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Executive summary 

Background and brief 

The New Zealand Ministry for the Environment (MfE) and Statistics New Zealand use the results from 

analyses of river water quality state and trends to inform policy development and meet their 

requirements for environmental reporting on the freshwater domain under the Environmental 

Reporting Act 2015. The data used for these analyses come from regional council state-of-the-

environment (SoE) monitoring programmes and NIWA’s National River Water Quality Network 

(NRWQN). MfE have commissioned national-scale analyses of river water quality data periodically 

since 2003. The current study was commissioned to analyse river water quality state and trend for 

the period ending in late 2017. 

The two outcomes required from this analysis of river water quality data are accurate estimates of 

current state and temporal trends at individual monitoring sites. In this study, we use several 

approaches to aggregate results, including River Environment Classification (REC) land-cover classes, 

and continuous land-cover data. The principal output of the study are site-specific results that have 

been provided to MfE as supplementary files. These site-specific results may then be aggregated and 

summarised in different ways (e.g., by environmental class, region, entire nation) to meet other 

environmental reporting requirements and to better inform policy-makers. 

The brief for this work consisted of seven major steps: 

1. Compile river water quality data from regional councils, Land and Water Aotearoa 

(LAWA) and NIWA.  

2. Organise and process the data, including error correction, application of reporting 

conventions and links to spatial data for each site. 

3. Assess the suitability of data for 13 physical, chemical, microbial and ecological 

variables for statistical analyses and apply site inclusion rules.  

4. Carry out analyses of water quality state, including comparisons of state at monitoring 

sites aggregated by River Environment Classification (REC) land-cover classes, and 

relationships between water quality state and high-intensity agricultural land cover. 

5. Estimate river flows for each site and sampling date, to adjust trend analyses for the 

extraneous effects of flow variation. 

6. Carry out trend analyses using 10-, 20- and 28-year periods ending in late 2017, 

including comparisons of trends at sites aggregated by REC land-cover classes. The 28-

year trend period corresponds to the period of record for NRWQN monitoring sites 

and a smaller number of long-term council sites. 

7. Assess water quality trends at the national scale using two approaches: categorical 

levels of confidence and a statistical analysis of the proportions of improving trends. 



 

Water quality state and trends in New Zealand rivers  7 

 

Methods 

Data acquisition and processing 

We used three procedures to acquire updated data: interrogation of data servers operated by 

individual regional councils, Land Air Water Aotearoa (LAWA), and NIWA (for NRWQN data); requests 

to LAWA data managers for the most recent (2017) data; and direct requests to councils for data that 

were unavailable through data servers or LAWA. These data were organised into a consistent format 

and stored in a single RData file. 

Data processing was carried out in four steps: 1) application of consistent conventions for variable 

names, site identifiers, date and time formats, units of measurement, and other data structure 

elements; 2) correction of errors identified using time-series plots and quantile plots (e.g., 

transcription errors and scale problems caused by inconsistent units (e.g., concentrations in mg L-1 

and g L-1); 3) exclusion of data generated using non-comparable methods (e.g., total nitrogen and 

total phosphorus concentration data derived from filtered water samples); 4) attachment of spatial 

information to the data for each monitoring site, including NZMS260 grid reference (converted from 

NZTM as necessary), NZReach number, REC classes and catchment land cover data. 

Processed data were then assessed for suitability for statistical analysis on the basis of duration and 

frequency of sampling. Following this assessment (and in consultation with the Ministry), nine 

monitoring variables (of the 13 variables assessed) were selected for use in the state and trends 

analyses: visual clarity (CLAR), turbidity (TURB), concentrations of nitrate-nitrogen (NO3N), 

ammoniacal nitrogen (NH4N), total nitrogen (TN), dissolved reactive phosphorus (DRP), total 

phosphorus (TP), the faecal bacterium Escherichia coli (ECOLI), and macroinvertebrate community 

index scores (MCI). 

Four other candidate variables (total suspended sediment concentration, areal cover of deposited 

fine sediment, periphyton biomass, and areal cover of the cyanobacterium Phormidium), were 

omitted for use for several reasons, including: several regional councils had no data, most of the 

remaining council datasets comprised few sites or did not meet the sampling frequency and duration 

criteria. 

State analyses 

The state dataset consisted of data for the nine variables listed above, for the 2013-2017 period, at 

sites for which measurements were available in at least 90% of the sampling intervals in that period 

(i.e., at least 54 of 60 months or 18 of 20 quarters). For several variables, many data were 

‟censored”, i.e., reported as a value less than an analytical detection limit or as a value greater than a 

reporting limit. Censored values were replaced by imputation prior to analysis – several rules were 

used to make this process consistent. 

For each site × variable combination, concentration or measured value percentiles were calculated 

and the site medians used in two subsequent steps of the state analysis. First, site medians were 

grouped by REC land-cover classes for inter-class comparison. Second, linear regressions were used 

to relate median water-quality state to proportions of high-intensity agricultural land cover in the 

catchments upstream of the monitoring sites. In addition, the state dataset was used to assess river 

monitoring sites against attribute states that are set out in the National Policy Statement for 

Freshwater Management (NPS-FM). We determined the ECOLI attribute state for monitoring sites 
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and determined the number of river monitoring sites at which the NPS-FM bottom-lines for NO3N 

and NH4N toxicity were exceeded. 

Trend analyses 

The trend assessment utilised data for the nine variables listed above, for the 10-, 20-, and 28-year 

periods ending in December 2017. For all variables except MCI, the site inclusion rule required that 

measurements be available for at least 90% of each year in the trend period, and for at least 90% of 

the seasons. MCI is generally calculated from macroinvertebrate samples that are collected annually, 

so the site inclusion rule was limited to 90% of the years in the trend period. 

In our previous national-scale water quality trend analyses (Larned et al. 2015), censored values in 

the trend datasets were replaced with imputed values, and site × variable combinations for which 

more than 15% of the data consisted of censored entries were excluded. In the current study, we 

modified these approaches to improve estimations of Sen slopes and confidence intervals, and to 

reduce the number of site exclusions (thereby increasing spatial coverage). 

For each site and sampling date, the corresponding daily average river flow was estimated, using 

measured flow (for sites near flow recorders), or estimates derived from the TopNet hydrological 

model, corrected using flow-duration curves. In a second shift from the previous analyses, we 

discontinued automated flow adjustment of data for all sites used in trend analyses. Instead, flow 

adjustments were applied only to site × variable combinations for which reliable water-quality-flow 

relationships existed. Where the water quality-flow relationship was poor, trend analyses were 

carried out without flow adjustment. 

Trend assessment utilised estimates of trend magnitude made with the Sen slope estimator, and 

estimates of the confidence in the trend direction, made using the P-values from Kendall tests. The 

seasonal version of the Sen slope estimator was used for variables measured seasonally (i.e., monthly 

or quarterly), and for which variability in the water quality variable was significantly explained by 

season. 

The trends for all site × variable combinations were classified in two ways. The first approach used 

four trend direction categories: improving, degrading, indeterminant and not analysed (the approach 

used in the previous report (Larned et al. 2015)). This approach is conservative because improving 

and degrading trend categories are reserved for trends where the 90% confidence intervals exclude 

zero. The second, new approach classified trends into nine confidence categories on basis of a 

probability that a given trend is improving. The categories range from ‟virtually certain” (probability 

99-100%) to ‟exceptionally unlikely” (probability 0-1%). 

Two approaches were also used to evaluate patterns of trends at the national scale and within 

environmental classes. These approaches involved aggregating multiple sites into environmental 

(REC land-cover classes), or a spatial domain covering the entire country. Other environmental or 

spatial domains may also be used. The first approach used the nine confidence categories described 

above, following which the proportion of sites in each category was tallied. 

The second approach used the same probabilities of improving trends from individual sites to 

estimate the proportion of improving trends (PIT) for all sites in the domain. The PIT statistic and its 

95% confidence intervals were calculated for each water quality variable within each REC land-cover 

class, and nationally. 
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Results 

Water quality state 

The summaries of river state indicated that variation in median nutrient and ECOLI concentrations 

and CLAR was partly explained by REC land-cover classes. Median concentrations of all nutrients and 

ECOLI were lowest and CLAR and MCI highest in the natural class. Nutrient and ECOLI concentrations 

were highest in the urban class, closely followed by the pasture class. 

Approximately 1% of sites (6 of 567 sites) in the pastoral land cover class exceeded the NOF bottom-

line for NO3N annual median concentrations and four of those sites also exceeded the bottom-line 

for 95th percentile concentrations. No sites in the other land use classes exceeded NO3N bottom 

lines. Less than 1% of sites (2 of 532 sites) in the pastoral land cover class exceeded the pH-adjusted 

NH4N median bottom line, and 1.7% of pastoral sites (9 of 532 sites) and 1.7% of urban sites (1 of 58 

sites) exceeded the pH-adjusted NH4N maximum bottom line. No sites in the other land use classes 

exceeded NH4N bottom lines. The classification of monitoring sites by ECOLI attribute states 

indicated that most sites in the natural and exotic forest land-cover classes were in the A attribute 

state, most sites in the pastoral land-cover class were in the D and E attribute states, and most sites 

in the urban land-cover class were in the E attribute state. 

Regressions of site medians for the nine variables on high-intensity agricultural land cover in the 

upstream catchment of each site indicated that the concentrations of each nutrient and ECOLI 

increased, and MCI scores and visual clarity decreased, with increasing proportions of high-intensity 

agricultural land cover. 

Water quality trends 

In this summary, we first set out results of the 10-, 20-, and 28-year trend analyses in terms of trend 

magnitude (percent change in a water quality variable per year). We then summarise the trend 

analysis results in terms of trend direction (improving or degrading). As noted above, the analyses of 

trend directions included the method used in the previous national-scale trend analysis, a new 

approach in which all trends are classified into nine categorical confidence categories, and a new 

approach to estimate the proportion of improving trends (the PIT statistic). For brevity, the following 

summary is based on the PIT statistics for each water quality variable at the national level and within 

land-cover classes. 

The magnitudes of 10-, 20- and 28-year trends did not vary strongly or consistently between land 

cover classes. However, the following patterns were evident:  

▪ Median 10-year trend magnitudes were largest for CLAR, DRP, TP and TURB in the 

urban land-cover class; in each case the trend direction indicated improving 

conditions. 

▪ The median 20-year trend magnitudes were largest for NH4N and TP in the urban land-

cover class (declining by over 2% per year), and for TN and TURB in the exotic forest 

class (increasing by approximately 2% per year). 

▪ The median 28-year trend magnitude was largest for NH4N in the natural land-cover 

class indicating improving conditions (declining by over 2% per year). 
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The national scale PIT statistics for each water quality variable are shown in the following table. All 

values in the table are estimates of the proportion of improving sites with respect to the 

corresponding water quality variable. 

Table i: Trends in river water quality variables according to proportion of improving trends (PIT). Blue 
font = improvement in water quality at most sites. Red = degradation in water quality at most sites. Green = = 
inferences regarding improvement or degradation in water quality at most sites cannot be made at the 
specified confidence level.  

Variable 

Proportion of sites across New Zealand indicating improving trends (%) 

10-year trend 
(2008-2017) 

20-year trend 
(1998-2017) 

28-year trend 
(1990-2017) 

CLAR 65.1 49.1 79.5 

DRP 55.0 64.3 54.9 

ECOLI 52.1 67.4 68.8 

MCI 44.7 35.4 47.1 

NH4N 72.2 78.2 85.8 

NO3N 56.5 41.3 49.1 

TN 49.5 45.1 32.5 

TP 71.4 81.3 64.5 

TURB 50.1 35.4 35.1 

 

A comparison of the 10-, 20- and 20-year trends in this table reveal several changes in the balance of 

improving and degrading trends: 1) a predominance of degrading 20-year trends in NO3N shifted to a 

predominance of improving 10-year trends; 2) a predominance of degrading 20- and 28-year trends 

in TN shifted to roughly equal proportions of degrading and improving 10-year trends; and 3) a 

predominance of improving 20- and 28-year trends in ECOLI shifted to roughly equal proportions of 

degrading and improving 10-year trends. In contrast to these changes between trend periods, the 

predominance of improving trends in NH4N and TP has persisted between all trend periods, and the 

predominance of degrading trends in MCI scores has persisted from the 20- to 10-year period. 

We recommend adopting the approaches set out in this report to increase the information yield from 

trend analyses, and ultimately, from regional council and national monitoring programmes. We 

recognise that progressive changes in data analysis methods can impede comparisons between 

consecutive reports. To alleviate that problem, we provided results of trend analyses using both the 

methods of Larned et al. (2015) and the new methods, and we recommend presenting the results in 

parallel as we have in the current report. Finally, we note that the current report does not represent 

the last word in water-quality data analysis; further advancements are inevitable and beneficial. 
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1 Introduction 
The New Zealand Ministry for the Environment (MfE) and Statistics New Zealand (Stats NZ) use 

analyses of river water quality state and trends to inform policy development, and to meet their 

requirements for environmental reporting on the freshwater domain under the Environmental 

Reporting Act 2015. In this report, we use ‟river water quality” as a general term to refer to the 

physical, chemical and biological variables that are included in river state-of-environment (SoE) 

monitoring programmes. In a previous report for MfE, we provided water quality state and trends 

based on monitoring data from 365-577 river monitoring sites (depending on the variable); the time-

series for each site × variable combination had an ending date in December 2013 (Larned et al. 

2015). In the current report, we have undertaken a new data compilation in order to report updated 

states and trends; the end dates for monitoring sites in the new compilation are in December 2017. 

The brief for this work consisted of seven major steps: 

1. Compile river water quality data from regional councils, Land and Water Aotearoa 

(LAWA) and NIWA.  

2. Organise and process the data, including error correction, application of reporting 

conventions and links to spatial data for each site. 

3. Assess the suitability of data for 13 physical, chemical, microbial and ecological 

variables for statistical analyses and apply site inclusion rules.  

4. Carry out analyses of water-quality state, including comparisons of state at monitoring 

sites aggregated by River Environment Classification (REC) land-cover classes, and 

relationships between water quality state and high-intensity agricultural land cover. 

5. Estimate river flows for each site and sampling date, to adjust trend analyses for the 

extraneous effects of flow variation. 

6. Carry out trend analyses using 10-, 20- and 28-year periods ending in late 2017, 

including comparisons of trends at sites aggregated by REC land-cover classes. The 28-

year trend period corresponds to the period of record for NRWQN monitoring sites 

and a smaller number of long-term council sites. 

7. Assess water quality trends at the national scale using two approaches: categorical 

levels of confidence and a statistical analysis of the proportions of improving trends. 

As an additional step, we used the water-quality state dataset to assess river monitoring sites against 

attribute states that are set out in the National Policy Statement for Freshwater Management of 

2014 (NPS-FM), and in the 2017 amendments to the NPS-FM (New Zealand Government 2014, 2017). 

We determined the ECOLI attribute state for monitoring sites and determined the number of river 

monitoring sites at which the NPS-FM bottom-lines for NO3N and NH4N toxicity were exceeded. 

The main components of the current report are detailed methods for data processing and analysis, 

summaries of water-quality state and trends at the national scale and within four contrasting land-

cover classes, and supplementary files with site-specific results and spatial data for each site. The 

detailed methods and tabulated, site-specific results will enable MfE to use the results for a wide 

range of purposes (e.g., mapping, inter-comparisons between environmental classes or geographic 
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domains, estimation of reference conditions) that are all based on a single, comprehensive 

methodology. 

The methods used in the current study include several advances on our previous national-scale 

water-quality trend analyses: 1) a modified statistical procedure was used to determine the 

directions of trends and the magnitudes of trends (and associated confidence); 2) the previous 

approach of automatically flow-adjusting water-quality data for all sites was replaced with a site-

based approach where water quality-flow relationships were assessed, and flow-adjustments were 

applied only where strong water quality-flow relationships existed; 3) a new approach was used for 

aggregating trend directions from multiple sites within a given environmental or spatial domain (e.g., 

an environmental class), based on the likelihood that water quality was improving for each variable; 

and 4) a second new procedure was used to make probabilistic estimates of the proportions of 

improving trends (PIT) for each variable within a domain. 
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2 Data acquisition, organisation and processing 
New Zealand regional and district councils carry out SoE monitoring at > 1000 river sites. For the 

monitoring sites used in this report, monthly or quarterly monitoring has been underway for at least 

five years and continues to the present. A variety of physical, chemical and biological indicators of 

water quality (‟variables”) are measured at these sites. In addition, water quality and biological 

monitoring had been carried out by NIWA since 1989 at the river sites that make up the National 

River Water Quality Network (NRWQN). 

Council and NRWQN river monitoring data are periodically acquired and federated into databases for 

preparation of national-scale SoE reports and to investigate monitoring performance. In the current 

project, the river monitoring database used for the preceding national-scale report (Larned et al. 

2015) was updated with data collected between 2013 and December 2017. In this section we 

describe the water quality variables, data sources and organisation of the river database, and explain 

the data processing procedures used to derive datasets suitable for state and trend analyses. 

2.1 Water quality variables 

We assessed river water quality using nine variables that characterise physical, chemical and 

microbiological conditions, and macroinvertebrate community composition (Table 2-1). Unless 

otherwise stated, we made no distinction between data collected at regional council sites and 

NRWQN sites, and we refer to the sites collectively as the ‟river monitoring network”. Data for 

physical, chemical and microbiological variables were derived from monthly or quarterly samples; 

macroinvertebrate data came from annual samples. 

Table 2-1: River water quality variables included in this study.  

Variable type Variable Abbreviation Units 

Physical 
Visual clarity CLAR m 

Turbidity TURB NTU 

Chemical 

Ammoniacal nitrogen NH4N mg/m3 

Nitrate nitrogen NO3N mg/m3 

Total nitrogen (unfiltered) TN mg/m3 

Dissolved reactive phosphorus DRP mg/m3 

Total phosphorus (unfiltered) TP mg/m3 

Microbiological Escherichia coli ECOLI cfu/100 mL 

Macroinvertebrate Macroinvertebrate Community Index MCI unitless 

 

Visual water clarity (CLAR) or clarity is a measure of light attenuation due to absorption and 

scattering by dissolved and particulate material in the water column. Clarity is monitored because it 

affects primary production, plant distributions, animal behaviour, aesthetic quality and recreational 

values, and because it is correlated with suspended solids, which can impede fish feeding and cause 

riverbed sedimentation. Visual clarity in rivers is generally measured in situ as the horizontal sighting 
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range of a black disc (Ministry for the Environment 1994). At a few sites, clarity is measured adjacent 

to the river with water samples in clarity tubes. 

Turbidity (TURB) refers to light scattering by suspended particles. Turbidity is generally measured in 

situ with hand-held nephelometers or with a bench-top nephelometer in a laboratory, using grab 

samples of water from the monitoring site. Both types of nephelometers are calibrated with standard 

light-scattering solutions (e.g., formazin), and the sensor reading is not absolute light scattering, but 

light-scattering relative to the standard solution, in ‛nephelometric turbidity units’ (NTU). 

Nephelometric turbidity is generally inversely correlated with visual water clarity (Davies-Colley and 

Smith 2001), but unlike visual clarity, turbidity measurements do not account for the optical effects 

(i.e., absorption) of dissolved materials. 

The five nutrient species (NO3N, NH4N, DRP, TN and TP) were included because they influence the 

growth of benthic river algae (periphyton) and vascular plants (macrophytes), and because nitrate 

and ammonia can be toxic to aquatic organisms at elevated concentrations. Nutrient enrichment 

from point and non-point source discharges is strongly associated with intensive land use in New 

Zealand (Larned et al. 2016, Snelder et al. 2018). Nutrient enrichment can promote excessive growth 

of ‛nuisance’ periphyton and macrophytes that can, in turn, degrade river habitat, increase daily 

fluctuations in dissolved oxygen and pH, impede flows, block water intakes, and cause water colour 

and odour problems. At elevated concentrations, nitrate and ammonia can be toxic to river fish and 

invertebrates (Hickey 2013, 2014). Mechanisms of nitrate and ammonia toxicity include reduced 

oxygen transport by haemoglobin, carcinogenic nitrosamine formation, and disruption of ion 

transport across cell membranes (Camargo et al. 2005). 

The concentration of the bacterium Escherichia coli (ECOLI) is used as an indicator of human or 

animal faecal contamination, from which the risk to humans arising from infection or illness from 

waterborne pathogens during contact-recreation may be estimated. 

In addition to the physical, chemical and microbiological variables described above, we used the New 

Zealand Macroinvertebrate Community index (MCI) as a biotic indicator of general river health. MCI 

scores are calculated using tolerance values for the macroinvertebrate taxa present in benthic 

samples. Tolerance values are weighting factors that correspond to the relative abundance of taxa 

along stressor gradients. We used the non-quantitative MCI rather than the quantitative (qMCI) or 

semi-quantitative (sqMCI) forms of MCI because some council datasets do not include invertebrate 

abundance data (Stark and Maxted 2007). Non-quantitative MCI scores are based on 

presence/absence data which are widely available. Physical and chemical variables and ECOLI are 

measured monthly or quarterly, whereas the invertebrate samples used to calculate MCI scores are 

generally collected once each summer. Due to the difference in sampling frequency, trend analyses 

of MCI scores were carried out using a different procedure to that used for the other variables (see 

Section 3.2.1). 

Four additional river water quality variables were considered for analysis: total suspended sediment 

concentration, areal cover of deposited fine sediment, periphyton biomass, and areal cover of the 

cyanobacterium Phormidium. After assessing the number and geographic distribution of 

measurements for these variables, and following consultation with MfE, these variables were 

omitted from further analysis. Several regional councils had no corresponding data and most of the 

remaining council datasets comprised few sites or did not meet the sampling frequency and duration 

criteria we applied. 
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As noted in Section 1, we used attributes for rivers that have been incorporated in the NPS-FM to 

provide context to the water quality state analyses. Attribute states or bands are identified for three 

of the nine variables used in the current report: NO3N, NH4N and ECOLI. The NPS-FM attributes for 

rivers include two forms of nitrogen, NO3N and NH4N, but these attributes are based on nitrate and 

ammonia toxicity, rather than their potential to stimulate periphyton and macrophyte growth. 

However, the NPS-FM does have an attribute based on periphyton, which indirectly requires nitrogen 

and phosphorus management to prevent excessive growth. NO3N and NH4N concentrations 

associated with toxic effects are generally much higher than concentrations associated with 

proliferations of periphyton and macrophytes. 

The attribute bands for NO3N and NH4N are defined in terms of annual median and annual 

maximum values. The bands for ECOLI were updated in the 2017 amendments to the NPS-FM to 

include five bands for each of four statistics: median, 95th percentile, and the proportion of samples 

exceeding 260 cfu 100 ml-1 or 540 cfu 100 ml-1 respectively, expressed as a percent (Ministry for the 

Environment 2017). 

2.2 Data acquisition 

River water-quality monitoring data have been acquired periodically from regional councils and 

NIWA for recent national scale analyses for MfE (Ballantine et al. 2010, Unwin and Larned 2013, 

Larned et al. 2015). For each successive analysis, data were used to update a database comprising 

site information, sampling dates and measurements of a wide range of monitoring variables. The 

database also contains metadata (e.g., methods, alternative variable labels, analytical detection 

limits). Until the current project, these data were maintained in an MS Access database; we have 

now shifted to storing data in an RData file. 

We used three procedures to acquire updated data for the current report: interrogation of data 

servers operated by individual regional councils, Land Air Water Aotearoa (LAWA), and NIWA (for 

NRWQN data); requests to LAWA data managers for the most recent (2017) data; and direct requests 

to councils for data that were unavailable through data servers or LAWA. Regional council data 

servers (e.g., Hilltop and KiWIS servers) were interrogated using purpose-written R scripts to 

download water quality data for all available site × variable combinations. We used the data acquired 

through these three procedures to update the dataset used for the previous national-scale analysis 

(Larned et al. 2015). The data from each source required site-matching and verification, grid-

reference conversions, and other processing to resolve inconsistencies between the datasets, as 

described in the next section. 

2.3 Data processing 

River water-quality data were processed in several steps to ensure that the datasets acquired from 

different sources were internally consistent, that site information was complete and accurate, that 

consistent measurement procedures were used, and that the data were as error-free as possible.  

Step 1. Reporting conventions. The water-quality data received from councils and LAWA varied 

widely in reporting formats, reporting conventions for variable names, site identifiers, date and time 

formats, units of measurement, and other data structure elements. We first organised data from all 

sources into a single format. Then we applied a consistent set of reporting conventions. Common 

errors included mislabelled site-names, incorrect units and data transcription errors. We applied a 

flagging system developed in the previous project that attaches metadata to individual data points. 
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Flags include censored data (see Section 2-4), unit conversions, and values that were synthesised 

from other data (e.g., MCI). 

Step 2. Error correction and adjustment. We manually inspected the data to correct identifiable 

errors (e.g., transcription errors), and to rescale data where changes in units (e.g., from mg L-1 to g 

L-1) caused scale problems. We used time-series plots and quantile plots to identify and remove gross 

outliers for each variable. Where necessary, values were adjusted to ensure consistent units of 

measurement across all datasets. 

Step 3. Monitoring site spatial information. The following spatial data were associated with each river 

monitoring site: site name, location and regional council identifier (if available), NZMS260 grid 

reference (converted from NZTM as necessary), and NZReach number. NZReaches are unique river 

network section identifiers stored in the River Environment Classification (REC) geodatabase (Snelder 

et al. 2010). Sites were mapped to reveal and correct georeferencing errors. To provide a measure of 

national consistency, we used the NRWQN data when an NRWQN site coincided with a regional 

council river monitoring site. 

In addition to the site-specific spatial data listed above, the catchment upstream of each monitoring 

site was delineated using the digital network in the REC. Each catchment is linked to a wide range of 

spatial data in the REC. For the current report, the following spatial data were extracted for each site: 

land cover data from the Land Cover Database Version 4.1 (LCDB4)1 and the categorical REC classes. 

The LCDB4 comprises proportional cover of 33 land-cover classes, generated from satellite imagery 

collected in summer 2012-13). The REC classes are composed of multiple hierarchical levels, each 

corresponding to a factor that influences river environmental conditions (Snelder and Biggs 2002). In 

the current study, we grouped river monitoring sites into REC land-cover classes and pooled across 

the three higher hierarchical levels (climate, topography and geology). This approach results in 

substantial variation in water quality within land-cover classes, while ensuring that classes with 

relatively few monitoring sites have sufficient data for statistical analyses. In previous studies of New 

Zealand river water quality, REC land-cover classes were shown to account for a substantial level of 

variability in some water-quality variables (Larned et al. 2004, 2016). As in the previous studies, four 

land-cover classes were used: pastoral (P), exotic forest (EF), urban (U) and a natural (N) category 

that incorporates the indigenous forest, tussock, scrub and bare-land categories. Following the 

classification rules in Snelder and Biggs (2002), river sites were classified as exotic forest or natural if 

those categories accounted for the largest proportion of the upstream catchment area, unless 

pastoral land exceeded 25% of the catchment, in which case the segment was classified as pastoral, 

or where urban land exceeded 15% of the catchment, in which case the segment was classified as 

urban. 

Step 4. Comparable field and laboratory methods. The next data processing step was to assess 

methodological differences between data sources in the measurement of water quality variables. For 

most variables, two or more measurement procedures were represented in the datasets. We 

grouped data by procedure, then pooled data for which different procedures gave comparable 

results, based on assessments set out in Larned et al. (2016). Data measured using the less-common 

and non-comparable methods were eliminated. Table 2-2 lists the most common procedures used 

for each variable, and the procedures corresponding to data retained for analysis. 

                                                           
1 lris.scinfo.org.nz 
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The data produced by multiple procedures used to measure ECOLI, NO3N, CLAR, TURB and MCI were 

pooled, assuming that the different procedures gave comparable results. In contrast, some 

procedures used to measure TN and TP are unlikely to give comparable results. Most councils and 

the NRWQN use the alkaline persulfate digestion method and unfiltered water samples. A smaller 

group of councils uses a sulphuric acid digestion procedure to measure total Kjeldahl nitrogen (TKN) 

from which TN is calculated as TKN + NO3N. At least one council uses filtered samples for the data 

labelled TN and TP, although the results derived from filtered samples are more correctly labelled 

total dissolved nitrogen and total dissolved phosphorus. The alternative methods could generate 

substantial differences in reported TN and TP concentrations (Patton et al. 2003, Horowitz 2013). 

Therefore, only TN and TP measured by the persulfate digestion method with unfiltered samples 

were retained for analysis. 

At the completion of the data processing steps, our dataset comprised 1304 river monitoring sites, 

with values for some or all of the variables listed in Table 2-1. 

2.4 Note on censored values. 

For several water-quality variables, some true values are too low or too high to be measured with 

precision. For very low values of a variable, the minimum acceptable precision corresponds to the 

analytical ‟detection limit” for that variable; for very high values of a variable, the minimum 

acceptable precision corresponds to the ‟reporting limit” for that variable. Cases where values of 

variables are below the detection limit or above the reporting limit are often indicated by the data 

entries ‟<DL” and ‟>RL”, where DL and RL are the laboratory detection limit and reporting limit, 

respectively. In some cases, the censored values had been replaced (by the monitoring agency) with 

substituted values to facilitate statistical analyses. Common substituted values are 0.5 × detection 

limit and 1.1 × reporting limit. Water-quality datasets from New Zealand rivers often include DRP, TP 

and NH4N measurements that are below detection limits, and ECOLI and CLAR measurements that 

are above reporting limits. Although common, replacement of censored values with constant 

multiples of the detection and reporting limits can result in misleading results when statistical tests 

are subsequently applied to those data (Helsel 2012). 

In this study, different procedures were used to handle censored data in the state and trend 

analyses. The procedure used for state analyses is set out in Section 3.1.2, and the procedure used 

for trend analyses is set out in Section 3.2.3. 
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Table 2-2: Measurement procedures for water quality variables. MCI procedures are from Stark et al. 
(2001).   Where multiple measurement procedures existed, “Procedures retained” refers to data generated by 
a preferred procedures that were retained for analysis in this study. 

Variable Measurement procedure(s) Procedures retained 

ECOLI 
Colilert QuantiTray 2000 

Membrane filtration 

Both procedures (presumed to give 

comparable results) 

NO3N 

Ion chromatography, filtered samples 

Cadmium reduction, filtered samples 

Azo dye colourimetry, filtered samples 

All procedures (nitrite in cadmium-

reduction and Azo-dye measurements is 

presumed to be negligible in unpolluted 

water) 

NH4N 
Phenol/hypochlorite colorimetry, filtered 

samples 

Phenol/hypochlorite colorimetry, filtered 

samples 

TN 

Persulfate digestion, unfiltered samples 

Dissolved inorganic+organic nitrogen, 

filtered samples 

Kjeldahl digestion (TKN + NNN) 

Persulfate digestion, unfiltered samples 

TP 

Persulfate digestion, unfiltered samples 

Dissolved inorganic+organic phosphorus, 

filtered samples 

Persulfate digestion, unfiltered samples 

DRP 
Molybdenum blue colourimetry, filtered 

samples 

Molybdenum blue colourimetry, unfiltered 

samples 

CLAR 
Black-disk 

Horizontal clarity tube 

Both procedures (presumed to give 

comparable results) 

TURB Field or laboratory nephelometer 
Both procedures (presumed to give 

comparable results) 

MCI 
Collection procedures C1, C2, C3, C4 

Processing procedures P1, P2, P3 

All procedures (presumed to give 

comparable presence/absence data for 

calculating non-quantitative MCI scores 
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3 Analysis methods 

3.1 Water quality state analyses 

3.1.1 Time period for state analyses 

The statistical robustness with which water quality state may be determined depends on the 

variability in the measurements between sampling occasions and the number of observations. This is 

particularly important for sites that are close to a threshold associated with a water quality guideline 

or attribute state, because the confidence that the assessment of state is ‛correct’ (e.g., that the site 

has been correctly classified as either passing or failing a guideline) increases as the number of 

observations increase. As a general rule, the increase in the confidence with which estimates of 

population statistics may be determined slow for sample sizes greater than 30 (i.e., there are 

diminishing returns on increasing sample size with respect to confidence above this sample number; 

McBride, 2005). 

In this study, a period of five years represented a reasonable trade-off for most of the targets 

because it yielded a sample size that was 30 or more for many sites and variable combinations (i.e., 

five years of monthly observations, where observations that are counted for some variables are for 

flows below the 50th percentile). The five-year period for the state analyses is consistent with the 

2009-2013 period used in the previous national water-quality state analyses (Larned et al. 2015). 

Because water quality data tends to be seasonal, it is also important that each season is well-

represented over the period of record. In New Zealand, it is common to sample either monthly or 

quarterly, and in these cases, seasons are defined by months or quarters. We therefore applied a rule 

that restricted site × variable combinations in the state analyses to those with measurements for at 

least 90% of the sampling intervals in that period (at least 63 of 70 months or 18 of 20 quarters). Site 

× variable combinations that did not comply with these rules were excluded from the state analysis. 

3.1.2 Censored values in state analyses 

Censored values were replaced by imputation for the purposes of calculating the state statistics. Left 

censored values (values below the detection limit(s)) were replaced with imputed values generated 

using ROS (Regression on Order Statistics; Helsel, 2012), following the procedure described in Larned 

et al. (2015). The ROS procedure produces estimated values for the censored data that are consistent 

with the distribution of the uncensored values, and it can accommodate multiple censoring limits. 

Censored values above the detection limit were replaced with values estimated using a procedure 

based on ‟survival analysis” (Helsel, 2012). A parametric distribution is fitted to the uncensored 

observations and then values for the censored observations are estimated by randomly sampling 

values larger than the censored values from the distribution. The survival analysis requires a minimum 

number of observations for the distribution to be fitted; hence where fewer than 24 total observations 

existed, censored values above the detection limit were replaced with 1.1 times the detection limit. 

3.1.3 Calculation of percentiles 

For each river site and variable, we characterised the current state using percentiles (5th, 20th, 25th, 

50th, 75th, 80th, 95th) derived from the distribution of measured values for the period 2013 to 2017 

(inclusive), with the exception of MCI, where we used the time period 1 July 2012 – 30 June 2017 (to 
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prevent splitting summer samples into two calendar years). All percentiles were calculated using the 

Hazen method.2  

3.1.4 Relationships between water quality state and catchment land cover 

We used linear regressions to relate water-quality state to proportions of high-intensity agricultural 

land cover in the catchments upstream of the monitoring sites. The proportion of high-intensity 

agricultural land cover was defined as the sum of proportional land cover in three LCDB4 classes 

(high-producing exotic grassland, short-rotation crops, and orchards and vineyards). The same 

composite classification for high-intensity agricultural land cover was used in previous national-scale 

water-quality analyses (McDowell et al. 2013, Larned et al. 2016). In addition to high-intensity 

agricultural land cover, we considered urban and natural land cover as predictor variables. However, 

examination of land cover data indicated that the range of urban land cover represented by the sites 

in our dataset was inadequate (> 90% of sites had < 10% urban cover), and natural land cover was 

strongly negatively correlated with high-intensity agricultural land cover (r = -0.68, n = 1304). All 

variable values were log-transformed to improve the normality of residuals.  

3.2 Water quality trend analyses 

3.2.1 Sampling dates, seasons and time periods for analysis 

Separate trend analyses were carried out for each water quality variable × site combination that met 

the inclusion rules set out below, for three different time periods:10, 20 and 28 years. With the 

exception of MCI, each of the time periods ended in late December 2017. For MCI, we used the time 

period 1 July 2012 – 30 June 2017, in order to capture complete summer sampling seasons. 

The processed dataset had a range of start and end dates, a range of sampling frequencies, and 

different numbers of missing values. Site inclusion rules (i.e., filtering rules) were used to ensure that 

for each variable, data for each site would enable robust trend assessment. We used the filtering 

rules suggested by Helsel and Hirsch (1992), which restricted trend assessment in a given time period 

only to those site and variable combinations where measurements were available for at least 90% of 

the years and at least 90% of seasons. 

For assessments of trends in water quality variables other than MCI, we used seasons defined by 

months preferentially, and quarters when there were insufficient monthly observations. The trend 

analysis procedure accounted for seasonal variability in these monthly and quarterly data. 

Macroinvertebrates are generally sampled annually at SoE monitoring sites, so these data do not 

represent seasonal variability. For some sites and variables, more than one sample within some 

seasons exist, and for some sites, MCI scores were available for more than one invertebrate sample 

within some years. In these cases, we used the median of the values for the season (or the year for 

the invertebrate samples) to ensure consistent statistical power across sites. We note that when 

more than one sample in a season exist, all samples can be used in a trend analysis, increasing 

statistical power and potentially providing different results. However, because our analyses are used 

to make regional comparisons and to contribute to spatial models, we elected to ensure that the 

site-specific analyses had consistent statistical power. 

                                                           
2 (http://www.mfe.govt.nz/publications/water/microbiological-quality-jun03/hazen-calculator.html) Note that there are many possible 
ways to calculate percentiles. The Hazen method produces middle-of-the-road results, whereas the method used in Excel does not 
(McBride 2005, chapter 8). 

http://www.mfe.govt.nz/publications/water/microbiological-quality-jun03/hazen-calculator.html
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3.2.2 Analyses of site-specific trends 

Trend magnitude and confidence in trend direction 

The statistical analyses of water quality trends were performed using the LWP-Trends library, which 

comprises functions coded in the R statistical programming language. Statistical trend analysis 

involves the evaluation of (1) the magnitude of the trend and (2) the confidence in the trend 

direction. 

Trend magnitude was characterised by the Sen slope estimator (SSE; Hirsch et al. 1982). The SSE is 

the slope parameter of a nonparametric regression, which is calculated as the median of all possible 

inter-observation slopes (i.e., the difference in the measured observations divided by the time 

between sample dates; Figure 3-1). 

 

Figure 3-1: Pictogram of the steps taken in the trend analysis to calculate the Sen slope.   which is used to 
characterise trend magnitude in the time-series of data for each site × variable combination. 

 

The seasonal version of the SSE is used in situations where there are significant (p ≤ 0.05, as 

evaluated using a Kruskall Wallis test) differences in water quality measurements between ‛seasons’. 

As noted above, seasons are defined primarily by sampling intervals, which were monthly or 

quarterly for all variables except MCI. The seasonal Sen slope estimator (SSSE) is the median of all 

inter-observation slopes within each season. Trend magnitudes for the variables measure at monthly 

or quarterly intervals that demonstrated significant seasonality were estimated with SSSE, and trend 

magnitudes in annual MCI scores and all other site × variable combinations were analysed with SSE. 

The Kendall test S and p-values are used by the LWP-Trends library to establish confidence in the 

trend direction (rather than using the Sen slope and its confidence intervals as used by Larned et al. 
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2015; the reasons are related to treatment of censored values and discussed in the following 

section). The Kendall test measures the rank correlation, which is a nonparametric correlation 

coefficient measuring the monotonic association between two variables, x and y. In water quality 

trend analysis, y is a sample of water quality measurements and x is the corresponding sample dates. 

Traditionally, the Kendall test is used to determine whether trends are statistically ‟significant” or 

‟insignificant” (see Figure 3-2). 

 

 

Figure 3-2: Pictogram of the steps taken in the trend analysis to calculate the Kendal S statistic and its p-
value, which are used to characterise confidence in trend directions.    

  

In the LWP-Trends library and in the current report, confidence in the direction of each trend was 

evaluated by interpreting the Kendall p-value as a probability that the trend was decreasing as 

follows: 

𝑃(𝑆 < 0) = 1 − 0.5 × 𝑝𝑣𝑎𝑙𝑢𝑒 

𝑃(𝑆 > 0) = 0.5 × 𝑝𝑣𝑎𝑙𝑢𝑒, 

where 𝑝𝑣𝑎𝑙𝑢𝑒 is the p-value returned by Kendall test (either seasonal or non-seasonal), S is the S 

statistic returned by Kendall test (either seasonal or non-seasonal) and P is the probability that the 

trend was decreasing. The trend direction is interpreted as decreasing when P > 0.5 and increasing 
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when P < 0.5. Note that if data are seasonal (i.e., Kruskall Wallis test P ≤ 0.05), a seasonal version of 

the Kendall test is used to evaluate the 𝑝𝑣𝑎𝑙𝑢𝑒 and P. 

The trend direction is established with a 95% level of confidence if the probability associated with S < 

0 (i.e., a decreasing trend) is ≥ 95%, or the probability associated with S > 0 (i.e., an increasing trend) 

s ≤ 5%. In both, these cases the trend is categorised as ‛established with confidence’ and when the 

probability the trend is decreasing is between the 90% confidence limits (i.e., is ≥5% and ≤95%), the 

trend is categorised as ‛indeterminant’. 

3.2.3 Handling censored values  

Censored values in the data used to calculate Kendall’s S and its p-value were robustly handled in the 

manner recommended by Hesel (2005, 2012). Briefly, for left-censored data (i.e., those data reported 

as less than a limit of detection), increases and decreases in a water quality variable were identified 

whenever possible. Thus, a change from a censored data entry of <1 to a measured value of 10 was 

considered an increase. A change from a censored data entry of <1 to a measured value 0.5 was 

considered a tie, as was a change from <1 to a <5, because neither can definitively be called an 

increase or decrease. Similar logic applied to right censored values. The information about ties was 

used in the calculation of the Kendall S statistic and its variance following Helsel (2012) and this 

provided for a robust calculation of the p-value associated with the Kendall test. 

Note that as the proportion of censored values increases, the proportion of ties increases and 

confidence in the trend direction decreases. Therefore, the trend associated with site × variable 

combinations with high proportions of censored observations tend to be categorised as 

indeterminant. 

The inter-observation slope cannot be definitively calculated between any combination of 

observations in which either one or both are censored. Therefore, when SSE and SSSE (i.e., Sen 

slopes) are calculated by the LWP-Trends library, the censored data entries are replaced by their 

corresponding raw values (i.e., the numeric component of a censored data entry) multiplied by a 

factor (0.5 for left-censored and 1.1 for right-censored values). This ensures that any measured value 

that is equal to a raw value is treated as being larger than the censored value if it is left-censored 

value and smaller than the censored value if it is right-censored. The inter-observation slopes 

associated with the censored values are therefore imprecise (because they are calculated from the 

replacements). However, because the Sen slope is the median of all the inter-observation slopes, the 

Sen slope is unaffected by censoring when a small proportion of observations are censored. As the 

proportion of censored values increase, the probability that the Sen slope is affected by censoring 

increases. 

Helsel (2005) estimated that the impact of censored values on the Sen slope is negligible when fewer 

than 15% of the values are censored. However, this is a rule of thumb and is not always true. 

Depending on the arrangement of the data, a small proportion of censored values (e.g., 15% or less) 

could affect the computation of a Sen slope (Helsel 2012). To provide information about the 

robustness of the SSE and SSSE values, the supplementary output for every trend analysis includes 

the proportion of observations that were censored and whether the Sen slope (i.e., the median of all 

inter-observation slopes) was calculated from data containing censored observations. The estimate 

of the magnitudes decreases in reliability (i.e., the SSE and SSSE values), and confidence intervals of 

individual site trends increase in width as the proportion of censored values increases. In addition, 

when there are censored values, greater confidence should be placed in the statistics returned by the 

Kendall tests (including the trend direction and the probability the trend was decreasing). 
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3.2.4 Differences in trend analysis methods from previous reports 

The general approach to trend analyses in this study is consistent with the approach used in the most 

recent national-scale water-quality trend analyses (Larned et al. 2015, 2016). The current and 

previous studies all assessed monotonic changes in the central tendencies of water quality values 

through time and used the Sen slope estimator to characterise the magnitude of these changes. The 

current and previous studies also used evaluations of the confidence in the trend direction in lieu of 

statistical significance tests; this advancement distinguishes the studies by Larned et al. (2015, 2016) 

and the current study from earlier national-scale trend analyses (e.g., Ballantine et al. 2010). 

However, some steps in the trend analysis procedures used in the current study differ from all of the 

previous studies; most of these differences arise from improved methods for handling censored 

values. 

In the studies by Larned et al. (2015, 2016), confidence in trend directions were evaluated using the 

Sen slope confidence intervals. If the symmetric confidence intervals around a Sen slope did not 

contain zero, the trend direction was considered to be established with confidence and the trend 

was classified as positive or negative. If the symmetric confidence intervals did contain zero, it was 

concluded that there were insufficient data to determine the trend direction at the nominated level 

of confidence, and the trend direction was classified as ‛indeterminant’. Note that if two symmetric, 

one-sided 90% confidence intervals do not contain zero, the trend direction is established with 95% 

confidence, as explained in Larned et al. (2015) and McBride (in review). For the same reason, the 

analysis used in the current study categorises a trend as ‛established with confidence’ at 95% 

confidence when the probability that the trend is decreasing or increasing is ≤5% or ≥95% 

respectively, and as ‛indeterminant’ when the probability lies between these thresholds that define 

90% (not 95%) confidence limits. 

We recently identified a problem with the use of Sen slopes and their confidence intervals to make 

inferences about trend directions. and specifically, the treatment of censored values in confidence 

intervals. The problem concerns the effects of censored values on the accuracy of Sen slope 

estimates (as discussed above) and confidence intervals. Analytically the difference between a pair of 

censored values is not measurable and must be treated as zero, which is referred to as a ‛tie’. 

Similarly, the difference between a measured value that is less than the numeric component of a 

censored value and that censored value is not measurable3, and is also considered a tie. Replacement 

of censored values with imputed values can affect the identification of tied values, which reduces the 

robustness of the calculations of the confidence interval. While the imputation of censored values by 

Larned et al. (2015) was not strictly correct, the rule in that study that restricted site × variable 

combinations to those with < 15% censored values ensured that imputation per se had minimal 

effects on estimates of trend magnitude or confidence intervals. 

The approach used with censored values in the current study has two advantages compared with the 

previous studies. First, evaluations of confidence in trend directions for individual sites are more 

reliable, irrespective of the proportion of censored observations. In turn, the methods used to 

aggregate site trends are robust, because these procedures are based on levels of the confidence in 

the trend directions at individual sites (discussed in detail in Section 3.2.6). Second, censored values 

can represent a large proportion of observations for some variables (e.g., DRP, NH4N). The 

procedures used in the current study reduced the need to exclude site × variable combinations based 

on the proportion of censored observations (i.e., sites with >15% censored values were not excluded 

                                                           
3 An example of the numeric component of a censored value is the figure 0.05 in the data entry ‟< 0.05 mg L-1”. 
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as in previous studies). This had the advantage of preserving a larger number of sites in each analysis 

and maximising spatial coverage. We did exclude some site × variable combinations that had < 5 non-

censored values and/or < 3 unique non-censored values, because these cases included so many ties 

that there was insufficient information to calculate Sen slopes and confidence intervals. 

3.2.5 Flow-adjustment procedures 

Flow rate at the time that a river water quality measurement is made can affect the observed values 

for some water quality variables because values may decrease systematically with increasing flow 

(e.g., dilution effects on contaminant concentrations), or increase with increasing flow (e.g., wash-off 

effects on contaminant concentrations) (Smith et al. 1996). Different mechanisms may dominate at 

different sites so that the same water quality variable can exhibit positive or negative relationships 

with flow (Snelder et al. 2018). 

Adjusting water quality observations to account for the effect of flow (hereafter flow adjustment) or 

any other covariate decreases variability and increases statistical power (i.e., increases the likelihood 

of detecting a trend with certainty; Helsel and Hirsch, 1992). In addition, a trend in a water-quality 

variable may arise because there is a relationship between time and flow on the sample occasions 

(i.e., a trend in the flow on sample occasions such as increasing or decreasing flow with time). Flow 

adjustment may change the direction and/or magnitude of a trend in a water-quality variable. 

Previous studies have provided trend analyses based on both flow adjusted and raw data (e.g., 

Ballantine et al. 2010; Larned et al. 2015).  

Flow adjustment requires that water quality observations are associated with the flow at the time of 

sampling. In this study, flow estimates for each monitoring site and date were based on measured or 

modelled daily average flow. For monitoring sites with flow recorders on the same reach, daily 

average flows were calculated from measured flow. However, most river monitoring sites iar not on 

a reach with a flow recorder, and daily average flows for these sites were estimated by hydrological 

modelling. We used predicted flows from the TopNet hydrological model, corrected using flow-

duration curves, which were in turn estimated with random forest models (Booker and Snelder 2012; 

Booker and Woods 2014). TopNet is a spatially distributed time-stepping model that combines 

water-balance models with a kinematic wave channel-routing algorithm (McMillan et al. 2013). 

In this study we followed the recommendations of Snelder (2018) concerning flow adjustment of 

water quality variables. In particular, we did not rely on the automated flow adjustment procedure 

used by Larned et al. (2015), because unsupervised fitting of regression models to relationships 

between water quality observation relationships and flows can result in the selection of unreliable 

models. Instead, we inspected the models and used expert judgement to choose the most suitable 

model based on the homoscedasticity (constant variance) of the regression residuals and plausibility 

of the shape of the fitted model. We considered LOESS, GAM and log-log models. In this study, log-

log models were found to be the most appropriate for all site variable combinations for which there 

were detectable relationship between water column measures and flow; the LOESS and GAM 

methods generally produced implausible relationships due to their flexibility. When the relationship 

between flow and a water quality variable was poor, no flow adjustment was performed. Given the 

large number of site-variable combinations, we applied a general rule to define whether flow 

adjustment would be performed. Where the log-log relationship yielded an R2 value greater than 

20%, we flow adjusted the data. For poorer fits, we used the raw data (i.e., did not flow adjust). The 

R2 threshold was determined from visual examination of all flow-water-quality relationships and was 

selected as a threshold that provided a balance between reducing concentration variance due to the 
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covariate relationship, and the risk of selecting implausible models of the relationship between water 

column measures and flow. 

3.2.6 Aggregation of site trends 

Aggregating the water-quality trend results is intended to indicate recent water quality changes over 

a spatial domain of interest (e.g., environmental classes, regions, national). In the present study, we 

aggregated trend results using both trend magnitudes and trend directions.  

The distributions of trend magnitude across sites were characterised using box and whisker plots of 

the relative Sen slope estimates (RSSE) and relative seasonal Sen slope estimates (RSSSE). Sen slopes 

were relativised by dividing the SSE and SSSE values by the duration of the trend period to give 

estimates of temporal change in % yr-1. 

We used three different approaches for aggregating trend directions. For each approach, ‛improving 

trends’ corresponded to decreasing trends in nutrient and ECOLI concentrations and turbidity, and 

increasing trends in CLAR and MCI. Conversely, ‛degrading trends’ corresponded to increasing trends 

in nutrient and ECOLI concentrations and turbidity, and decreasing trends in CLAR and MCI.  

In the previous national-scale water-quality trend analyses, site-specific trends were aggregated by 

tabulating the numbers of sites in three trend-direction categories (i.e., improving, degrading, and 

indeterminant) for each variable and each domain (Larned et al. 2015). In the current study, we 

retained the previous approach for continuity, and added two new approaches. The methods for the 

new approaches are set out below. Detailed descriptions of these approaches and comparisons with 

the previous approach are provided by Snelder and Fraser (2018). 

The first new approach utilises the probability that the true trend was decreasing, which is derived 

from the Kendall test statistics (see Section 3.2.2). This probability facilitates a more nuanced 

inference rather than the ‛yes/no’ output corresponding to the trend-direction categories (i.e., 

increasing, decreasing, and indeterminant (McBride, in review). Confidence categories can be used to 

express the probability that a trend is improving (or its complement - degrading). Note that the 

conversion of the probability that a trend is decreasing to the probability it is improving (and its 

complement, degrading) depends on whether decreasing values represent improvement or 

degradation. 

The confidence categories used in this study were adopted from those recommended by the 

Intergovernmental Panel on Climate Change (IPCC; Stocker et al. 2014). The categories and 

corresponding probability ranges are in Figure 3-1. Note that confidence categories for degrading 

trends are the complement of the confidence categories for improving trends shown in Figure 3-1, 

i.e., an ‟exceptionally unlikely” degrading trend is the same as a ‟virtually certain” improving trend.  
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Table 3-1: Level of confidence categories used to convey the probability that water quality was 
improving.   The same confidence categories are used by the Intergovernmental Panel on Climate Change 
(Stocker, 2014). 

Categorical level of confidence Probability (%) 

Virtually certain 99–100 

Extremely likely 95–99 

Very likely 90–95 

Likely 67–90 

About as likely as not 33–67 

Unlikely 10–33 

Very unlikely 5–10 

Extremely unlikely 1–5 

Exceptionally unlikely 0–1 

 

The categorical levels of confidence in Figure 3-1 were used to aggregate the site-specific trends in 

each water quality variable. Each site trend was assigned a categorical level of confidence that the 

trend was improving according to its evaluated probability and the categories shown in Figure 3-1 

The categorical levels of confidence in Figure 3-1 were also used to map trends in each water quality 

variable at each qualifying site, and to aggregate the site-specific trends in each water quality 

variable at the national scale. We then calculated the proportion of sites in each confidence category 

for each variable and summarised the proportions in a colour coded bar chart. Similar graphs were 

not used to summarise results across REC land-cover classes because the proportion of improving 

trends (PIT) statistics described below is a simpler way to represent aggregated trends across 

multiple domains. 

The second approach also utilises the probability that the true trend was decreasing to provide a 

probabilistic estimate of the proportion of improving site-specific trends (PIT) within a spatial or 

environmental domain. For a given water-quality variable, the trends at multiple monitoring sites 

distributed across a domain of interest can be assumed to represent independent samples of the 

population of trends, for all sites within that domain. 

Let the sampled sites within this domain be indexed by s, so that 𝑠 ∈ {1, … , 𝑆} and let 𝐼 be a random 

Bernoulli distributed variable which takes the value 1 with probability 𝑝 and the value 0 with 

probability 𝑞 = 1 − 𝑝. Therefore, 𝐼𝑠 = 1 denotes an improving trend at site 𝑠 ∈ {1, … , 𝑆} when the 

estimated 𝑝𝑠 ≥ 0.5 and a degrading trend as 0 when 𝑝𝑠 < 0.5. Then, the estimated proportion of 

sites with improving trends in the domain is: 

𝑃𝐼𝑇 = ∑ 𝐼𝑠/𝑆
𝑠=𝑆

𝑠=1
 

Because the variance of a random Bernoulli distributed variable is 𝑉𝑎𝑟(𝐼) = 𝑝(1 − 𝑝), and assuming 

the site trends are independent, the estimated variance of PIT is: 

𝑉𝑎𝑟(𝑃𝐼𝑇) =
1

𝑆2
∑ 𝑉𝑎𝑟(𝐼𝑠) =

1

𝑆2
∑ 𝑝𝑠(1 − 𝑝𝑠)

𝑠=𝑆

𝑠=1

𝑠=𝑆

𝑠=1
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PIT and its variance represent an estimate of the population proportion of improving trends, within a 

spatial or environmental domain, and the uncertainty of that estimate. It is noted that the proportion 

of degrading trends is the complement of the result (i.e., 1 - PIT). The estimated variance of PIT can 

be used to construct 95% confidence intervals4 around the PIT statistics as follows: 

𝐶𝐼95 = 𝑃𝐼𝑇 ±  1.96 × √𝑉𝑎𝑟(𝑃𝐼𝑇) 

We calculated PIT and its confidence interval for all water quality variables and for domains of 

interest defined by the entire country, and by the four REC land-cover classes defined in Section 2.3, 

exotic forest, natural, pastoral, and urban. 

 

                                                           
4 Note that +/- 1.96 are approximately the 2.5th and 97.5th percentile of a standard normal distribution. 
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4 Results – river state 
Between 587 and 887 river monitoring sites met the filtering rules for the state analysis of nutrients, 

ECOLI, CLAR and MCI; the number of qualifying sites varied by water quality variable and by REC land 

cover class (Table 4-1). The geographic distribution of sites is shown in Figure 4-1. The sites are 

reasonably well-distributed, although there are gaps in the central North and central South Islands. 

The complete set of state analysis results is provided in the supplementary file 

‟StateResultsWaterQuality_2013-2017_INCLUSIVE_27_Nov18.csv”. 

The distributions of site-median values of the nine water quality variables for the 2013-2017 period 

are summarized as box-and-whisker plots, with sites grouped by REC for the land cover (Figure 4-2). 

The plots in Figure 4-2 indicate that water quality state (i.e., site medians for nutrients, ECOLI, MCI 

and CLAR) was highly variable, with some of the variation explained by the land cover classes. Sites in 

the different land cover classes had different water quality characteristics, both in terms of their 

central tendencies (indicated by the median of the median site values) and their variation (indicated 

by the boxes and whiskers in Figure 4-2). For example, median TN was highest and least variable in 

the urban class. The lowest land-cover class median for TN and with large variability occurred in the 

natural class. Median concentrations of all nutrients and ECOLI were lowest and CLAR and MCI 

highest in the natural class. In contrast, nutrient and ECOLI concentrations were highest in the urban 

class, closely followed by the pasture class.  

The distribution of ECOLI concentration percentiles (5th, 20th, 50th, 80th and 95th) are shown in 

Figure 4-3, and the distribution of the ECOLI exceedance measures, G260 and G540 (the percentage 

of observations that exceeded 260 and 540 cfu 100 ml-1, respectively) are shown in Figure 4-4.The 

site median of each ECOLI concentration percentile varied across REC land cover classes in the same 

order (from highest to lowest): urban, pastoral, exotic forest, natural (Fig. 4-3). The medians of site 

G260 and G540 values also varied across land-cover classes in the same order (from highest to 

lowest): urban, pastoral, exotic forest, natural (Fig. 4-4). 

Table 4-1: Number of river monitoring sites by REC land cover class and water quality variable that were 
included in the state analyses of nutrients, ECOLI, CLAR, TURB and MCI. The site numbers shown refer to sites 
where less than 50% of the values for a variable were censored, and ≥ 30 values were available, distributed 
over at least four of the five years from 2013 to 2017. 

Variable Total Exotic Forest Natural Pasture Urban 

CLAR 587 23 167 380 17 

DRP 877 31 206 578 62 

ECOLI 866 31 205 568 62 

MCI 832 29 266 494 43 

NH4N 882 31 207 582 62 

NO3N 855 30 204 560 61 

TN 764 19 180 521 44 

TP 740 19 166 511 44 

TURB 878 31 207 580 60 
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Figure 4-1: River water quality monitoring sites used for state analyses of nutrients, ECOLI, CLAR, TURB 

and MCI.  
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Figure 4-2: River water quality state in REC land cover classes.  Box-and-whisker plots show the 
distributions of monitoring site medians within land cover classes. For y-axes units of measure refer to Table 
2-1. Black horizontal line in each box indicates the median of site medians, box indicates the inter-quartile 
range, whiskers indicate the 5th and 95th percentiles, and closed circles indicate outliers. Note log-scale on Y-
axes. 
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Figure 4-3: ECOLI concentrations in REC land cover classes. Box-and-whisker plots show the distributions of 
monitoring site percentiles within land cover classes. Black horizontal line in each box indicates the median of 
site percentiles, box indicates the inter-quartile range, whiskers indicate the 5th and 95th percentiles, and open 
circles indicate outliers. Note log-scale on Y-axes. 

 

 

Figure 4-4: ECOLI percent exceedance in REC land cover classes. Box-and-whisker plots show the 
distributions of percentage exceedance over 540 cfu 100 ml-1 (G540) and 260 cfu 100 ml-1 (G260) at river 
monitoring sites within land cover classes. Black horizontal line in each box indicates the median of percent 
exceedances, box indicates the inter-quartile range, whiskers indicate the 5th and 95th percentiles, and open 
circles indicate outliers.   
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As noted in Section 2.1, the NPS-FM includes attribute bands for NO3N, NH4N and ECOLI. The NO3N 

attribute has four numeric attribute states (or bands A-D) for annual median and annual 95th 

percentile values. The C/D band boundaries correspond to national bottom-lines for the annual 

median (6.9 mg N L-1) and annual 95th percentile (9.8 mg N L-1). 

The NH4N attribute has numeric attribute states for annual median and annual maximum values, 

which apply to NH4N concentrations adjusted to pH 8. The national bottom-lines for pH-adjusted 

NH4N are 1.30 mg N L-1 for the median and 2.20 mg N L-1 for the maximum. To compare NH4N 

concentrations at monitoring sites to the NPS-FM bottom-line, we adjusted the measured NH4N 

concentrations to pH 8 using the conversion ratios in the Draft Guide to Attributes in the NPS-FM5. 

The adjustments were limited to monitoring site–date combinations where both pH and NH4N were 

measured. 

Approximately 1% of sites in the pastoral land cover class exceeded the NO3N annual median bottom 

line for toxicity and four of those sites also exceeded the 95th percentile bottom line (Table 4-2). No 

sites in the other land use classes exceeded NO3N bottom lines. Less than 1% of sites in the pastoral 

land cover class exceeded the pH-adjusted NH4N median bottom line, and 1.7% of pastoral sites and 

1.7% of urban sites exceeded the pH-adjusted NH4N maximum bottom line (Table 4-2). No sites in 

the other land use classes exceeded NH4N bottom lines. 

Table 4-2: Number and proportions of river monitoring sites that exceeded the national bottom-lines for 

the NPS-FM NO3N and NH4N toxicity attributes. 

NO3N 

Land-cover class Sites 
Sites exceeding median (% 

sites) 
Sites exceeding 95th 
percentile (% sites) 

Exotic forest 30 0 0 

Natural 206 0 0 

Pastoral 567 6 (1%) 4 (0.7%) 

Urban 61 0 0 

NH4N 

Land-cover class  
Sites exceeding median (% 

sites) 
Sites exceeding maximum 

(% sites) 

Exotic forest 28 0 0 

Natural 160 0 0 

Pastoral 532 2 (0.4%) 9 (1.7%) 

Urban 58 0 1 (1.7%) 

 

 

 

 

 

 

 

                                                           
5 (http://www.mfe.govt.nz/publications/fresh-water/draft-guide-attributes-appendix-2-national-policystatement-
freshwater). 
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The attribute states or ‛bands’ for ECOLI have been updated in the 2017 amendments to the NPS-FM 

to include five states (designated A, B, C, D and E) that are based on four statistics: median, 95th 

percentile, percent of samples exceeding 260 cfu 100 ml-1, and percent of samples exceeding 540 cfu 

100 ml-1. Each statistic has a numeric attribute state that corresponds to each band. The ECOLI 

attribute states were only determined at sites with ≥ 60 samples in the 2013-2017 period, as per 

Footnote 1 in the Escherichia coli attribute table in the 2017 NPS-FM. We assigned each of these sites 

to an ECOLI attribute state according to the rule in Footnote 2 of the attribute table, ‟Attribute state 

must be determined by satisfying all numeric attributes states”. 

The distribution of river monitoring sites across the ECOLI attribute states within each land cover 

class is shown in Table 4-3. A total of 375 monitoring sites had ≥ 60 sampling dates in the 2013-2017 

period. Of those sites, the majority in the natural and exotic forest land-cover classes were in the A 

attribute state, although the exotic forest class was limited to 14 sites. Most of the sites in the 

pastoral land-cover class were in the D and E attribute states, and most of the sites in the urban land-

cover class were in the E attribute state. 

Table 4-3: River monitoring sites in the ECOLI attribute states specified in the NPS-FM.   Values are 
numbers of river monitoring sites, and proportions of sites within each attribute state in parentheses). 

Attribute State 
Land-cover class 

Total 
Exotic forest  Natural  Pastoral Urban 

A 7 (8.9%) 54 (68.4%) 18 (22.8%) 0 (0%) 79 

B 3 (7.3%) 12 (29.3%) 25 (61%) 1 (2.4%) 41 

C 0 (0%) 1 (16.7%) 5 (83.3%) 0 (0%) 6 

D 3 (2.6%) 14 (12.3%) 92 (80.7%) 5 (4.4%) 114 

E 1 (0.7%) 3 (2.2%) 94 (69.6%) 37 (27.4%) 135 

 

 

The regression results indicated that the concentrations of each nutrient and ECOLI increased, and 

MCI scores and visual clarity decreased, with increasing proportions of high-intensity agricultural 

land cover in the upstream catchment (Figure 4-5). Agricultural land cover explained 8%–47% of the 

variation in log-transformed water-quality variables; these relationships were strongest for median 

TN, NO3N, TP and ECOLI concentrations and MCI scores. 
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Figure 4-5: Relationships between median water-quality state and proportion of a catchment under high-
intensity agricultural land cover in the catchments above monitoring sites in the state data set.  Solid lines 
indicate least squares linear regression models. 
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5 Results – river trends 

5.1 Ten-year trends (2008-2017) 

Between 457 and 791 river monitoring sites met the filtering rules for the 10-year trend analysis of 

nutrients, ECOLI, TURB, MCI and CLAR (Table 5-1). The qualifying sites were reasonably well-

distributed geographically (Figure 5-1), with gaps in the central North and South islands and the West 

Coast. All site locations, land cover classes and numbers of sampling dates are included in the 

supplementary file ‟RiverTrends_AllPeriods_FlowAdjusted_27_Nov18.csv”. 

 

Figure 5-1.  River water quality monitoring sites used for 10 year trend analyses of nutrients, ECOLI, CLAR, 

TURB and MCI. 
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Table 5-1: Number of river monitoring sites by REC land cover class and water quality variable included in 
the 10-year trend analyses of nutrients, ECOLI, CLAR, TURB and MCI.  The site numbers shown refer to sites 
that met the site inclusion requirements in Section 3.2.1 (measurements were available for at least 90% of the 
years and at least 90% of seasons). 

Variable 
Number of sites 

Total Exotic Forest Natural Pasture Urban 

CLAR 457 24 131 291 11 

DRP 771 30 181 504 56 

ECOLI 753 31 186 480 56 

MCI 573 19 196 329 29 

NH4N 791 30 186 519 56 

NO3N 752 30 179 488 55 

TN 663 19 154 452 38 

TP 664 19 151 455 39 

TURB 718 28 172 467 51 

 

5.1.1 Trend magnitude 

Box and whisker plots were used to summarise the estimated trends for each of the water quality 

variables for the 10-year period from 2008 – 2017 across the four land cover classes (Figure 5-2). All 

estimated trends are included in these plots, irrespective of the confidence in direction (as defined in 

Section 3.2.2). These plots indicate that land cover classes did not account for a substantial amount 

of the variation in trends for any variable. This contrasts with the state analyses of river variables, 

where water-quality state clearly varied between land cover classes (Figures 4-2, 4-3 and 4-4). 

Median trend magnitudes were largest for CLAR, DRP, TP and TURB in the urban land-cover class; in 

each case the trend direction indicated improving conditions. 
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Figure 5-2. Summary of 10-year flow adjusted trends. Box-and-whisker plots show the distributions of site 
trends within REC land cover classes. Black horizontal line in each box indicates the median of site trends, box 
indicates the inter-quartile range, whiskers indicate the 5th and 95th percentiles, and open circles indicate 
outliers. 

 

5.1.2 Trend classification 

The numbers and proportions of 10-year trends in four categories are summarised in Table 5-2. A 

large proportion of the trends for each of the nine variables (54 to 88% of the site trends) were 

classified as ‟indeterminant”. Degrading, improving and indeterminant categories were used in the 

previous national-scale trend analysis, and the large proportions of indeterminant trends in the 

current study is consistent with the previous study (Larned et al. 2015). These results reflect the 

conservative approach used to infer trend directions - all cases where the 95% confidence intervals 

around the Sen slope include zero were categorised as indeterminant (Section 3.2.4). In addition, a 

small number of site × variable combinations (0-7%) were not analysed in the current study due to 
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very high proportions of censored values. For the remaining trends, the proportions of sites with 

improving trends in CLAR, NH4N, NO3N and TP were substantially larger than the proportion with 

degrading trends, and the proportions of sites with degrading trends in MCI was larger than the 

proportion with improving trends. However, the great majority of MCI trend (88%) were 

indeterminant. 

Some geographic patterns in 10-year trends are apparent in Figure 5-3. For example, the majority of 

degrading DRP trends and the majority of improving CLAR trends are in the North Island (although 

this pattern is influenced by the poor sampling distribution in the South Island). NO3N trends in 

Northland and Hawke’s Bay are dominated by improving trends. NH4N trends in the lower North 

Island and in Canterbury are dominated by improving trends. 

  

Table 5-2: Numbers and proportions of sites in four trend categories for 10-year, flow-adjusted trends.   
The ‟Not analysed” category corresponds to site × variable combinations that met the site inclusion 
requirements in Section 3.2.1 (measurements are available for at least 90% of the years and at least 90% of 
seasons), but did not meet the censored data requirements in Section 3.2.4 (i.e., there were < 5 non-censored 
values and/or < 3 unique non-censored values). The classification of the remaining site trends into degrading, 
improving and indeterminant categories follows the approach used in the previous national-scale river water 
quality trend analysis (Larned et al. 2015). 

Variable 
Trend category 

Not analysed 
Degrading Improving Indeterminant  

CLAR 29 (6%) 141 (31%) 287 (63%) 0 (0%) 

DRP 156 (20%) 180 (23%) 414 (54%) 21 (3%) 

ECOLI 104 (14%) 104 (14%) 540 (72%) 5 (1%) 

MCI 49 (9%) 21 (4%) 503 (88%) 0 (0%) 

NH4N 47 (6%) 218 (28%) 467 (59%) 59 (7%) 

NO3N 111 (15%) 190 (25%) 448 (60%) 3 (0%) 

TN 144 (22%) 129 (19%) 387 (58%) 3 (0%) 

TP 48 (7%) 201 (30%) 414 (62%) 1 (0%) 

TURB 122 (17%) 111 (15%) 485 (68%) 0 (0%) 
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Figure 5-3: Water quality monitoring sites classified by 10-year trends.  Derived using the three categories 
defined by Larned et al. (2015): degrading, improving, indeterminant. 
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5.1.3 Probability of improvement 

The levels of confidence listed in Table 3-3 were used to categorise the probability of an improving 

10-year, flow-adjusted trend in each site-variable combination. The spatial distributions of 

categorised individual sites are shown in Figure 5-4. Because probability of improvement is the 

complement of the probability of degradation, ‟unlikely” improvement, could also be categorised as 

‟likely” degradation. The maps indicate that for most water quality variables, those sites previously 

categorised as indeterminant (shown in Figure 5-3) were about equally divided into likely and 

unlikely to improve level-of-confidence categories (Figure 5-4). However, in the cases of NH4N and 

TP, most sites that were previously categorised as indeterminant were classed as likely to be 

improving (i.e., the sites were subsequently placed in the likely and very likely level-of-confidence 

categories. 
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Figure 5-4:  Water quality monitoring sites categorised by the probability that the 10-year trend in each 
variable is improving. Probability of improvement is expressed using the confidence categories in Table 3.1.  
Only sites that met the sampling requirements outlined in Sections 3.2.1 and 3.2.5 are shown in the figure.  
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5.1.4 Aggregate trends 

Figure 5-5 shows the proportions of sites for which 10-year, flow-adjusted trends indicated 

improvement at the nine categorical levels of confidence defined in Table 3-3. These plots provide 

national-scale assessments of the relative proportions of improving versus degrading sites, based on 

the relative amounts of green and red in each bar. 

The national-scale proportions of improving trends (PIT) and their confidence intervals are 

summarised in Table 5-3. The 10-year PIT statistics ranged from 45-72%. MCI had a majority (i.e., 

<50%) of degrading trends, at the 95% confidence level. Five of the variables had a majority of 

improving (i.e., >50%) trends, at the 95% confidence level (CLAR, DRP, NH4N, NO3N and TP). The 

remaining three variables had 95% confidence intervals for the PIT that included 50% (ECOLI, TN, 

TURB), and we cannot infer widespread degradation or improvement for these variables. 

The 10-year PIT statistics and 95% confidence intervals for each water-quality variable and land-cover 

class are shown in Figure 5-6. For five of the nine water quality variables (CLAR, DRP, NO3N, TN, 

TURB), the PIT statistic was highest (i.e., the greatest proportion of improving trends) in the urban 

land-cover class. In contrast, the PIT statistic was < 50% for ECOLI in the urban land-cover class. The 

PIT statistics also indicated that there were a majority of degrading trends in ECOLI, MCI, TN and 

TURB at sites in the natural land cover class. 

 

Figure 5-5:  Summary plot representing the proportion of sites with improving 10-year time-period trends 
at each categorical level of confidence.  The plot shows the proportion of sites with improving trends at levels 
of confidence defined in Table 3.1. 
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Table 5-3: Proportions of improving trends (PIT) for 10-year time period.  

Variable Number of sites PIT (%) 95% confidence interval for PIT (%) 

CLAR 457 65.1 62.2 - 68.0 

DRP 750 55 52.8 - 57.2 

ECOLI 748 52.1 49.6 - 54.6 

MCI 573 44.7 41.4 - 48.0 

NH4N 731 72.2 70.0 - 74.4 

NO3N 749 56.5 54.1 - 58.9 

TN 660 49.5 47.0 - 52.0 

TP 663 71.4 68.9 - 73.9 

TURB 718 50.1 47.6 - 52.6 

 

 

Figure 5-6:  Proportions of improving trends (PIT) within REC land-cover classes for 10-yeartrends.  Error 
bars are 95% confidence intervals. 

 



 

Water quality state and trends in New Zealand rivers  45 

 

5.2 Twenty-year trends (1998-2017) 

Between 79 and 332 river monitoring sites met the filtering rules for the 20-year trend analyses of 

nutrient and ECOLI concentrations, and for TURB, MCI and CLAR (Table 5-4). The qualifying sites were 

reasonably well-distributed geographically (Figure 5-7), with gaps in the central North and South 

Islands and the West Coast. Turbidity was very poorly samples (only 10 sites) and ECOLI was limited 

to only a small number of regions. Site locations, land cover classes and numbers of sampling dates 

are included in the supplementary file ‟RiverTrends_AllPeriods_FlowAdjusted_27_Nov18.csv ”. 
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Figure 5-7:  River water quality monitoring sites used for 20 year trend analyses of nutrients, ECOLI, CLAR, 

TURB and MCI.  
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Table 5-4: Number of river monitoring sites by land cover class and water quality variable that were 
included in the 20-year trend analyses of nutrients, ECOLI, CLAR and MCI. The site numbers shown refer to 
sites that met the site inclusion requirements in Section 3.2.1 (measurements are available for at least 90% of 
the years and at least 90% of seasons). 

Variable Total Exotic Forest Natural Pasture Urban 

CLAR 230 11 60 155 4 

DRP 331 14 71 231 15 

ECOLI 152 10 27 108 7 

MCI 332 4 119 200 9 

NH4N 316 13 71 218 14 

NO3N 309 13 68 214 14 

TN 162 4 51 100 7 

TP 307 13 70 210 14 

TURB 79 3 34 42 0 

 

5.2.1 Trend magnitude 

Distributions of trend magnitudes for each of the water-quality variables in four land-cover classes 

for the 20-year period from 1998 – 2017 are shown in Figure 5-8. All estimated trends are included in 

these plots, irrespective of their significance (as defined in Section 3.2.2). The plots indicate that, 

with some exceptions, land-cover classes did not account for a substantial amount of the variation in 

trend. This contrasts with the state analyses of river variables, where water-quality state clearly 

varied between land cover classes (Figures 4-2, 4-3 and 4-4). Exceptions included NH4N and TP in the 

urban land-cover class, for which the median magnitudes indicated reductions of over 2% per year, 

and TN and TURB in the exotic forest class, for which the median magnitudes indicated increases of 

approximately 2% per year. 
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Figure 5-8:  Summary of 20-year trends. Box-and-whisker plots show the distributions of site trends within 
land cover classes. Black horizontal line in each box indicates the median of site trends, box indicates the inter-
quartile range, whiskers indicate the 5th and 95th percentiles, and open circles indicate outliers.  

5.2.2 Trend classification 

The numbers and proportions of 20-year trends in four categories are summarised in Table 5-5. A 

moderate-to-large proportion of the trends for the nine variables (20 to 65% of the site trends) were 

classified as indeterminant. In addition, trends in DRP were not analysed for three sites due to very 

high proportions of censored values. For the remaining trends, the proportions of sites with 

improving trends in DRP, ECOLI, NH4N, and TP were substantially larger than the proportion with 

degrading trends, and the proportions of sites with degrading trends in MCI, NO3N, TN and TURB 

were larger than the proportions with improving trends.  

Some geographic patterns in 20-year trends are apparent in Figure 5-9. For example, the majority of 

degrading DRP trends and the majority of improving CLAR trends were in the central North Island 

(although this pattern is influenced by the poor sampling distribution in the South Island). NO3N 



 

Water quality state and trends in New Zealand rivers  49 

 

trends were primarily improving in Northland and Hawke’s Bay, and degrading in the central North 

Island, Canterbury and Southland. 

Table 5-5: Numbers and proportions of sites in four trend categories for 20-year trends. The classification 
of site trends into degrading, improving and indeterminant categories follows the approach used in the 
previous national-scale river water quality trend analysis (Larned et al. 2015). 

Variable 
Trend category 

Not analysed 
Degrading Improving Indeterminant  

CLAR 78 (34%) 61 (27%) 91 (40%) 0 (0%) 

DRP 67 (20%) 135 (41%) 126 (38%) 3 (1%) 

ECOLI 14 (9%) 53 (35%) 85 (56%) 0 (0%) 

MCI 70 (21%) 46 (14%) 216 (65%) 0 (0%) 

NH4N 27 (9%) 138 (44%) 133 (42%) 18 (6%) 

NO3N 141 (46%) 91 (29%) 77 (25%) 0 (0%) 

TN 66 (41%) 44 (27%) 52 (32%) 0 (0%) 

TP 26 (8%) 170 (55%) 111 (36%) 0 (0%) 

TURB 36 (46%) 13 (16%) 30 (38%) 0 (0%) 
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Figure 5-9: Water quality monitoring sites classified by 20-year trends.  The three categories defined 
according to Larned et al. (2015): degrading, improving, indeterminant. 
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5.2.3 Probability of improvement 

The distributions of probabilities that 20-year trends for each site × variable combination were 

improving are shown in Figure 5-10. The maps indicate that for many variables, there are 

approximately equal numbers of increasing and decreasing trend directions for those sites previously 

categorised as having insufficient data. The maps also indicate that for most water quality variables, 

those sites previously categorised as indeterminant (Figure 5-9) were about equally divided into likely 

and unlikely to improve confidence categories. However, in the cases of NH4N and TP, most sites 

that were previously categorised as indeterminant were dominated by improving trends. Conversely, 

MCI trends that were previously categorised as indeterminant were more likely to indicate degrading 

trends. 
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Figure 5-10:  Water quality monitoring sites categorised by the probability that the 20-year trend in each 
variable is improving.   
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5.2.4 Aggregate trends 

Figure 5-11 shows the proportions of sites for which 20-year, flow-adjusted trends indicated 

improvement at the nine categorical levels of confidence defined in Table 3-3. The national-scale 20-

year PIT statistics and their confidence intervals are summarised in Table 5-6. The 20-year PIT 

statistics ranged from 35-81%. Four variables had a majority of degrading trends at the 95% 

confidence level (MCI, TN, NO3N, and TURB). Four other variables had a majority of improving trends 

at the 95% confidence level (DRP ECOLI, NH4N, and TP). CLAR had 95% confidence intervals for PIT 

that included 50%, and we cannot infer widespread degradation or improvement in CLAR. 

The 20-year PIT statistics and 95% confidence intervals for each water-quality variable and land-cover 

class are shown in Figure 5-12. For four of the nine water-quality variables (CLAR, ECOLI, MCI, NO3N), 

the PIT statistic was highest in the urban land-cover class. In contrast, the PIT statistic was < 50% for 

DRP in the urban land-cover class. The PIT statistics also indicated a majority of degrading trends in 

CLAR, NO3N, TN and TURB in the exotic forest, in CLAR, MCI, NO3N and TN in the pastoral class, and 

in MCI and TURB in the natural class. 

 

Figure 5-11: Summary plot representing the proportion of sites with improving 20-year trends at each 
categorical level of confidence.   The plot shows the proportion of sites with improving trends at levels of 
confidence defined in Table 3.1. 
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Table 5-6: Proportions of improving trends (PIT) among 20-year trends.  

Variable No. of sites PIT (%) 95% confidence interval for PIT (%) 

CLAR 230 49.1 45.8 - 52.4 

DRP 328 64.3 61.8 - 66.8 

ECOLI 152 67.4 62.5 - 72.3 

MCI 332 35.4 31.9 - 38.9 

NH4N 298 78.2 75.7 - 80.7 

NO3N 309 41.3 38.9 - 43.7 

TN 162 45.1 41.8 - 48.4 

TP 307 81.3 78.4 - 84.2 

TURB 79 35.4 29.3 - 41.5 

 

 

Figure 5-12:  Proportions of improving trends by REC land-cover class for 20-year-trends.   Error bars 
are 95% confidence intervals. 
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5.3 Twenty-eight year trends (1990-2017) 

Between 16 and 122 river monitoring sites met the filtering rules for the 28-year trend analysis of 

nutrient and ECOLI concentrations, TURB, MCI and CLAR (Table 5-7). The qualifying sites were 

reasonably well-distributed geographically (Figure 5-13), with gaps in the central North and South 

islands and the West Coast. ECOLI was poorly represented, with only 16 sites. Sites in the exotic 

forest and urban land-cover classes were scarce for each variable (0-6 sites). Site locations, land 

cover classes and numbers of sampling dates are included in the supplementary file 

‟RiverTrends_AllPeriods_FlowAdjusted_27_Nov18.csv ”. 
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Figure 5-13:  River water quality monitoring sites used for 28-year trend analyses of nutrients, ECOLI, CLAR, 

TURB and MCI.  
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Table 5-7: Number of river monitoring sites by land cover class and water quality variable that were 
included in the 28-year trend analyses of nutrients, ECOLI, CLAR and MCI. The site numbers shown refer to 
sites that met the site inclusion requirements in Section 3.2.1. 

Variable Total Exotic Forest Natural Pasture Urban 

CLAR 78 3 34 41 0 

DRP 122 5 39 72 6 

ECOLI 16 2 0 13 1 

MCI 70 1 36 33 0 

NH4N 109 4 39 60 6 

NO3N 112 4 39 63 6 

TN 83 3 36 42 2 

TP 110 4 39 61 6 

TURB 77 3 34 40 0 

 

5.3.1 Trend magnitude 

Distributions of trend magnitudes for each of the water-quality variables for the 28-year period from 

1990 – 2017 in four land-cover classes are shown in Figure 5-14. The plots indicate that land cover 

classes did not account for a substantial amount of the variation in trends for most variables. The two 

land-cover classes represented by numerous sites for most variables, natural and pasture, had similar 

medians and quartile ranges, with the exception of NH4N, for which the median trend magnitude in 

the natural class indicated a reduction of over 2% per year. The median trend magnitudes for NH4N, 

NO3N and TP in the urban class also indicated reductions, but there were only six monitoring sites in 

the urban class.  
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Figure 5-14:  Summary of 28-year trends. Box-and-whisker plots show the distributions of site trends in REC 
land cover classes. Black horizontal line in each box indicates the median of site trends, box indicates the inter-
quartile range, whiskers indicate the 5th and 95th percentiles, and open circles indicate outliers. 

5.3.2 Trend classification 

The numbers and proportions of 28-year trend trends in four categories are summarised in Table 5-8. 

A moderate-to-large proportion of the trends for the nine variables (25 to 64% of the site trends) 

were classified as indeterminant. In addition, trends in NH4N were not analysed for three sites due to 

very high proportions of censored values. For the remaining trends, the proportions of sites with 

improving trends in CLAR, NH4N, and TP were substantially larger than the proportions with 

degrading trends, and the proportion of sites with degrading trends in TN and TURB were larger than 

the proportion with improving trends. The proportion of sites with improving trends in ECOLI was 

larger than the proportions with degrading trends, but the numbers of sites were very small (9 sites 

total). 
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Some geographic patterns in 28-year trends are apparent in Figure 5-15. For example, trends in CLAR 

and NH4N are predominately improving across the South Island. Qualifying sites for analyses of 

ECOLI trends were limited to the Gisborne District and two sites in the Bay of Plenty Region.  

Table 5-8: Numbers and proportions of sites in four trend categories for 28-year trends. The classification 
of site trends into degrading, improving and indeterminant categories follows the approach used in the 
previous national-scale river water quality trend analysis (Larned et al. 2015). 

Variable 
Trend category 

Not Analysed 
Degrading Improving Indeterminant  

CLAR 5 (6%) 52 (67%) 21 (27%) 0 (0%) 

DRP 33 (27%) 37 (30%) 52 (43%) 0 (0%) 

ECOLI 2 (12%) 7 (44%) 7 (44%) 0 (0%) 

MCI 13 (19%) 12 (17%) 45 (64%) 0 (0%) 

NH4N 6 (6%) 70 (64%) 30 (28%) 3 (3%) 

NO3N 49 (44%) 36 (32%) 27 (24%) 0 (0%) 

TN 44 (53%) 18 (22%) 21 (25%) 0 (0%) 

TP 21 (19%) 48 (44%) 41 (37%) 0 (0%) 

TURB 33 (43%) 11 (14%) 33 (43%) 0 (0%) 
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Figure 5-15: Water quality monitoring sites classified by 28-year trends.   The three categories used are 
according to Larned et al. (2015): degrading, improving, indeterminant. 
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5.3.3 Probability of improvement 

The probabilities that 28-year trends for each variable were improving are shown spatially in Figure 

5-16. The maps indicate that most of the trends in TN at South Island sites that were previously 

categorised as indeterminant (Figure 5-15), were categorised as degrading in Figure 5-16. Conversely, 

most of the trends in CLAR and NH4N on the North Island that were previously categorised as 

indeterminant (Figure 5-15), were classified as improving in Figure 5-16. Most of the trends in ECOLI 

(limited to sites the Bay of Plenty Region and Gisborne District) were also classified as improving in 

Figure 5-16. 
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Figure 5-16: Water-quality monitoring sites categorised by the probability that the 28-year trend in each 
variable is improving.  
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5.3.4 Aggregate trends 

Figure 5-17 shows the proportions of sites for which 28-year trends indicated improvement at the 

nine categorical levels of confidence defined in Table 3-3. The national-scale 28-year PIT statistics 

and their confidence intervals are summarised in Table 5-9. The 28-year PIT statistics ranged from 

32-86%. Two variables had a majority of degrading trends at the 95% confidence level (TN and 

TURB). Four other variables had a majority of improving trends at the 95% confidence level (CLAR, 

ECOLI, NH4N, TP). Three variables had 95% confidence intervals for PIT that included 50% (DRP, MCI, 

NO3N), and we cannot infer widespread degradation or improvement for these variables. 

Table 5-9: Proportions of improving trends (PIT) among 28-year trends.  

Variable No. of sites PIT (%) 95% confidence interval for PIT  

CLAR 78 79.5 74.4 - 84.6 

DRP 122 54.9 50.6 - 59.2 

ECOLI 16 68.8 53.7 - 83.9 

MCI 70 47.1 39.3 - 54.9 

NH4N 106 85.8 82.1 - 89.5 

NO3N 112 49.1 45.4 - 52.8 

TN 83 32.5 27.8 - 37.2 

TP 110 64.5 59.8 - 69.2 

TURB 77 35.1 28.8 - 41.4 

 

 

Figure 5-17:  Summary plot representing the proportion of sites with improving 28-year trends at each 
categorical level of confidence.  The plot shows the proportion of sites with improving trends at levels of 
confidence defined in Table 3.1.  
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Figure 5-18:  Proportions of improving trends by REC land-cover class for 28-year trends.  Error bars are 95% 
confidence intervals. 
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5.4 Comparisons of trend directions between 10-, 20- and 28-year periods 

The national scale PIT statistics for each water quality variable are shown in Table 5-10, which 

combines the results in Tables 5-3, 5-6 and 5-9. A comparison of the 10-, 20- and 20-year trends in 

this table reveal several changes in the balance of improving and degrading trends:  

1. a predominance of degrading 20-year trends in NO3N shifted to a predominance of 

improving 10-year trends;  

2. a predominance of degrading 20- and 28-year trends in TN shifted to roughly equal 

proportions of degrading and improving 10-year trends; and  

3. a predominance of improving 20- and 28-year trends in ECOLI shifted to roughly equal 

proportions of degrading and improving 10-year trends.  

In contrast to these changes between trend periods, the predominance of improving trends in NH4N 
and TP has persisted between all trend periods, and the predominance of degrading trends in MCI 
scores has persisted from the 20- to 10-year period. 

 

Table 5-10: National-scale PIT statistics. Values are estimated percentages of river sites with improving 
trends across New Zealand.   Blue font: majority of sites improving. Red font: majority of sites degrading. 
Green font: cannot infer improvement or degradation at most sites because the 95% confidence intervals for 
the PIT statistic included 50%. 

Variable 
10-year trend 

(2008-2017) 

20-year trend 

(1998-2017) 

28-year trend 

(1990-2017) 

CLAR 65.1 49.1 79.5 

DRP 55.0 64.3 54.9 

ECOLI 52.1 67.4 68.8 

MCI 44.7 35.4 47.1 

NH4N 72.2 78.2 85.8 

NO3N 56.5 41.3 49.1 

TN 49.5 45.1 32.5 

TP 71.4 81.3 64.5 

TURB 50.1 35.4 35.1 
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6 Discussion 
The primary purposes of the state and trend analyses reported here are 

▪ to provide MfE with information required for reporting on the freshwater domain; and  

▪ for supporting policy development.  

The detailed information for each river monitoring site is contained in the supplementary files that 

accompany this report. The sites and their water quality conditions can be aggregated in many ways 

to meet different information requirements (e.g., grouped by region or environmental class, 

distributed along environmental gradients.). Therefore, we limited our summaries of the results to 

example tables and plots, and we focus this discussion on the methods used, rather than a detailed 

interpretation of the results. 

As with the previous national-scale water quality state analyses (Larned et al. 2015), we used a five-

year period ending in the immediate past year to represent recent water quality state (for this report 

the period is 2013 to December 2017). This period represents a trade-off between ensuring sufficient 

sampling dates to provide robust summary statistics, and minimising the influence of long-term 

temporal trends on estimates of current state. Longer periods would have also reduced the number 

of sites and therefore, spatial coverage. The five-year period ensured that there were at least 30 

samples for each site, for variables that are measured at monthly intervals, as recommended by 

McBride (2005). 

In the previous national-scale river water quality analyses, we used the same procedures for 

managing censored data in both the state and trend datasets. In the current study, different 

procedures were used for censored data in the state dataset and in the trends dataset. For the state 

dataset, we used the same methods used by Larned et al. (2015): sites with more that 50% imputed 

data were excluded, and for qualifying sites, censored data were replaced with imputed values using 

procedures based on regression-on-order-statistics and survival analysis. 

In contrast to the state dataset, we did not replace censored values in the trends dataset in the 

current study; the inclusion of imputed values in trend datasets is not strictly correct because the 

imputation process cannot account for the time order of samples (Snelder 2018). In addition, the 

approach adopted in the current study only excluded sites based on censored values in extreme 

situations: where there were so many ties caused by censored values that Sen slopes and confidence 

intervals could not be calculated (Section 3.2.4). This approach also differs from that of the previous 

study, where all site × variable combinations with > 15% censored values were excluded from the 

trend analyses. Retaining all but the most extreme cases in the current study maximised the spatial 

coverage of sites. The assessments of trend directions in this report were carried out using the 

methods set out in the previous national-scale water quality trend analyses (Larned et al. 2015), and 

new methods. By showing the results derived from both approaches, the effects of the new methods 

are apparent. In both the previous and the current reports, we replaced traditional significance tests 

about trend directions (which posit that the trend slope is exactly zero) with inferential information 

about trend direction, including confidence intervals. As noted in the previous report and McBride (in 

review), true trend slopes cannot be zero, and the traditional hypothesis is a priori false. While the 

replacement of significance tests represented an advancement in trend analyses, there was room for 

further improvement. The use of the ‛indeterminant’ trend category in the previous report to 

indicate cases in which there are insufficient data for inferring trend directions with stated levels of 

confidence was one area with great potential for improvement. For example, in the 10-year trend 
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analyses reported using the previous method, between 54 and 88% of the site-specific trends were 

categorised as indeterminant at the 95% confidence level (Table 5-2). Unfortunately, the 

indeterminant trend category has been misconstrued as indicating ‛stable trends’, i.e., water quality 

that does not change over the observation period. More generally, categorising large proportions of 

site trends as indeterminant can be viewed as a substantial loss of information, including the 

numbers of trends that are very likely to have a particular direction, but at a confidence level below 

95%. The two new approaches introduced in this report reduce such information loss: 

▪ The first approach involves subdividing the group of trends formerly categorised as 

indeterminant into eight subgroups with progressively decreasing probabilities of 

improving trends, as described in Section 3.2.6. 

▪ The second approach involves the use of the PIT statistic and its confidence interval to 

estimate the proportion of improving a population of sites in a given domain, including 

all of New Zealand. 

We recommend adopting the new approaches set out in this report to increase the information yield 

from trend analyses, and ultimately, from regional council and national monitoring programmes. We 

recognise that progressive changes in data analysis methods can impede comparisons between 

consecutive reports. To alleviate that problem, we provided results of trend analyses using both the 

methods of Larned et al. (2015) and the new methods, and we recommend presenting the results in 

parallel as we have in the current report. Finally, we note that the current report does not represent 

the last word in water-quality data analysis; further advancements are inevitable and beneficial. 
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