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Executive summary 
This report provides model-based predictions of water quality state for each of  590,000 unique 

river segments that comprise New Zealand’s national river network, using data for the period 2013-

2017. Two comparable reports were produced in 2010 and 2016 using data for the periods 2003-

2007 and 2009-2013, respectively. This report is the second in a series of reports prepared for the 

Ministry for the Environment on national-scale state and trends in river freshwater quality. The first 

report provided site-specific river water quality state and trends for several hundred river monitoring 

sites operated by Regional Councils and NIWA. The river water quality data acquired and processed 

for the first report were used in the current report. 

The predicted water quality values in the current report were generated using Random Forest (RF) 

models. The RF empirical modelling method predicts the values of response variables using a suite of 

predictor variables and a dataset of observations (the ‛training data’). RF models are an advanced 

form of regression-tree models. Single regression trees do not identify the optimum tree structure 

(i.e., the most accurate predictions) and they are sensitive to small changes in the observational data. 

To overcome these problems, RF modelling employs an ensemble of trees (a forest) and makes 

predictions based on the average of all trees. RF models have several additional properties that make 

them suitable for use in situations where the observational data are heterogeneous and the 

predictor variables are inter-correlated (as is often the case in water quality analyses); they require 

no assumptions about data distributions to be met, they are minimally affected by multi-collinearity 

among predictor variables, and they cannot be over-fitted. 

An RF model was developed for each of nine water quality variables: visual clarity (CLAR), turbidity 

(TURB), ammoniacal nitrogen (NH4N), nitrate-nitrogen (NO3N), total nitrogen (TN), dissolved 

reactive phosphorus (DRP), total phosphorus (TP), Escherichia coli (ECOLI), and the 

macroinvertebrate community index (MCI). The predictor variables consisted of 32 variables for 

which georeferenced data are stored the River Environment Classification geodatabase. These 

predictor variables were selected to represent climatic, geological, topographic, land cover, and 

hydrological conditions in New Zealand rivers and their catchments.  

The observational data used in the RF models consisted of site median values from monthly and 

quarterly measurements (and annual invertebrates for MCI scores) for the period 2013-2017. These 

data came from 587 - 882 monitoring sites (depending on the variable). The sites are reasonably 

well-distributed across the North and South Islands, with some gaps in inaccessible areas. To assess 

the degree to which the monitoring sites used for observational data represent the range of 

environmental conditions present in New Zealand, we compared histograms of the distributions of 

predictor variable values for the monitoring sites, with the distributions of the same variables for all 

river segments in New Zealand. The monitoring sites were reasonably representative, with moderate 

over-representation of low-elevation, low-gradient catchments with large proportions of intensive 

agricultural land cover. 

The RF models performed well in predicting median water quality state, based on the amount of 

variation in the observational data explained, the congruence between observed and predicted 

values, low model bias (tendency to over- or under estimate), and low prediction uncertainty. 

The most important predictor variables for the nutrient models and the CLAR, TURB and ECOLI 

models were the proportions of intensive agricultural and urban land cover in catchments, 

catchment slope and particle size. For the MCI model, the most important predictor variables were 
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the proportions of native forest and urban land cover and catchment elevation. Collectively, the 

models suggest that chemical and microbiological water quality is most severely compromised in 

low-elevation, low-gradient land under intensive land use. 

National maps of predicted median TURB and nutrient and ECOLI concentrations have relatively high 

values in low-elevation areas on the east coasts of the North and South Island, and in the inland 

Waikato, Wairarapa Valley, Rangitikei-Manawatu coastal plain, Taranaki Ring Plain, and Auckland 

Region. Predicted TURB and nutrient and ECOLI concentrations are generally low in major mountain 

ranges, in large areas of the Department of Conservation estate and in other native forest-dominated 

areas. Predicted DRP and TP concentrations appear to be elevated in rivers draining phosphorus-rich 

Tertiary mudstone and volcanic ash on the North Island, suggesting that parent geology affects large 

scale patterns in river DRP and TP. However, the effects of geology are likely to be inter-correlated 

with land use and topography. Geographic patterns in predicted CLAR and MCI scores are generally 

the reverse of the patterns for chemical and microbial water quality, with high values in mountain 

ranges and Department of Conservation estate, and low values in areas dominated by intensive 

agriculture and urban land cover. 
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1 Introduction 
River water quality can be characterised by the recent state and trends in variables that are 

measured at monitoring sites distributed across New Zealand. The sites are monitored as part of the 

State of Environment (SOE) programmes operated by Regional Councils and unitary authorities and 

the National River Water Quality Network (NRWQN) operated by NIWA. 

This document is the second of two reports updating national river water quality state in New 

Zealand, using data from the council SOE programmes and the NRWQN. The first report “Water 

quality state and trends in New Zealand rivers” provided information on water quality state and 

trends for individual river monitoring sites (Larned et al. 2018). The updated river dataset used in the 

state analyses of the first report contained measurements for nine physical, chemical, 

microbiological and macroinvertebrate variables from 587 to 882 sites for the 2013-2017 period. 

Site-specific water quality state in the first report was based on median variable values for that five-

year period.  

In the current report, we developed Random Forest (RF) models to relate spatial variation in the 

same nine water quality variables used in Larned et al. (2018) to a large suite of environmental 

predictor variables. The predictor variables represent climatic, geological, topographic, land cover, 

and hydrological conditions in New Zealand rivers and their catchments. The RF models were then 

used to predict river water quality at un-monitored locations and to produce spatially continuous 

maps of predicted water quality variation. These maps comprise a high-level statistic that describes 

predicted patterns in water quality at the national scale.  

One of the primary purposes of predictive RF models is to provide large-scale water-quality 

assessments that are more representative of the true patterns of water quality than assessments 

based on aggregated data from multiple monitoring sites. The latter approach can lead to 

conclusions about water quality patterns that are biased by the non-random locations of monitoring 

sites. Previous analyses have shown that the aggregate network of river water quality monitoring 

sites in New Zealand is over-represented by sites in catchments dominated by pastoral land cover 

and under-represented by sites in catchments dominated by native forest (Larned and Unwin 2012). 

This non-representative distribution of sites can produce biased results when multiple environmental 

classes are merged. Using RF models to predict water quality state in all river reaches across New 

Zealand can reduce this problem. 

In this report, we provide detailed methods for using RF models to predict river water quality state 

across the heterogeneous New Zealand environment. The methodological steps include preparation 

of the water quality state data, selection of environmental predictor variables, assessment of site 

representativeness, the RF modelling process, and assessments of model performance. In the results 

section, we present maps of national predictions of river water quality, identify important predictor 

variables and quantify model performance. In the discussion section, we compare the current RF 

models with previous models of river water quality state and comment briefly on uncertainty in RF 

models and alternative modelling methods. We also provided MfE with the model outputs for every 

river reach in New Zealand as an .RData file. 
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2 Data 

2.1 River water quality data 

The monitoring sites and data used in the Stage 1 study to analyse water quality state (Larned et al. 

2018) were also used for the current study. The water quality data consisted of measurements of 

nine physical, chemical, microbiological and invertebrate variables from river monitoring sites in 

council SOE networks and the NRWQN sites (Table 2-1). Detailed methods for processing the water 

quality data are given in Larned et al. (2018). The monitoring sites had the following properties: 1) 

less than 50% of the values for a variable were censored; 2) values for at least 90% of monthly or 

quarterly sampling dates were available, including imputed values; 3) at least 30 values were 

distributed over four of the five years from 2013 to 2017. In contrast, the invertebrate data come 

from annual monitoring and there were no censored data. The sole rule for including invertebrate 

monitoring sites was that data were available for at least four of the five years from 2013 to 2017. 

The Stage 1 study used the original version of the River Environment Classification (REC1; Snelder 

and Biggs 2002) as a spatial framework to provide environmental context for the analysis. In the 

current study, we used a recently updated version of the REC, referred to as REC2 (see Section 2.2 for 

details). All monitoring sites from the Stage 1 study were projected on to the REC2 digital river 

network, then manually checked. In the final dataset used for RF modelling, between 587 and 882 

sites met the inclusion criteria for at least one of the eight water quality variables (Table 2-1).  

The geographic distribution of river monitoring sites used for modelling is shown in Figure 2-1. The 

sites are reasonably well-distributed, although there are gaps in the central North Island and west 

coast of the South Island. There is a high degree of overlap among the sites used for physical, 

chemical and microbiological water quality monitoring, as some or all of the corresponding variables 

are measured at each site in council SOE programmes. There is less overlap among sites used for 

invertebrate monitoring; several councils operate separate programmes for monitoring physical-

chemical water quality and invertebrates, with variable levels of site overlap between programmes. 
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Table 2-1: River water quality variables, measurement units and site numbers used to develop Random 
Forest models.  

Variable type Variable Abbreviation Units 
Number of 

monitoring sites 

Physical 
Visual clarity CLAR m 587 

Turbidity TURB NTU 878 

Chemical 

Ammoniacal nitrogen NH4N mg/m3 882 

Nitrate-nitrogen NO3N mg/m3 855 

Total nitrogen (unfiltered) TN mg/m3 764 

Dissolved reactive phosphorus DRP mg/m3 877 

Total phosphorus (unfiltered) TP mg/m3 740 

Microbiological Escherichia coli ECOLI cfu/100 mL 866 

Biotic Index 
Macroinvertebrate Community 
Index 

MCI unitless 832 
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Figure 2-1: Locations of river water quality monitoring sites used for modelling the state of nine water 
quality variables.   The number in the lower right of each panel corresponds to the number of sites included for 
each variable (Table 2-1).  
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2.2  Predictor data  

The digital river network and catchment boundaries used for the REC provided the spatial framework 

for the RF models of river water quality state. The river network and catchment boundaries were 

derived from a digital elevation model (DEM) with a spatial resolution of 50 m. The digital network 

represents New Zealand’s rivers as  560,000 segments (bounded by upstream and downstream 

confluences) and their corresponding catchments. Each segment in the digital network has a unique 

identifier, the nzsegment number. The links between each nzsegment and its catchment, between 

adjacent nzsegments and between adjacent catchments facilitate analyses of upstream-downstream 

connectivity and the accumulation of catchment characteristics in the downstream direction. The 

digital network has been recently updated to correct errors and to improve its representation of 

rivers nationally; the REC geodatabase with the updated network is referred to as REC2 (version 2.4). 

In addition to the digital network, REC2 contains spatial data layers describing the climate, 

topography, geology, vegetation, infrastructure and hydrology of New Zealand 

(https://www.niwa.co.nz/freshwater-and-estuaries/management-tools/river-environment-

classification-0). These spatial data are used to link each nzsegment to many attributes that describe 

the environmental characteristics of the segment and its catchment. Catchment land cover in REC2 is 

derived from the national Land Cover Database-4 (LCDB4) which differentiates 32 categories based 

on analysis of satellite imagery from 2012 (lris.scinfo.org.nz). Descriptions of catchment regolith are 

derived from the Land Resources Inventory (LRI) including interpretations of the LRI categories made 

by Leathwick et al. (2003). Additional variables for each segment have been derived from national-

scale hydrological modelling (e.g., Booker and Snelder 2012). 

We selected 32 network attributes from REC2 (Table 2-2) for predictor variables in spatial models of 

the nine water quality variables listed in Table 2-1. The predictor variables were selected based on 

their predicted mechanistic or correlative relationships with water quality, and on previous 

experience with national scale modelling of water (e.g., Unwin et al. 2010; Larned et al. 2016) and 

invertebrate communities (Clapcott et al. 2013; Leathwick et al. 2011).   
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Table 2-2: Predictor variables used in random forest models of river water quality variables.   *Geological 
variables are based on regolith, using averages of ordinal values assigned to LRI top-rock categories by 
Leathwick et al. (2003). The variables usHard and usPsize characterise physical regolith conditions; usPhos and 
usCalc characterise regolith fertility. 

Predictor 
variable 

class 
Predictor variable description Abbreviation Unit 

Geography 
& 
topography 

Catchment area usArea m2 
Segment mean elevation segElev m ASL 
Percentage of catchment occupied by lakes usLakePerc % 
Mean catchment elevation usElev m ASL 
Mean catchment slope usSlope degrees 
Distance to the coast DistToCoast m 
Mean segment slope SegSlope degrees 
Segment sinuosity (segment length divided by the straight 
line distance between endpoints) 

Sinuosity unitless 

Distance to furthest headwater segment DistToHead m 

Climate & 
flow 

Mean segment June air temperature segTmin degrees C x 10 
Mean segment January air temperature. segTwarm degrees C x 10 
Mean catchment June air temperature usTmin degrees C x 10 
Mean catchment January air temperature usTwarm degrees C x 10 
Mean annual catchment rainfall usRain mm 
Mean catchment coefficient of variation of annual rainfall usRainvar mm/yr 
Mean catchment rain days > 10 mm usRainDays10 days/mo 
Mean catchment rain days > 200 mm usRainDays20 days/mo 
Mean catchment rain days > 100 mm usRainDays100 days/mo 
Mean annual catchment potential evapotranspiration usPET mm/yr 
Estimated mean flow MeanFlow m3/s 

Geology* 

Mean catchment induration (hardness) of regolith usHard Ordinal 
Mean catchment phosphorous content of regolith usPhos Ordinal 
Mean catchment particle size of regolith usPsize Ordinal 
Mean catchment calcium content of regolith usCalc Ordinal 

Land cover 

Proportion of catchment occupied by combination of high 
producing exotic grassland, short-rotation cropland, orchard, 
vineyard and other perennial crops (LCDB4 classes 40, 30, 33) 

usIntensiveAg % 

Proportion of catchment in low producing grassland (LCDB4 
class 41) 

usPastoralLight % 

Proportion of catchment in native forest (LCDB4 class 69) usNativeForest % 
Proportion of catchment in built-up areas, 
urban parkland, surface mines, dumps and transport 
infrastructure (LCDB4 classes 1,2,6,5) 

usUrban % 

Proportion of catchment in scrub and shrub cover (LCDB4 
classes 50, 51, 52, 54, 55, 56, 58) 

usScrub % 

Proportion of catchment occupied by lake and pond, river 
and estuarine open water (LCDB4 classes 20, 21, 22) 

usWetland % 

Proportion of catchment in exotic forest (LCDB3 class 71) usExoticForest % 
Proportion of catchment occupied in bare or lightly-
vegetated cover (LCDB4 classes 10, 12, 14, 15, 16) 

usBare % 
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3 Modelling methods 

3.1 Random forest models 

We modelled median values of each water quality variable as a function of the predictor variables 

using RF models (Breiman et al. 1984; Breiman 2001; Cutler et al. 2007), with all variables except MCI 

log-transformed (i.e., the log10 of the median of the untransformed raw data). An RF model is an 

ensemble of individual classification and regression trees (CART). In a regression context, CART 

partitions observations (in this case the individual water quality variables) into groups that minimise 

the sum of squares of the response (i.e., assembles groups that minimise differences between 

observations) based on a series of binary rules or splits that are constructed from the predictor 

variables. CART models have several desirable features including requiring no distributional 

assumptions and the ability to automatically fit non-linear relationships and high order interactions. 

However, single regression trees have the limitations of not searching for optimal tree structures, 

and of being sensitive to small changes in input data (Hastie et al. 2001). RF models reduce these 

limitations by using an ensemble of trees (a forest) and making predictions based on the average of 

all trees (Breiman 2001). An important feature of RF models is that each tree is grown with a 

bootstrap sample of the fitting data (i.e., the observation dataset). In addition, a random subset of 

the predictor variables is made available at each node to define the split. Introducing these random 

components and then averaging over the forest increases prediction accuracy while retaining the 

desirable features of CART. 

An RF model produces a limiting value of the generalization error (i.e., the model maximises its 

prediction accuracy for previously unseen data; Breiman 2001). The generalization error converges 

asymptotically as the number of trees increases, so the model cannot be over-fitted. The number of 

trees needs to be set high enough to ensure an appropriate level of convergence, and this value 

depends on the number of variables that can be used at each split. We used default options that 

included making one third of the total number of predictor variables available for each split, and 500 

trees per forest. Some studies report that model performance is improved by including more than  

50 trees per forest, but that there is little improvement associated with increasing the number of 

trees beyond 500 (Cutler et al. 2007). Our models took less than a minute to fit when using the 

default of 500 trees per forest. 

Unlike linear models, RF models cannot be expressed as equations. However, the relationships 

between predictor and response variables represented by RF models can be represented by 

importance measures and partial dependence plots (Breiman 2001; Cutler et al. 2007). During the 

fitting process, RF model predictions are made for each tree for observations that were excluded 

from the bootstrap sample; these excluded observations are known as out-of-bag (OOB) 

observations. To assess the importance of a specific predictor variable, the values of the response 

variable are randomly permuted for the OOB observations, and predictions are obtained from the 

tree for these modified data. The importance of the predictor variable is indicated by the degree to 

which prediction accuracy decreases when the response variable is randomly permuted. Importance 

is defined in this study as the loss in model performance (i.e., the increase in the mean square error; 

MSE) when predictions are made based on the permuted OOB observations compared to those 

based on the original observations. The differences in MSE between trees fitted with the original and 

permuted observations are averaged over all trees and normalized by the standard deviation of the 

differences (Cutler et al. 2007).  
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A partial dependence plot is a graphical representation of the marginal effect of a predictor variable 

on the response variable, when the values of all other predictor variables are held constant. The 

benefit of holding the other predictors constant (generally at their respective mean values) is that 

the partial dependence plot effectively ignores their influence on the response variables. Partial 

dependence plots do not perfectly represent the effects of each predictor variable, particularly if 

predictor variables are highly correlated or strongly interacting, but they do provide an 

approximation of the modelled predictor-response relationships that are useful for model 

interpretation (Cutler et al. 2007). 

RF models can include any of the original set of predictor variables that are chosen during the model 

fitting process. Inclusion of marginally important and correlated predictor variables does not degrade 

the performance of the RF models. However, these predictor variables may be redundant (i.e., their 

removal does not affect model performance) and their inclusion can complicate model 

interpretation. We used a backward elimination procedure to remove redundant predictor variables 

from the initial ‛saturated’ models (i.e., models that included any of the original predictor variables). 

The procedure first assesses the model error (MSE) using a 10-fold cross validation process. The 

predictions made to the hold out observations during cross validation are used to estimate the MSE 

and its standard error. The model’s least important predictor variables are then removed in order, 

with the MSE and its standard error being assessed for each for each successive model. The final, 

‛reduced’ model is defined as the model with the fewest predictor variables whose error is within 

one standard error of the best model (i.e., the model with the lowest cross validated MSE). This is 

equivalent to the ‟one standard error rule” used for cross validation of classification trees (Breiman 

et al. 1984). 

An alternative approach is to choose the model with the smallest error. We used the former 

procedure as it retains fewer predictor variables than the latter procedure, while achieving an error 

rate that is not different, within sampling error, from the ‟best solution”. Importance levels for 

predictor variables were not recalculated at each reduction step to avoid over-fitting (Svetnik et al. 

2004). 

We note that, because fitting a RF model involves randomly selecting observations and predictor 

variables throughout the fitting process, successive models fitted to the same data set will exhibit 

subtle differences in structure and diagnostics such as total explained deviance, MSE, partial 

dependence plots, and the order of predictor importance. In the current study, the variability in 

model error between individual fits of the model for each water quality variable were within the 

reported model performance (see Section 3.2). 

All calculations were performed in the R statistical computing environment (R Core Team 2017) using 

the randomForest package (Liaw and Werner 2002) and other specialised packages. 

3.2 Model performance 

Model performance was assessed by comparing observations with independent predictions (i.e., 

sites that were not used in fitting the model), which were obtained from the out-of-bag (OOB) 

samples. We summarised the models using four statistics; regression R2, Nash-Sutcliffe Efficiencies 

(NSE), bias and root mean square deviation (RMSD).  

The regression R2 value is the coefficient of determination derived from a regression of the 

observations against the predictions. The R2 value shows the proportion of the total variance 



 

Spatial modelling of river water-quality state  15 

 

explained by the regression model (Piñeiro et al. 2008). However, the regression R2 is not a complete 

description of model performance.  

The NSE (Nash and Sutcliffe 1970) provides a measure of overall model performance by indicating 

how closely a plot of observed versus predicted values lies to the 1:1 line (i.e., the degree to which 

two sets of values coincide). NSE values range from −∞ to 1. An NSE of 1 corresponds to a perfect 

match between predictions and the observed data, an NSE of 0 indicates that the model predictions 

are as accurate as the mean of the observed data; and an NSE less than 0 indicates that the observed 

mean is a better predictor than the model.  

Model bias measures the average tendency of the predicted values of water quality variables to be 

larger or smaller than the observed values. Positive values indicate underestimation bias and 

negative values indicate overestimation bias (Moriasi et al. 2007).  

The root mean square deviation (RMSD) is a measure of the characteristic model statistical error or 

uncertainty. RMSD is mean deviation of predicted values with respect to the observed values 

(distinct from the standard error of the regression model). RMSD can be used to evaluate the 

confidence intervals of the predictions. 

The relative root mean square error (RSR) is a measure of the characteristic model uncertainty. It is 

estimated as the mean deviation of predicted values with respect to the observed values (the root 

mean square deviation), divided by the standard deviation of the observations (Moriasi et al., 2007).  

3.3 Representativeness of monitoring sites used in RF models 

A graphic comparison was used to gauge how well the monitoring sites used to fit the RF models 

represented environmental variation at the national scale. Here, representativeness refers to the 

degree to which the distribution of monitoring sites over the range of an environmental predictor 

variable matches the distribution of all network segments over the range of the same environmental 

variable. Poor representativeness can reduce accuracy in model predictions because certain 

combinations of environmental conditions are not represented in the fitting data.  

Histograms of the proportions of monitoring site numbers over the ranges of the 12 most important 

predictor variables in the RF models (i.e., the predictors with the greatest explanatory power) were 

visually compared with histograms of the proportions of all network segments over the same 

predictor variables. Two sets of comparable histograms were derived. The first represented data 

from all monitoring sites that included at least one water quality variable, excluding MCI (887 sites). 

The second set of comparable histograms represented the 832 invertebrate monitoring sites that 

were used for modelling MCI scores. Separate histograms were constructed due to the limited 

overlap in physical-chemical water quality and invertebrate monitoring sites, as noted in Section 2.1.  

Note that representativeness of monitoring sites is different from model bias, which is defined in 

Section 3.2. Model bias is a measure of systematic error in model predictions (i.e., over- or under-

estimation). 

3.4 Model predictions 

Predictions are made with RF models by ‟running” new cases down every tree in the fitted forest and 

averaging the predictions made by each tree (Cutler et al. 2007). The models in this study were fitted 

to log10-transformed water quality data (except for MCI which used non-transformed data). When 

these models are back-transformed, the model error term no longer has a mean of zero. Ignoring this 
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results in retransformation bias (i.e., predictions that systematically underestimate the response). 

We corrected the retransformation bias using the smearing estimate (S) developed by Duan (1983): 

 
 

𝑆 =  
1

𝑛
∑ 10𝜀𝑖̂𝑛

𝑖=1        (Equation 1),  

 

where 𝜀̂ are the residuals of a RF model. The predictions were back-transformed by raising them to 

the power of 10, then corrected for retransformation bias by multiplying by S. The back-transformed 

and corrected predictions for all river segments in New Zealand were projected on a single national 

map for each water quality variable. 

4 Results 

4.1 Model performance 

The RF models for most water quality variables performed well, as indicated by the following 

statistics: R2 > 0.5, NSE > 0.5, and RMSD < 0.5 for most variables (Table 4-1), except NH4N (R2 = 0.39, 

NSE = 0.39, RMSD = 0.39) and MCI (RMSD = 9.90). Note that the RMSD value for MCI is higher than 

the other variables because the MCI data were not log10 transformed. Bias in the RF models was low 

as indicated by the close match between the line representing the regression of the observed versus 

predicted values (red dashed line in Figure 4-1) and the one-to-one line (blue solid line in Figure 4-1). 

The close match between the regression and one to one line also indicates that the models are 

consistent (i.e., that low or high values are not under or over-estimated). Based on NSE values, the 

TN, MCI, ECOLI and TP models had the best overall performance, the NH4N model had the worst 

overall performance, and the NO3N, CLAR, TURB and DRP models had intermediate performance.  

 

Table 4-1: Performance of the water quality models.   Performance was determined using independent 
predictions (i.e., sites that were not used in fitting the models) generated from the out-of-bag observations. 
Regression R2 = coefficient of determination, NSE = Nash-Sutcliffe efficiency, RSR = relative root mean square 
error, RMSD = root mean square deviation). Units for RMSD and bias are the log10 transformed units of the 
respective water quality variables except for MCI, for which RMSD and bias are based on non-transformed 
data. 

Water quality variable Number of sites Regression R2 NSE Bias RSR RMSD 

CLAR  587 0.59 0.58 0.004 0.65 0.20 

TURB  878 0.54 0.53 -0.004 0.68 0.30 

NH4N  882 0.39 0.39 -0.007 0.78 0.39 

NO3N  855 0.59 0.58 0.002 0.65 0.48 

TN  764 0.71 0.70 -0.005 0.54 0.27 

DRP  877 0.56 0.56 -0.007 0.66 0.32 

TP  740 0.65 0.64 -0.005 0.60 0.27 

ECOLI  866 0.66 0.65 -0.007 0.59 0.37 

MCI  832 0.68 0.67 0.036 0.57 9.90 

 
  



 

Spatial modelling of river water-quality state  17 

 

  

Figure 4-1: Comparison of observed water quality versus values predicted by the random forest models.   
Note that the observed values are plotted on the Y-axis and predicted values on the X-axis, following Piñeiro et 
al. (2008). Red dashed line: best fit linear regression of the observed and predicted values. Clue solid line: one-
to-one line. Units are the log10 transformed units of all water quality variables except for MCI, which uses non-
transformed values. 
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4.2 Monitoring site representativeness 

The distributions of river water quality and MCI monitoring sites across the environmental gradients 

defined by 12 predictor variables were generally consistent with the distribution of all segments in 

the river network across the same gradients (Figure 4-2 and Figure 4-3). The predictor variables 

shown in the histograms were those subsequently found to be most important in the RF models.  

There were several cases of moderate over- and under-representation of monitoring sites compared 

to the river network. Water-quality sites were over-represented in environments characterised by 

low catchment elevations (usElev) and low catchment slopes (usSlope) (Figure 4-2). Water quality 

sites were under-represented in catchments with high proportions of native forest land cover 

(usNativeForest), and catchments with low proportions of intensive agricultural land cover 

(usIntensiveAg). Invertebrate monitoring sites were over-represented in low gradient rivers 

(segSlope) close to the coast (distToCoast) and under-represented in catchments with high 

proportion of native forest land cover (usNativeForest; Figure 4-3).  
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Figure 4-2: The distributions of predictor variables across all segments in the digital river network and at water quality sites (grey and red histograms, respectively). 
Similarities in the distributions shown in the two histograms in each panel provide an indication of the degree to which environmental variation across the monitoring 
sites represents environmental variation across the New Zealand river network; complete representativeness would be indicated by exact matches between the 
histograms. These twelve predictor variables were the most important overall predictors in the water quality RF models (with the exception of MCI – see Figure 4-3) and 
are ordered from most (top left) to least (bottom right) important (Table 4-2). 
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Figure 4-3: Distributions of predictor variables across all segments in the digital river network and at invertebrate sites (grey and red histograms, respectively). 
Similarities in the distributions shown in the two histograms in each panel provide an indication of the degree to which environmental variation across the monitoring 
sites represents environmental variation across the New Zealand river network; complete representativeness would be indicated by exact matches between the 
histograms. These twelve predictor variables were the most important in the RF model of MCI and are ordered from most (top left) to least (bottom right) important 
(Table 4-2).
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4.3 Modelled relationships  

The predictor variables with high importance in all RF models reflected strong associations between 

water quality and land use and catchment topography. The proportion of different landcover types in 

the upstream catchment were amongst the top six most important predictor variables across all 

models (Table 4-2). The partial plots indicate that CLAR and MCI decreased with increasing 

usIntensiveAg and usUrban (ranked 2nd and 3rd, respectively), while nutrients, ECOLI and TURB 

increased (Figure 4-4 and Figure 4-5). In comparison, CLAR and MCI increased with increasing 

usNativeForest (the proportion of late-successional native forest, ranked 8th), while the nutrients, 

ECOLI and TURB decreased. These patterns are consistent with previous correlations between 

landcover and water quality state (Larned et al. 2004; 2016). 

Predictors describing the slope and elevation of the upstream catchment, usSlope and usElev, ranked 

1st and 6th overall (Table 4-2).The importance values showed usSlope ranked highly in models of 

CLAR, NO3N, TN, DRP and TP, while usElev was important in models of Tn, ECOLI and MCI. The partial 

plots indicated that CLAR and MCI increased with increasing values of usSlope and usElev, while the 

values of all other water quality variables decreased (Figure 4-4 and Figure 4-5).  

The predictors usPsize, usBare and usHard had relatively high importance in the water quality RF 

models (ranks of 4th, 7th and 14th respectively; Table 4-2). These predictors indicate that the regolith 

of the catchment is associated with water quality state. The values of most water quality variables 

decreased with increasing values of usPsize, usBare and usHard, with the exception of TURB which 

increased with increasing usBare and CLAR which increased with usHard (Figure 4-4). These patterns 

suggest that water quality generally declines as regolith fertility and erosion potential increases. 

Predictors of rainfall usRainvar (variation in mean annual catchment rainfall) and usRain (mean 

annual catchment rainfall) were the 5th and 11th most important overall predictors, respectively 

(Table 4-2). Values of CLAR and MCI increased with increasing usRainvar and usRain, and the values 

of all other water quality variables decreased (Figure 4-4 and Figure 4-5). These results suggest that 

there is a moderately strong positive association between water quality state and catchment rainfall. 

The mechanisms that drive this association may include solute dilution and sustained low water 

temperatures.   
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Table 4-2: Rank order of importance of predictor variables retained in the random forest models for at 
least one water quality variable.   Blank cells indicate that the predictor was not included in the reduced 
model. The predictor variables in the first column are listed in descending order of the median of the rank 
importance over all nine models. 

Predictor CLAR TURB NH4N NO3N TN DRP TP ECOLI MCI 

usSlope 2 16 2 2 2 3 1 8 7 

usUrban 

  

3 7 5 

 

25 4 4 

usIntensiveAg 4 15 5 1 1 

 

11 1 6 

usPsize 

  

6 5 14 2 5 

 

 

usRainvar 1 1 4 16 12 9 6 3 17 

usElev 7 10 1 6 3 14 8 2 3 

usBare 6 7 

 

15 7 7 2 5  

usNativeForest 17 6 16 4 4 

 

10 11 1 

usTmin 15 2 8 18 13 6 7 6 18 

segTmin 18 4 9 3 10 13 9 

 

11 

usRain 10 12 14 11 9 1 3 12 5 

usScrub 

   

10 6 

 

27 

 

 

usPhos 8 11 10 8 18 12 16 9  

usHard 14 5 12 22 20 10 4 

 

 

usWetland 

     

15 26 10 9 

usTwarm 13 14 11 13 17 8 12 14 8 

distToCoast 19 9 13 

   

21 

 

13 

segTwarm 3 3 

 

12 15 

 

23 

 

14 

usPET 5 8 

 

19 16 11 14 13 16 

distToHead 11 17 

    

24 

 

12 

usRainDays20 21 13 

  

19 5 17 

 

10 

usPastoralLight 

   

17 11 16 15 

 

 

usRainDays10 22 19 

 

21 

 

4 13 16 15 

usArea 9 18 15 

   

19 15 21 

usRainDays100 16 22 

  

8 

 

28 

 

 

meanFlow 12 20 

    

18 

 

20 

segSlope 

   

14 22 

 

20 

 

19 

segElev 20 21 7 20 

  

22 7 2 

usExoticForest 

   

9 21 

 

29 

 

 

usCalc 

      

32 

 

22 

usLakePerc 

      

30 

 

 

sinuosity 

      

31 
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Figure 4-4: Partial plots for the twelve most important predictor variables in random forest models of water quality.   Each panel corresponds to one predictor, 
with predictor variables ordered by overall importance from most (top left) to least (bottom right) important. Y-axis scales represent the standardised value of the 
marginal response for each of the eight modelled response variables. In each case, the original marginal responses over all twelve predictors were standardised to have 
a range between zero and one. Plot amplitude (the range of the marginal response on the Y-axis) is directly related to a predictor variable’s importance; amplitude is 
large for predictor variables with high importance.  
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Figure 4-5: Partial plots for the twelve most important predictor variables for the MCI random forest model.   Each panel corresponds to one predictor, with 
predictor variables ordered from most (top left) to least (bottom right) important. The Y-axis scale represents the absolute value of the marginal response (i.e., the scale 
represents the marginal change in MCI values). The amplitude of each plot (i.e., the range of the marginal response shown on the y-axis) is directly related to a predictor 
variable’s importance. 
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4.4 Model predictions 

The minimum values predicted by the RF models were always somewhat larger than the minimum of 

the observed values and the maximum predicted values were always somewhat smaller than the 

maximum observed values (Table 4-3). This is an expected outcome of RF models, which are based 

on partitioning the data and predictions are derived from the means of observations that are 

assigned to a particular partition. As a consequence, the predictions for each water quality variable 

were always within the range of the observations.  

Table 4-3: Comparisons of the minimum and maximum observed and predicted values of water quality 
variables.  

Variable and unit Minimum  

observed value 

Maximum  

observed value 

Minimum  

predicted value 

Maximum  

predicted value 

CLAR (m) 0.18 11 0.27 8 

TURB (NTU) 0.20 88 0.40 35 

NH4N (mg m-3) 0.36 11133 1.61 295 

NO3N (mg m-3) 1.00 14000 3.89 6041 

TN (mg m-3) 14.00 17155 32.34 6440 

DRP (mg m-3) 0.44 2100 0.78 210 

TP (mg m-3) 0.38 3000 1.20 684 

ECOLI (cfu 100ml) 0.17 3400 0.98 1580 

MCI (unitless) 51.80 148 60.93 140 

 

The mapped predictions for all five nutrient species (DRP, TP, NH4H, NO3N, TN), TURB and ECOLI 

have similar coarse-scale spatial patterns, with relatively high values in low-elevation areas on the 

east coasts of the North and South Island, and in the inland Waikato, Wairarapa Valley, Rangitikei-

Manawatu coastal plain, Taranaki Ring Plain, and Auckland Region (Figure 4-7 to Figure 4-13). In 

contrast, predicted nutrient and ECOLI concentrations are generally low in major mountain ranges 

(e.g., Southern Alps, Kahurangi, Kaimanawa, and Tararua Ranges), in large areas of the Department 

of Conservation estate (e.g., Fiordland, Westland, Te Urewera, Egmont, Whanganui and Tongariro 

National Parks), and in smaller, native forest-dominated areas of Northland and the Coromandel 

Peninsula.  

The low elevation areas characterised by high nutrient and ECOLI concentrations coincide with land 

used for intensive agriculture and with most of New Zealand’s urban centres. High-intensity 

agricultural and urban land currently account for 60% of the land area below 350 m elevation (Larned 

et al. 2016). Within these areas, there are some finer scaled differences in predicted water quality. 

The Canterbury Plains are characterised by high TN and NO3N concentrations, and intermediate TP 

and DRP concentrations, and the Waikato-Hauraki Plains area is characterised by high concentrations 

of both nitrogen and phosphorus. 

Note that the maps in Figure 4-6 to Figure 4-14 consist of nzsegments of Order 3 and above, and 

some extensive lowland areas are dominated by low order streams (e.g., eastern Auckland, 

Tauranga). Steep coastal areas of the Marlborough Sounds, Fiordland, Coromandel and Banks 

Peninsulas and offshore islands are also dominated by low order streams. The predicted water 

quality in low order streams in these areas is not shown on the maps in Figure 4-6 to Figure 4-14. 
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Predicted DRP and TP concentrations are elevated in rivers draining catchments dominated by 

Tertiary Mudstones (e.g., eastern Wairarapa, and the Aorangi, Puketoi and Ruahine Ranges), and in 

rivers draining catchments dominated by volcanic andesites, rhyolites and ignimbrites (e.g., central 

volcanic plateau), as indicated in Figure 4-11 and Figure 4-12. Evidence for phosphorus enrichment 

due to chemical weathering in these areas comes from several studies of geochemistry and river and 

lake chemistry (Timperley, 1983; Close and Davies-Colley, 1990, Eden and Parfitt, 1992; McGroddy et 

al. 2008). The Canterbury coast, Southland and Tasman Bay also showed elevated DRP and TP 

concentrations that may be associated with anthropogenic sources of phosphorus, such as fertiliser. 

Large-scale geographic patterns in predicted MCI scores and CLAR are generally the inverse of those 

for chemical and microbial water quality (Figure 4-6 and Figure 4-14). Predicted CLAR is relatively 

high and predicted MCI scores correspond to the excellent and good ecological states (as set out in 

Stark and Maxted (2008) in mountainous areas, the Department of Conservation estate and other 

areas dominated by native forest land cover. Predicted CLAR decreases and MCI scores correspond 

to the fair and poor states in low-elevation alluvial plains and other areas dominated by intensive 

agriculture and urban land cover. Predicted MCI scores are also fair to poor in some rivers in areas 

dominated by exotic forest and low-intensity agriculture land cover, such as Central Otago, 

southwest Canterbury and the Rotorua Lakes-Lake Taupo area. 
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Figure 4-6: Predicted median CLAR in New Zealand rivers.   Map shows all nzsegments of Order 3 and 
higher. Smaller rivers are omitted to make river networks distinguishable. 
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Figure 4-7: Predicted median TURB in New Zealand rivers.   Map shows all nzsegments of Order 3 and 
higher. Smaller rivers are omitted to make river networks distinguishable. 
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Figure 4-8: Predicted median NH4N in New Zealand rivers.   Map shows all nzsegments of Order 3 and 
higher. Smaller rivers are omitted to make river networks distinguishable. 
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Figure 4-9: Predicted median NO3N concentration in New Zealand rivers.   Map shows all nzsegments of 
Order 3 and higher. Smaller rivers are omitted to make river networks distinguishable. 
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Figure 4-10: Predicted median TN concentration in New Zealand rivers.   Map shows all nzsegments of Order 
3 and higher. Smaller rivers are omitted to make river networks distinguishable. 
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Figure 4-11: Predicted median DRP concentration in New Zealand rivers.   Map shows all nzsegments of 
Order 3 and higher. Smaller rivers are omitted to make river networks distinguishable. 
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Figure 4-12: Predicted median TP concentration in New Zealand rivers.   Map shows all nzsegments of Order 
3 and higher. Smaller rivers are omitted to make river networks distinguishable. 
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Figure 4-13: Predicted median ECOLI in New Zealand rivers.   Map shows all nzsegments of Order 3 and 
higher. Smaller rivers are omitted to make river networks distinguishable. 
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Figure 4-14: Predicted median MCI scores in New Zealand rivers.   Map shows all nzsegments of Order 3 and 
higher. Smaller rivers are omitted to make river networks distinguishable. 
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5 Discussion 

5.1 Comparison with previous studies 

The river water quality models presented in this study update previous modelling work carried out by 

Unwin et al. (2010) and Larned et al. (2016). The models in the previous two reports were based on 

data from 1996-2007 and 2009-2013, respectively, while the current models are based on data from 

2013-2018. The results of the current study are generally consistent with those of Unwin et al. (2010) 

and Larned et al. (2016), with the structures of the models (as indicated by the relative importance of 

predictor variables and directions of partial plots) also similar. In addition, the performance of the 

models in the present study (as indicated by percent variance explained) was generally comparable 

to model performance in Unwin et al. (2010) and Larned et al. (2016).  

Improvements in the modelling methodology and predictor variables between the 2010 and 2016 

studies (see Larned et al. 2016) increased the performance of the RF models. In the current study, we 

used the same modelling procedures and most of the predictor variables as Larned et al. (2016). 

However, we generated new landcover predictors using 2012 landcover data (LCDB4), improving on 

the 2008 landcover data (LCDB3) used in the two previous reports. This spatial layer represents the 

most current landcover data available at a national scale.  

In a previous study, Clapcott et al. (2013) fitted an RF model to site median MCI scores and reported 

a cross-validated R2 of 0.63. Clapcott et al. (2013) also reported a cross-validated R2of 0.64 with an 

alternative technique, boosted regression trees. The equivalent R2 statistic for the MCI model in the 

current study was 0.69 (Table 4-1). The small improvement in performance in the current study may 

reflect the longer-term dataset and the use of the REC2 river network.  

5.2 Model uncertainty 

In this study, we modelled broad scale patterns in water quality using catchment characteristics and 

segment scale descriptors as predictor variables. Because the processes determining water quality at 

any location are complex, some unexplained variation in our models is to be expected. Predictions 

made for individual locations are associated with uncertainties characterised by model RMSD (Table 

4-1). However, the level of model bias for each water quality variable was low, which indicates that 

the predicted patterns reflect broad scale relative differences between locations.  

The 95% confidence intervals for values predicted by our models for individual segments can be 

obtained using the following equations. Equation 1 should be used for calculating the intervals for 

the MCI predictions. Equation 2 should be used for calculating the intervals for the other water 

quality variables for which the variables were log10 transformed prior to model fitting and the 

prediction uncertainty (RMSD) values have been reported in the log10 transformed space.  

95% 𝐶𝐼 =  𝑥 ± 1.96 × 𝑅𝑀𝑆𝐷  (1) 

95% 𝐶𝐼 =  10[log10(𝑥) ± 1.96×𝑅𝑀𝑆𝐷] (2) 

 

where 𝑥 is the estimated value in the original units, RMSD is the model error and 1.96 is the standard 

normal deviate or Z-score for probability (0.025 ≤ Z ≥ 0.975). The prediction confidence intervals for 

the log10-transformed variables, when expressed in the original units of the variables, are asymmetric 

and their values vary in proportion to the predicted water quality value. For example, if we let 𝑥 be a 
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predicted value for CLAR of 0.1 m, the lower and upper 95% confidence intervals are 0.04 and 0.25 

m, respectively, whereas if 𝑥 is 1.0 m the lower and upper 95% confidence intervals are 0.4 and 2.5 

m, respectively. 

RF model performance differed among water quality variables (Table 4-1). This variation may be 

attributed to differences in the biophysical processes that control those variables. Some biophysical 

processes may be poorly represented by our catchment-averaged spatial predictor variables. For 

example, concentrations of dissolved and total nitrogen and phosphorus in rivers are influenced to 

differing degrees by adsorption-desorption processes, deposition and suspension, and biological 

assimilation, transformation and removal; these mechanisms are not explicitly represented in the RF 

models. The absence of predictors that account for these and other processes means that some level 

of unexplained variation is inevitable.  

5.3 Alternative modelling methods 

The RF method that we used to develop river water quality models is well-suited to data from 

monitoring sites that represent a wide range of environmental conditions. However, it is not the only 

method available. Alternative statistical models include generalised additive models (GAMs; Hastie et 

al. 2001), artificial neural networks (e.g., Joy and Death 2001), and boosted regression trees (e.g., 

Leathwick et al. 2005). We did not employ these alternatives, but it is possible that some water 

quality applications would be better served by models developed by one of the alternative methods. 

In particular, if it is important to identify areas with potentially extreme water quality values, models 

such as GAMS that can extrapolate beyond the range of the fitting data would be useful, although 

such predictions may lead to spurious results . In addition, models that incorporate biophysical 

processes (e.g., CLUES; Alexander et al. 2002) are available; in some circumstances, process models 

are better suited to inform environmental policy. We considered RF models to be the best tool for 

predicting river water quality state for national scale reporting for 3 general reasons: 

1. Spatial data that correspond to land cover and other environmental characteristics are 

widely available in New Zealand. These data are suitable for investigating associations 

between water quality and environmental characteristics, and empirical models are 

appropriate tools for identifying those associations. In contrast, process models 

require measurements or estimates of catchment processes (e.g., erosion, 

contaminant transport and transformation) and these data are in far shorter supply. In 

addition, process models are generally more time consuming and complex to calibrate 

than purely empirical models.  

2. RF model predictions can be mapped at scales ranging from single network segments 

to the entire county. These maps provide a useful description of spatial patterns in 

water quality for environmental reporting purposes.  

3. Among empirical modelling methods that generate associations between water quality 

and environmental characteristics, RF models have several advantages: they are 

minimally affected by multi-collinearity among predictor variables, they cannot be 

over-fitted, and they are unaffected by variation in data distributions. RF models 

cannot predict beyond the range of the observations, which may limit their utility in 

some applications. In the present study, limiting model predictions to the range of 

observations was a positive attribute as it ensured that those predictions were 

conservative. 
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