic systems is beyond the scope of consideration 

in this attribute. 

A4-(i) What monitoring is currently done and how is it reported? (e.g., is there a standard, and how 
consistently is it used, who is monitoring for what purpose)? Is there a consensus on the most 
appropriate measurement method?  
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Most regional councils in New Zealand monitor some measure of soil nutrients under their soil 

quality monitoring programmes for SOE reporting. Olsen P, total N and AMN have been three of the 

seven key soil quality indicators since the implementation of SOE monitoring in the early 2000s. 

More recently, HWEC has been more widely monitored since it has been proposed as a replacement 

for AMN [9,10,13]. The NEMS for soil quality and trace elements [40] specifies a standard for 

sampling analysis of soils for Olsen P, total N and AMN. Data are usually compared to provisional 

target values for these soil quality indicators [41]. Long-term field trials at Winchmore and Ballantrae 

have also assessed and reported soil P (as Olsen P) and N (Ballantrae only, as mineralisable N and C:N 

ratio) under grazed grassland in multiple reports and journal papers [30,42,43].  

Soil P and N, generally as Olsen P and mineral N, are also measured in relation to crop requirements 

to inform fertiliser requirements by farmers. The Fertiliser Association of New Zealand has produced 

multiple guides for this with agronomic targets for different crops and production systems [44]. 

A4-(ii) Are there any implementation issues such as accessing privately owned land to collect repeat 
samples for regulatory informing purposes? 

For all direct soil measures, there is a need to access privately owned land to collect repeat samples 

for monitoring of this attribute. Landowners may be more, or less, willing to provide access to land 

for sampling and to have data from their land used for regulatory informing purposes.  

Indirect measures of this attribute, i.e., measures that indicate cumulative losses from soil such as 

total P and DRP in surface water, nitrate in groundwater and nitrous oxide emissions to the 

atmosphere are less straightforward to attribute to a specific source or location. However, the 

general health over time of receiving waters can be measured and this may require access to 

privately owned land to access rivers and lakes to collect repeat samples.  

A4-(iii) What are the costs associated with monitoring the attribute? This includes up-front costs to 
set up for monitoring (e.g., purchase of equipment) and on-going operational costs (e.g., analysis of 
samples). 

Variables estimates provided by Regional Council scientists to MfE: 

▪ $10,000 per year estimated by Marlborough Regional Council, broken down as: 

Chemical laboratory analyses of which Olsen P, total N and AMN are included, for ~20 

sites/ soil samples. Two people sampling eight full time days per year.  

▪ $85,000 total cost per year (pers comm Waikato Regional Council), broken down as 

follows: ~$1000 per sample/site for all seven basic soil quality indicators (including 

Olsen P, total N and AMN). For approximately 30 sites, one scientist spends 

approximately one third of their time on soil quality monitoring. 

▪ $80-100,000 per year (pers comm Horizons Regional Council), for monitoring of the 

seven soil quality indicators, not including staff training and farmer outreach. 

▪ $250,000 per year monitoring costs plus Regional Council soil scientists’ time 

(unspecified, 5 staff in team) (pers comm Environment Canterbury). 



  

272 Attribute Information Stocktakes for Fifty-Five Environmental Attributes 

 

Various measures of soil P and N are available from commercial laboratories, often as part of a suite 

of different tests e.g., Basic soil profile analysis (includes Olsen P), organic matter suite (includes 

Total N), with costs ranging from $27 to $140. 

A5. Are there examples of this being monitored by Iwi/Māori? If so, by who and how?  

Although N and P monitoring by representatives of iwi/hapū/rūnanga may be uncommon, 

measurement of P and N via standard techniques is common in Māori agribusiness. Perhaps the 

question here is whether iwi/hapū/rūnanga are using techniques other than standard Olsen P 

measures to measure the nutrient profiles of soils? We are not aware of any mātauranga Māori-led 

measures of N and P specifically, but emphasise that Te Ao Māori measures of soil health take a 

holistic approach (a measure of the overall mauri of the soil ecosystem).  

A6. Are there known correlations or relationships between this attribute and other attribute(s), 

and what are the nature of these relationships? 

Soil attributes –  

▪ Bacteria composition: There are known nutrient changes with composition, however 

the specific and defined relationships are not yet fully described.  

▪ Soil C: Through the C:N ratio of soils. Lower C:N ratios with high total N are associated 

with increased losses of N [50]. 

▪ Soil contaminants: Trace element contaminants including Cd, F and U can originate in 

phosphate fertilisers. As such, applications of phosphate fertilisers can lead to 

accumulation of these trace elements in soils [51,52] 

▪ Surface erosion/runoff (and other erosion related attributes): Soil P is often lost 

through erosion and runoff, as it adheres to soil particles. Therefore, erosion and 

runoff of soil to surface water can also result in loss of P to surface water.   

▪ Soil compaction: Runoff of P and N are more likely from compacted soils (indicated by 

low macroporosity) [53]. Compaction reduces soil porosity, which can result in runoff 

that can contain unattenuated P and N due to the soil’s reduced ability to infiltrate and 

store water [54,55]. 

▪ Soil water storage, capacity and fluxes: As noted in the point above, when the water 

storage capacity of soil is reduced due to human activities, runoff and leaching of soil P 

and N are increased.  

Freshwater attributes –  

▪ Multiple National Policy Statement for Freshwater Management (NPS-FM) attributes 

can be influenced by the movement of soil P and N into freshwater including N, P, 

plants and algae (specifically phytoplankton and periphyton, as trophic state 

attributes), and cyanobacteria [56]. 

▪ Groundwater nitrates: Groundwater nitrates are a direct result of N losses from soils, 

where there are excessive N inputs, e.g., fertiliser application, livestock (urine), 

effluent or wastewater application 
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▪ Riparian margin establishment/protection: This can reduce the loss of P and N to 

surface water from surrounding agricultural land [57,58]. 

Estuaries and coastal waters –  

▪ Nutrients in water (trophic state and toxicity): Nutrients P and N in water, causing 

changes to trophic state and toxicity risks, result from P and N losses from surrounding 

soils. 

▪ Cyanobacteria in water: Cyanobacteria blooms are caused by excess nutrients in water, 

which can result from P and N losses from surrounding agricultural soils. 

 

Part B—Current state and allocation options 

B1. What is the current state of the attribute? 

Olsen P and total N are measured for SOE and were last reported at a national scale in Our Land 2021 

[38]. Recently, Our Land 2024 was released however soil N and P were not updated in this report. 

Data in Our Land 2021 includes data up to 2018. Therefore at a national scale, we have some 

understanding of the state of this attribute, however, the representativeness of the current SOE 

monitoring framework for providing a national assessment has not been determined. Olsen P status 

of soils varies depending largely on land use. Our Land 2021 reports that 61% of sites under both 

cropping and dairy, 46% of sites under orchard/vineyards, and 30% of monitored dry stock sites 

exceeded targets. As detailed in A3 above, Olsen P has increased in soils over the past ~30 years. 

Total N concentrations in soils monitored between 2014-2018 were within the target range for more 

than 72% of monitored dairy, drystock and forestry sites [38]. Cropping and orchard/vineyards sites 

do not currently have target ranges for total N to compare data to due to the variations in N 

requirements of different crops. Despite the majority of dairy, drystock and forestry sites being 

within total N targets, between 2016-2020, 69% of New Zealand’s river length had modelled N 

concentrations indicating risk of environmental impairment compared to reference conditions [59].  

Extensive additional information on the state of this attribute (both N and P) will be held by fertiliser 

companies or farm consultants as a result of soil-testing to inform fertiliser requirements. The most 

likely measures here are Olsen P and some measure of plant available N – e.g., mineral N or quick N. 

B2. Are there known natural reference states described for New Zealand that could inform 
management or allocation options?  

SOE soil quality monitoring of Olsen P, total N and AMN in soils under indigenous vegetation could 

potentially represent reference states for these measures in New Zealand soils, however there are 

few indigenous sites included in SOE monitoring, and where included, they may not necessarily 

represent undisturbed indigenous vegetation. Additional studies of soils under indigenous vegetation 

could add to this knowledge base [60, 62]. However, New Zealand soils are known to be naturally low 

in plant available P due to New Zealand’s geology and climate influencing soil development 

processes, and indigenous ecosystems are typically adapted to these soil conditions [61,62]. Thus, 

the relevance of this reference state to inform N and P concentrations in soils under primary 

production use is debateable since N and P requirements will be driven by requirements of specific 
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crop or pasture, which can vary considerably. Similarly, this reference state is unlikely to be suitable 

for soils where exotic plants are desirable e.g., grass on sports fields.  

SOE targets for this attribute are generally used in productive systems where optimum levels of soil 

fertility are targeted for crop and pasture growth. Suggested target values for these indicators have 

historically been grouped by soil type and/or land use [41], and as these measures can inform soil 

fertility, productive systems strive for higher levels (and specific levels vary by crop) [44,63]. 

Therefore concentrations under indigenous vegetation are unlikely to relevant for production land 

use.  

B3. Are there any existing numeric or narrative bands described for this attribute? Are there any 
levels used in other jurisdictions that could inform bands? (e.g., US EPA, Biodiversity Convention, 
ANZECC, Regional Council set limit) 

‘Target values’ have been developed for use in regional council state of the environment reporting, 

with a review of the derivation of these values recently undertaken by Manaaki Whenua – Landcare 

Research [41]. These values were based on combining production optima and environmental 

considerations, although limited environmental data was available at the time of development [41].  

These values vary with land use and soil order, with the current recommendations for Olsen P 

concentrations in soils shown in Table 1. The values in Table 2 are similar but not identical to those 

used by MfE and StatsNZ in Our Land 2021 [38]. Revision of these target values currently being 

contracted by MfE (Revision of Soil Quality Indicator Target Ranges).  

Table 1. Suggested Olsen P target ranges. Units not specified but assumed to be mg/kg. Original source from 

Mackay et al. [64], taken directly from Cavanagh et al. [41]. 

Land use Soil type Minimum Maximum 

Pasture; horticulture 

and cropping  

 

Volcanic  20  50  

Pasture; horticulture 

and cropping  

Sedimentary and 

Organic soils  

20  40  

Pasture; horticulture 

and cropping  

Raw sands and Podzols 

with low P retention  

5  5  

Pasture; horticulture 

and cropping  

Raw sands and Podzols 

with medium and 

above P retention 

15  25  

Pasture; horticulture 

and cropping  

Other soils  20  45  

Pasture; horticulture 

and cropping  

Hill country  15  20  

Forestry  All soils  5  30  
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Table 2. Olsen P target ranges used by MfE and StatsNZ [38]. 

Soil order  Land use  Min  Max  Unit  

Raw  All  5  25  µg/g  

Podzol  All excl. cropping and 

orchard/vineyard  

5  25  µg/g  

Podzol  Cropping, orchard/vineyard  20  50  µg/g  

Allophanic, Pumice  Exotic forestry  5  30  µg/g  

Allophanic, Pumice  All excl. exotic forestry  20  50  µg/g  

Brown, Gley, Granular, 

Melanic, Oxidic, Pallic, Recent, 

Semi-arid, Ultic  

Dairy, Drystock, Lifestyle, Scrub, 

Tussock, Urban Park/Reserve  

15  45  µg/g  

Brown, Gley, Granular, 

Melanic, Oxidic, Pallic, Recent, 

Semi-arid, Ultic  

Cropping, orchard/vineyard  20  45  µg/g  

Organic  All excl. exotic forestry  20  40  µg/g  

Organic  Exotic forestry  5  30  µg/g  

NB: Anthropic soils not mentioned  

 

Total N targets used by MfE and StatsNZ [38] are those specified in guidance developed by the LMF 

for use in SOE monitoring [65](Table 3), summarised as 0.25-0.7% for pasture, and 0.1-0.7% for 

exotic forestry. 

 

Table 3. Total nitrogen target ranges (% w/w). Bold values indicate target values. 

Source: LMF [65]. 

 

AMN targets used by StatsNZ [38] are those proposed by the LMF [65] (Table 4), summarised as a 

minimum of 20 mg/kg for cropping, horticulture and exotic forestry, and a minimum of 50 mg/kg for 

pasture. No land uses have maximum targets for AMN. 
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Table 4. AMN target ranges (mg/kg). Bold values indicate target values. 

Source: adapted from LMF [65] using information from Mackay et al. [64]. 

 

B4. Are there any known thresholds or tipping points that relate to specific effects on ecological 
integrity or human health?  

Water extractable P is an additional measure that has been used to assess potential P loss via surface 

runoff [36]. This is a modelled attribute, derived from Olsen P and anion storage capacity. An 

environmental target of 0.02 mg/l was used in McDowell et al. [36]. This value was selected to limit 

eutrophication (and is based on all default guideline values for DRP concentrations across lowland 

rivers or lakes or cool climates set by the Australian and New Zealand Governments, ranging from 2-

20 µg P/L [66]). However, pursuing low water extractable P concentrations may result in Olsen P 

concentrations lower than the agronomic target in many soils, impairing production [36]. 

There are various recognised ‘changes’ on ecological integrity arising from different nutrient 

conditions e.g., high nutrient conditions will favour pasture grass growth over native plant species, 

there are no specific thresholds or tipping points. 

B5. Are there lag times and legacy effects? What are the nature of these and how do they impact 
state and trend assessment? Furthermore, are there any naturally occurring processes, including 
long-term cycles, that may influence the state and trend assessments? 

As stated in Section A3, the trajectory of change of this attribute, and therefore lag times and legacy 

effects on the ecological integrity of soil depends on the extent to which known management 

practices are adopted. Elevated soil P and N is reversible, where ongoing inputs are reduced or 

stopped and plant growth uses the available P and N. 

There is suggested to be a lag time between interventions to manage elevated soil P and N and the 

impacts of these excess nutrients on freshwater quality [36, 67]. An assessment of lag times for 

nitrates arising from livestock farms entering surface water in 34 New Zealand catchments found 

that the median lag time was 4.5 years, with a total range of 1-12 years [67]. Lag time was influenced 

by factors including catchment size and slope, illustrating legacy effects. 

B6. What tikanga Māori and mātauranga Māori could inform bands or allocation options? How? For 
example, by contributing to defining minimally disturbed conditions, or unacceptable degradation.  

As noted previously, soil health is an area of high interest to Māori and there are many 

tohu/indicators that are utilised according to mātauranga-ā-hapū and mātauranga-ā-iwi [78,79]. In 

addition to discussing this attribute directly with iwi/hapū/rūnanga, there is likely to be tikanga and 

mātauranga Māori relevant to informing bands, allocation options, minimally disturbed conditions 
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and/or unacceptable degradation in treaty settlements, cultural impact assessments, environment 

court submissions, iwi environmental management and climate change plans, etc. 

 

Part C—Management levers and context 

C1. What is the relationship between the state of the environment and stresses on that state? Can 
this relationship be quantified? 

Fertiliser application to soils in agricultural systems is a key factor influencing the state of this 

attribute [23,36]. Intensified land use in turn can drive fertiliser applications to soils. A fertiliser code 

of practice [68] and guides for fertiliser management of productive systems [44] have been 

developed by the Fertiliser Association of New Zealand to inform management of this issue through 

fertiliser application. Adoption of the code of practice is voluntary and adoption rates are not 

assessed. 

Similarly, wastewater or effluent application – including municipal wastewater, dairy shed effluent, 

or wastewater from food manufacturing plants, e.g., dairy factories, to land can also negatively 

influence the state of this attribute.  

C2. Are there interventions/mechanisms being used to affect this attribute? What evidence is 
there to show that they are/are not being implemented and being effective?  

C2-(i).  Local government driven 

SOE monitoring by is undertaken by Regional Councils, however the extent of interventions to effect 

change in soil N or P status, is largely limited to reporting soil quality monitoring results, which may 

include reporting back to the individual landowners on whose properties the sampling has been 

undertaken. Elevated Olsen P concentrations have been reported in agricultural soils since the 

commencement of the 500 Soils programme in 2000 [69], and concentrations have continued to 

increase since this time [36]. 

Regional and District Plans and Policies may specify requirements and require resource consents for 

farming activities that are likely to result in P and N loss from soil. They may require the use of 

Overseer or other tools or plans to calculate and manage nutrient budgets. 

C2-(ii). Central government driven 

National Environmental Standard for Sources of Human Drinking Water [70] specifies that drinking 

water sources comply with the New Zealand Drinking-water Standard [29], which specifies maximum 

accepted values for nitrate and nitrite of 50 and 3 mg/L, respectively, also providing that the sum of 

the ratio of the concentrations of nitrate and nitrite to each of their respective maximum accepted 

values must not exceed 1. 

The National Environment Standard for Freshwater [71] refers to the National Policy Statement for 

Freshwater Management [72]. This National Policy Statement regulates some of the same drivers 

(fertiliser inputs, animal stocking density) that are important for soil ecological integrity as affected 

by excess soil P and N, however there is no specific legislation or policy for soil P or N. 

Freshwater Farm Plans are required in some regions for certain farming activities. These are 

legislated by the Resource Management (Freshwater Farm Plans) Regulations 2023 [73] and 
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compliance is monitored by Regional Councils. They have no specific provisions for soil P and N 

however are intended to protect freshwater quality from farming activities. 

New Zealand’s national emissions reduction plan [35] includes N2O emissions from agriculture in the 

net-zero emissions target for 2050. 

C2-(iii). Iwi/hapū driven 

As noted above, we note that hapū/iwi take a holistic approach to environmental monitoring. Iwi 

planning documents such as Environmental Management Plans and Climate Change Strategies/Plans 

may contain policies/objectives/methods seeking to influence soil quality outcomes for the benefit of 

current and future generations. We are not aware of any other interventions/mechanisms being 

used by iwi/hapū/rūnanga to directly affect this attribute. 

C2-(iv). NGO, community driven  

Catchment management groups to improve water quality outcomes, generally relating to farming 

activities, exist in many catchments throughout New Zealand. 

C2-(v).  Internationally driven 

The Paris Agreement [74] on climate change includes mitigating N2O emissions from agriculture in 

both the near-term target: close 10% of emissions gap by 2020 to achieve 2°C warming target; and 

the long term target: cumulative emission reduction of up to 60 Gt CO2e and 3500 ozone depletion 

potential kt by 2050. 

 

Part D—Impact analysis 

D1. What would be the environmental/human health impacts of not managing this attribute? 

Changes in the attribute state affect ecological integrity and potentially human health as described in 

A1 above. Continuing to have excess P and N in agricultural soils leads to a greater risk of 

contamination of surface water and groundwater, negatively affecting freshwater quality and aquatic 

ecosystems. This can affect human health if surface water becomes eutrophic, causing the growth of 

harmful algal blooms, or if drinking water sources become polluted.  

D2. Where and on who would the economic impacts likely be felt? (e.g., Horticulture in Hawke’s Bay, 
Electricity generation, Housing availability and supply in Auckland)  

The issue of excess P and N in soils primarily applies to agricultural land – in particular more intensive 

land uses including dairy and vegetable cropping that apply large quantities of fertilisers. The impacts 

of excess N and P in soils are likely mostly externalities, affecting other environmental domains. 

However, the application of excess P and N fertilisers is an inefficient use (waste) of money. This is 

often not realised, as application of fertiliser can be perceived as ‘more is better’, and growers can be 

risk averse to potential decreases in production. 

D3. How will this attribute be affected by climate change? What will that require in terms of 
management response to mitigate this? 
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Increases in extreme weather events may result in more leaching and runoff of excess P and N from 

soils to ground- and surface water, as the processes of runoff and leaching are stimulated by rainfall 

(and irrigation).  

Warmer temperatures and wetter conditions are also predicted to increase nitrous oxide emissions 

from soils [75] resulting in a positive climate feedback, whereby emissions continue to increase [76].  

Microbial cycling of soil nutrients will be affected by temperature variations. Specifically, warmer 

temperatures are likely to enhance N-cycle processes and P utilization [77] which may result in 

reduced losses from soils.  
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