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Executive Summary 

Measurements of lake water quality variables comprising chlorophyll a (CHLA, total 

phytoplankton biomass), total nitrogen (TN), total phosphorus (TP), ammoniacal nitrogen 

(NH4N), Secchi depth (SECCHI), and the trophic level index (TLI3) were obtained for 61 to 

104 lakes (differed by variable) from regional council state-of-the-environment monitoring 

programmes, for the period 2013 to 2017. The median values of these variables were 

estimated for each lake, then combined with environmental data describing the lakes and their 

catchments to make spatial predictions for all 3,821 lakes in New Zealand that are larger than 

1 hectare. 

Satisfactory to good performance was achieved for four of the lake spatial models (CHLA, TN, 

SECCHI and TLI3); the spatial models for TP and NH4N had a slightly poorer performance. 

Because of the limited number of lakes in the dataset used to develop the models, the models 

may have over-predicted in lowland areas with native catchments e.g., West Coast South 

Island. The mapped predictions for all six water-quality variables had similar spatial patterns, 

with high values of CHLA, TN, TP, NH4N, and TLI3 and low values of SECCHI, in low-elevation 

areas on the coasts of the North and South Island. Predicted values of CHLA, TN, TP, NH4N, 

and TLI3 were also high in inland areas of both islands that are dominated by agricultural land 

use (e.g., Southland, parts of Otago, Hawkes Bay, Bay of Plenty, Waikato, Northland. 

Predicted values of CHLA, TN, TP, NH4N and TLI3 were generally low and Secchi depth was 

high in inland areas of the South Island. 

The predictions are uncertain at the lake-scale and actual data should be used in preference 

to the modelled predictions when evaluating individual lakes. However, the broader-scale 

predictions will be useful for strategic purposes such as identifying areas of most concern to 

target interventions. 
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1 Introduction 

Lake water quality across New Zealand was characterised by a recent national analysis of 

state and trends at monitored lakes (Larned et al., 2018). The lakes are monitored as part of 

the State of Environment (SOE) programmes operated by regional councils. The datasets 

underlying these analyses contained quarterly or monthly measurements of physical, 

chemical, and biological variables over time periods from as early as 1990 to 2017.  

The objective of this study is to enable current water quality state to be estimated and mapped 

across all large (> 1 ha) lakes in New Zealand. The resulting large dataset of estimates can 

then be used in a wide range of applications, including identifying environmental drivers of 

water quality variation and setting water-quality reference and baseline levels. In turn, these 

applications are needed for water management decision-making and for limit setting under the 

NPS-FM. 

In the current report, the lake water quality monitoring data from the Larned et al. (2018) study 

were utilised. Those data were used to develop spatial models that predict water quality in all 

large lakes. The benefit of spatial modelling is that it provides a large-scale assessment of 

water quality that is more representative than assessments based on aggregating raw 

monitoring lake data. The latter approach can lead to conclusions about water quality patterns 

that are biased by the non-random locations of monitoring lakes (Larned and Unwin, 2012).  

This report is a companion to the primary output for the project, a .csv file containing the 

outputs from the spatial models, which may be used by MfE in a variety of future applications. 

It provides a detailed description of the methods used to extract variables from available data 

and to produce spatial predictions for unmonitored lakes. The methods used to prepare the 

water quality variables data, make assessments of the representativeness of the monitored 

lakes, and to undertake the spatial modelling are described. The results provide national maps 

of predicted lake water quality. Measures of model performance and the important 

relationships between water quality variables and predictors are described. A short discussion 

is provided with a minimal interpretation of the results.    

2 Data 

2.1 Lake State Data 

We used the SOE data for lakes analysed by Larned et al. (2018) for the current study for 

spatial modelling. Detailed methods for obtaining and grooming these data are provided by 

(Larned et al., 2018). The lake SOE data analysed by Larned et al., (2018) included nine water 

quality variables that correspond to physical, chemical and biological conditions.  Six of these 

variables have been modelled in the current report (Table 1).  A decision was made to exclude 

three variables (DRP, NO3N and ECOLI) as the number of lakes with corresponding 

measurements was small (<35 sites) and spatial coverage was poor. Therefore, these three 

variables were poorly represented at the national scale and predictions from models 

developed with these data would have low accuracy.  

This study used water-quality data for the five-year period from 2013 to 2017. Two inclusion 

rules were applied to ensure that the data were representative of each lake and variable, 

following the approach of (Snelder et al., 2016). First, at least eight samples were available 

for the five-year period. Second, less than 50% of the observations of each variable were 

censored (i.e., below analytical detection limits). A summary of the number of lakes per 
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variable used in this study is in Table 1. The two rules were more lenient than the inclusion 

rules used in Larned et al. (2018), which required lake × variable combinations in the state 

analyses to have measurements for at least 80% of the years (four out of five years) and at 

least 80% of the seasons in the period (either 48 of 60 months, or 16 of 20 quarters). The 

modified inclusion rules in the current study increased the number of lakes for which water 

quality state was assessed compared to Larned et al. (2018) (Table 1). Table 1 also provides 

the numbers of lakes used in the previous lake spatial modelling study (Snelder et al., 2016), 

for comparison. 

Table 1. Lake water quality variables included in this study. NM: not modelled 

Variable type Variable Abbreviation Units 

Number of lakes 

This 
study 

State and 
trends1 

Previous 
spatial 

modelling2  

Physical Secchi depth SECCHI m 61 52 64 

Chemical 

Total nitrogen  TN g m-3 104 63 82 

Total phosphorus  TP g m-3 97 63 97 

Ammoniacal nitrogen NH4N g m-3 64 62 NM 

Phytoplankton Chlorophyll a CHLA g m-3 101 63 92 

Water quality 
index 

Trophic Level Index TLI3 unitless 99 58 76 

Note:  (1) The numbers of lakes included in the companion state and trends report (Larned et al., 

2018) 

(2) The numbers of lakes included in the Snelder et al. (2016) study. 
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Figure 1. Locations of lakes reported on in this study for each of the six water quality 

variables. The locations shown on each panel correspond to the lakes that were 

included in this study for each variable listed in Table 1. 

2.2 Lake predictor data 

The FENZ database provides characteristics of all 3821 lakes in New Zealand that are greater 

than one hectare in area. Details of these variables and their derivation are provided by 

Snelder et al. (2006). Characteristics include descriptors of climatic, geological, topographic, 

bathymetric, land cover, and hydrological conditions in New Zealand lakes and their 

catchments. 

We also explored the use of modelled nutrient loads as predictors (from Snelder et al., 2017). 

A comparison of model results based on models with and without loads as predictors is 

presented in Appendix A. 
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Table 2. Predictor variables used in the spatial models of lake water quality. 

Predictor Abbreviation Description Unit 

Lake lkArea Lake surface area m2 
lkDistCoast Straight line distance to coast km 
lkDepth Estimated average lake depth m 
lkElev Lake elevation  m ASL 

Catchment 
topography 

catSlope Catchment average slope Degrees 
catArea Catchment area m2 
catElev Catchment elevation m ASL 

Climate and 
flow 

lkDecSolRad Lake summer (December) solar radiation  W m-2 
lkJuneSolRad Lake winter (June) solar radiation  W m-2 
lkDecTemp Lake average summer (December) air temperature Degrees 
lkJunTemp Lake average winter (June) air temperature Degrees 
lkFetch Lake wind fetch m 
lkSumWind Lake summer (December) wind speed m s-1 
lkWinWind Lake winter (June) wind speed m s-1 
catSumTemp Catchment average summer (December) air 

temperature 
Degrees 

catWinTemp Catchment average winter (June) air temperature Degrees 
catFlow Catchment average annual discharge m3 yr-1 

Geology catPhos Catchment average phosphorus Ordinal* 
catCalc Catchment average calcium Ordinal* 
catHard Catchment average induration or hardness value Ordinal* 
catPsize Catchment average particle size Ordinal* 
catPeat Proportion of catchment occupied by peat Proportion 
catAlluv Proportion of catchment occupied by alluvium Proportion 

Land cover catGlacial Proportion of catchment occupied by permanent ice Proportion 

catIndigForest Proportion of catchment occupied by indigenous forest Proportion 

catBare Proportion of catchment occupied by bare ground Proportion 

catExoticForest Proportion of catchment occupied by exotic forest Proportion 

catPastoral Proportion of catchment occupied by pasture Proportion 
*Geological variables are based on regolith, using averages of ordinal values assigned to LRI top-rock categories 

by (Leathwick et al., 2003). The variables catHard and catPsize characterise physical regolith conditions; and 

catPhos and catCalc characterises regolith fertility. 

3 Modelling Methods 

3.1 Random forest models 

We fitted the median values of the six water quality variables associated with the monitored 

lakes to the predictor variables using random forest (RF) models (Breiman, 2001; Cutler et al., 

2007). An RF model is an ensemble of individual classification and regression trees (CART). 

In a regression context, CART partitions observations (in this case the individual water quality 

variables) into groups that minimise the sum of squares of the response (i.e., assembles 

groups that minimise differences between observations) based on a series of binary rules or 

splits that are constructed from the predictor variables. CART models have several desirable 

features including requiring no distributional assumptions and the ability to automatically fit 

non-linear relationships and high order interactions. However, single regression trees have 

the limitations of not searching for optimal tree structures, and of being sensitive to small 

changes in input data (Hastie et al., 2001). RF models reduce these limitations by using an 

ensemble of trees (a forest) and making predictions based on the average of all trees 

(Breiman, 2001). An important feature of RF models is that each tree is grown with a bootstrap 

sample of the fitting data (i.e., the observation dataset). In addition, a random subset of the 

predictor variables is made available at each node to define the split. Introducing these random 
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components and then averaging over the forest increases prediction accuracy while retaining 

the desirable features of CART. 

A RF model produces a limiting value of the generalization error (i.e., the model maximises its 

prediction accuracy for previously unseen data; Breiman, 2001). The generalization error 

converges asymptotically as the number of trees increases, so the model cannot be over-

fitted. The number of trees needs to be set high enough to ensure an appropriate level of 

convergence, and this value depends on the number of variables that can be used at each 

split. We used default options that included making one third of the total number of predictor 

variables available for each split, and 500 trees per forest. Some studies report that model 

performance is improved by including more than  50 trees per forest, but that there is little 

improvement associated with increasing the number of trees beyond 500 (Cutler et al., 2007). 

Our models took less than a minute to fit when using the default of 500 trees per forest. 

Unlike linear models, RF models cannot be expressed as equations. However, the 

relationships between predictor and response variables represented by RF models can be 

represented by importance measures and partial dependence plots (Breiman, 2001; Cutler et 

al., 2007). During the fitting process, RF model predictions are made for each tree for 

observations that were excluded from the bootstrap sample; these excluded observations are 

known as out-of-bag (OOB) observations. To assess the importance of a specific predictor 

variable, the values of the response variable are randomly permuted for the OOB 

observations, and predictions are obtained from the tree for these modified data. The 

importance of the predictor variable is indicated by the degree to which prediction accuracy 

decreases when the response variable is randomly permuted. Importance is defined in this 

study as the loss in model performance (i.e., the increase in the mean square error; MSE) 

when predictions are made based on the permuted OOB observations compared to those 

based on the original observations. The differences in MSE between trees fitted with the 

original and permuted observations are averaged over all trees and normalized by the 

standard deviation of the differences (Cutler et al., 2007).  

A partial dependence plot is a graphical representation of the marginal effect of a predictor 

variable on the response variable, when the values of all other predictor variables are held 

constant. The benefit of holding the other predictors constant (generally at their respective 

mean values) is that the partial dependence plot effectively ignores their influence on the 

response variables. Partial dependence plots do not perfectly represent the effects of each 

predictor variable, particularly if predictor variables are highly correlated or strongly interacting, 

but they do provide an approximation of the modelled predictor-response relationships that 

are useful for model interpretation (Cutler et al., 2007). 

RF models include any of the original set of predictor variables that are chosen during the 

model fitting process. However, marginally important predictor variables may be redundant 

(i.e., their removal does not affect model performance) and their inclusion complicates model 

interpretation. We used a backward elimination procedure to remove redundant predictors 

from the initial ‘saturated’ models (i.e., models that included any of the original predictor 

variables). The procedure first assesses the model mean square error (MSE) using a 10-fold 

cross validation process. The predictions made to the hold out observations during cross 

validation are used to estimate the MSE and its standard error. The model’s least important 

predictor variables are then removed in order, with the MSE and its standard error being 

assessed for each successive model. The final, ‘reduced’ model is defined by the “one 

standard error rule” as the model with the fewest predictor variables whose error is within one 

standard error of the best model (i.e., the model with the lowest cross validated MSE) (Breiman 
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et al., 1984). Importance levels for predictor variables were not recalculated at each reduction 

step to avoid over-fitting (Svetnik et al., 2004). 

Although RF models do not depend on distributional assumptions, transformation of the 

response variable to an approximately symmetric distribution can improve model 

performance. We investigated transformations of the modelled water quality (i.e., response) 

variables on the model performance. Where performance was improved, we made predictions 

using these models.  

All calculations were performed in the R statistical computing environment (R Development 

Core Team 2009) using the randomForest package and other specialised packages. 

3.2 Model performance 

Model performance was assessed by comparing observations with independent predictions 

(i.e., lakes that were not used in fitting the model), which were obtained from the OOB 

observations. We summarised the model performance using five statistics; regression R2, 

Nash-Sutcliffe efficiency (NSE), percent bias (PBIAS), the relative root mean square deviation 

(RSR) and the root mean square deviation (RMSD).  

The regression R2 value is the coefficient of determination derived from a regression of the 

observations against the predictions. The R2 value indicates the proportion of the total 

variance explained by the model, but is not a complete description of model performance 

(Piñeiro et al., 2008).  

NSE indicates how closely the observations coincide with predictions (Nash and Sutcliffe, 

1970). NSE values range from −∞ to 1. A NSE of 1 corresponds to a perfect match between 

predictions and the observations. An NSE of 0 indicates the model is only as accurate as the 

mean of the observed data and values less than 0 indicate the model predictions are less 

accurate than using the mean of the observed data.  

Bias measures the average tendency of the predicted values to be larger or smaller than the 

observed values. Optimal bias is zero, positive values indicate underestimation bias and 

negative values indicate overestimation bias (Piñeiro et al., 2008). PBIAS is computed as the 

sum of the differences between the observations and predictions divided by the sum of the 

observations (Moriasi et al., 2007).  

RSR is a measure of the characteristic model uncertainty. It is estimated as the mean deviation 

of predicted values with respect to the observed values (the root mean square deviation), 

divided by the standard deviation of the observations (Moriasi et al., 2007). 

The normalization associated with PBIAS and RSR allowed the performance of models to be 

compared across all of the modelled water quality variables. Model predictions were evaluated 

to be very good, good, satisfactory or unsatisfactory, following the criteria proposed by Moriasi 

et al., 2007, outlined in Table 3.   
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Table 3: Performance ratings for statistics used in this study, from (Moriasi et al., 2007). 

Performance Rating RSR NSE PBIAS1 

Very good RSR ≤ 0.50 NSE > 0.75 |PBIAS| <25 

Good 0.50 < RSR ≤ 0.60 0.65 < NSE ≤ 0.75 25 ≤ |PBIAS| < 40 

Satisfactory 0.60 < RSR ≤ 0.70 0.50 < NSE ≤ 0.65 40 ≤ |PBIAS| < 70 

Unsatisfactory RSR > 0.70 NSE ≤ 0.5 |PBIAS| ≥ 70 

Notes: (1) PBIAS shown here is only applicable for nutrient models. 

RMSD is a measure of the characteristic model statistical error or uncertainty. RMSD is the 

mean deviation of predicted values with respect to the observed values (distinct from the 

standard error of the regression model). We used RMSD to evaluate the confidence intervals 

of the predictions.  

3.3 Representativeness of monitored lakes used in RF models 

A graphical comparison was used to gauge how well the monitored lakes used to fit the RF 

models represented environmental variation at the national scale. Here, representativeness 

refers to the degree to which the distribution of monitored lakes over the range of an 

environmental predictor variable matches the distribution of all lakes over the range of the 

same environmental variable. Poor representativeness can reduce the reliability of the model 

predictions because certain sets of environmental conditions are not represented in the fitting 

data.  

Histograms of the proportions of monitored lake numbers over the ranges of the most 

important predictor variables in the RF models (i.e., the predictors with the greatest 

explanatory power) were visually compared with histograms of the proportions of all lakes over 

the same predictor variables. Note that representativeness of monitored lakes is different from 

model bias, which is defined in Section 3.2. 

3.4 Model predictions 

Predictions are made with RF models by “running” new cases down every tree in the fitted 

forest and averaging the predictions made by each tree (Cutler et al., 2007). Some of the 

models in this study were fitted to log10-transformed data and when the model predictions were 

back-transformed, we corrected for retransformation bias using the smearing estimate (Duan, 

1983) Equation 1, but using base 10, not base e). The back-transformed predictions were 

used to produce national maps depicting the variation in each water quality variable. 

4 Results 

4.1 Model performance 

The performance of all models was improved by log10-transformation of the lake median 

values of the water quality variables (the model responses). The raw variable distributions 

were strongly right-skewed and the transformations made these more symmetric. 

The RF models of SECCHI, TN, CHLA, and TLI3 had satisfactory to good performance as 

indicated by the following statistics: NSE > 0.5, RSR < 0.7 (Table 4, Figure 2; Moriasi et al., 

2007). The models for TP and NH4N had poorer performance, with NSE values of 0.48 and 
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0.40, respectively. All six models had very low bias (PBIAS;Table 4, Figure 2).  RMSD values 

provide an indication of the magnitude of the characteristic error in the original units of each 

variable. 

Table 4. Performance of the lake water quality models. Performance was determined using 

independent predictions (i.e., lakes that were not used in fitting the models) generated 

from the out-of-bag observations. R2 = coefficient of determination of observation 

versus predictions, NSE = Nash-Sutcliffe efficiency, PBIAS = percent bias, RSR = 

relative root mean square error, RMSD = root mean square deviation. RMSD units are 

the log10-transformed original units.. 

Model N R2 NSE PBIAS RSR RMSD 

CHLA 99 0.54 0.53 0.22 0.69 0.37 

NH4N 62 0.40 0.39 0.08 0.78 0.39 

SECCHI 60 0.63 0.60 -6.54 0.63 0.30 

TLI3 97 0.67 0.66 0.25 0.58 0.09 

TN 102 0.72 0.70 -0.99 0.54 0.25 

TP 95 0.48 0.46 0.62 0.73 0.34 
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Figure 2. Comparison of observed water quality versus values predicted by the RF models. 

Note that the observed values are plotted on the Y-axis and predicted values on the X-

axis, following Piñeiro et al. (2008). Red dashed line: best fit linear regression of the 

observed and predicted values. The solid black line is one-to-one. Units for the 

variables are the log10 of the original units. 

4.2 Modelled relationships 

The reduced RF models retained only a subset of the original set of predictors (Table 5). The 

nineteen retained predictors (five to fourteen per model) reflected associations between water 

quality and lake and catchment elevation, geological and climatic factors (Table 5). 

The lake water quality variables had logical relationships with many of the individual predictor 

variables included in the reduced RF models (Figure 3). Nutrient concentrations and 

chlorophyll a decreased and Secchi depth increased with increasing lake and catchment 

elevation (lkElev, catElev) and decreasing wintertime catchment air temperature 

(catWinTemp). This is consistent with an observed gradient in trophic conditions for lakes that 

is associated with altitude and climate (Sorrell et al., 2006). Predictors describing catchment 

land cover were not retained in any of the RF models (Figure 3). However, the inclusion of 

elevation and catchment climate is probably partly due to these predictor’s correlation with 

catchment land cover. TLI3, and all four nutrient variables decreased with lake fetch (lkFetch), 

which may reflect the generally lower trophic status of larger lakes rather the effect of wind 

mixing on lakes. 
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Table 5. Predictors retained by the reduced RF models of lake water quality variables. The 

values indicate the rank importance of the predictor for the individual models. NA 

indicates that the predictor was not included in the reduced model. Predictor variables 

are defined in Table 2. 

Predictor CHLA NH4N SECCHI TLI3 TN TP 

lkElev 3 2 1 1 2 1 

catElev 1 4 2 2 1 2 

catWinTemp 2 10 4 3 5 7 

catSlope 4 7 NA 5 4 6 

lkFetch 5 13 NA 4 3 5 

catHard NA 3 NA NA NA NA 

catPeat NA NA 3 NA NA NA 

lkSumWind NA 6 5 8 8 NA 

catPsize NA 5 NA NA NA NA 

lkArea NA 12 NA 6 7 NA 

catCalc NA 9 NA 7 12 3 

catAlluv NA 1 NA 9 11 8 

lkDepth NA 8 NA NA 6 NA 

lkDistCoast NA NA NA NA 9 NA 

catPhos NA NA NA NA NA 9 

catFlow NA NA NA NA 10 NA 

lkDecSolRad NA 11 NA NA NA NA 

catArea NA 14 NA NA 14 4 

catGlacial NA NA NA NA 13 NA 
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Figure 3. Partial plots for the ten most important predictor variables in the RF models of lake 

water quality.  Each panel corresponds to one predictor. The Y-axis is the 

standardised value of the marginal response for each of the ten modelled variables. In 

each case, the original marginal responses over all ten predictors were standardised to 

have a range between zero and one. Plot amplitude (the range of the marginal 

response on the Y-axis) is directly related to a predictor variable’s importance; 

amplitude is large for predictor variables with high importance. 
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4.3 Monitored lake representativeness 

The distributions of monitored lakes across the environmental gradients retained in the 

reduced RF models were generally consistent with the distribution of all lakes nationally across 

the same gradients (Figure 4). For some environmental gradients, there was moderate over- 

and under-representation. Monitored lakes were slightly over-represented in environments 

characterised by low elevations (lkElev, catElev), and low catchment slopes (catSlope) and 

catchments with high alluvium (catAlluv) (Figure 4). Monitored lakes were under-represented 

in lakes with low fetch (lkFetch) and shallow depths (lkDepth). They were also under-

represented in lake catchments with very low winter temperature (catWinTemp). For example, 

there were no lakes in our dataset with values of catWinTemp < -3.2 oC, however, 11% of 

lakes nationally have values of catWinTemp in this category. In addition, the monitored lakes 

were over represented in lake catchments with very high winter temperature. 
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Figure 4. Histograms comparing the distributions of predictor variables for all lakes and the 

monitored lakes used to build the RF models. The national pool of lakes is represented 

by the green histograms and the monitored lakes used for RF models are represented 

by the blue histograms. Similarities in the distributions shown in the two histograms in 

each panel provide an indication of the degree to which environmental variation across 

the monitored lakes represent environmental variation across all lakes in New 

Zealand; complete representativeness would be indicated by exact matches between 

the histograms. The figure shows the 19 predictors (defined in Table 2)retained in the 

reduced RF models. 

4.4 Model predictions 

Predictions for CHLA, NH4N, SECCHI, TN, TP and TLI3 are shown in Figure 5 for the 3802 

lakes that had complete data in the FENZ dataset (larger versions of the same maps are in 

Appendix B). The mapped predictions for all six variables had similar spatial patterns, with 

high values of CHLA, NH4N, TN, TP and TLI3 and low values of SECCHI, in low-elevation 



 

 Page 19 of 33 

areas on the coasts of the North and South Island, apart from areas with little or no pastoral 

land cover (e.g., Fiordland). Values of CHLA, NH4N, TN, TP and TLI3 were also high and 

values of SECCHI were low further inland in areas of both islands that are dominated by 

agricultural land use such as Southland, parts of Otago, Hawkes Bay, Bay of Plenty, 

Waikato and Northland (Figure 5). Values of CHLA, NH4N, TN, TP and TLI3 were generally 

low and SECCHI high in inland areas of the South Island. Full tables of predictions are 

provided in the supplementary file: “LakeRF_WQModel_Predictions_7Mar19.xlsx”. 

 

 

Figure 5. Predicted water quality for New Zealand lakes.  The lakes are indicated by points 

located at the lake centre. 
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5 Discussion 

5.1 Representativeness and modelled relationships 

The lake dataset was small (<100 sites) and had a restricted geographic coverage (Figure 1). 

In particular, there were no or very limited data available for the Hawkes Bay, Taranaki and 

Gisborne regions in the North Island, and the top and west coast of the South Island. Monitored 

lakes were slightly over-representative of low elevations and lakes in regions with warmer 

climates and were under-representative of lakes in regions with colder climates (Figure 4). We 

note that Figure 4 only considers the representativeness of the samples in one-dimension (i.e., 

with respect to the variable shown on the x-axis), whereas the true representativeness of the 

sample needs to be considered within the multi-dimensional space defined by all the 

predictors. More complex methodologies exist to determine the reliability of the model 

predictions by considering the degree to which predictions are based on interpolation or 

extrapolation (Booker and Whitehead, 2018). Generally, the smaller the training set size the 

greater degree to which model predictions are based on extrapolation and the lower the overall 

prediction reliability. However, conducting this type of analysis was beyond the scope of the 

current project. 

A somewhat surprising result was that the lake models included no predictors that directly 

described catchment land cover. It is well established that the proportion of the catchment 

occupied by pastoral land cover is strongly associated with magnitude of nutrient loads from 

agricultural source at the national scale (e.g., Larned et al., 2016). However, the elevation 

predictors (catElev and lkElev) and the mean wintertime temperature predictor (catWinTemp) 

are likely included in the models partly because they are correlated with the catchment land 

cover. Low elevation catchments and those in warmer regions are commonly associated with 

greater pastoral land use intensity than catchments at higher elevations and in colder regions.  

The correlative rather than causative nature of the relationships between these predictors and 

nutrient loads to lakes is not relevant when considering the statistical measures of predictive 

performance of the models. However, it does mean that the lake model predictions are 

unrealistic in situations where the relationship between catElev, lkElev and catWinTemp and 

the actual causative variables (catchment nutrient loads) is significantly different to the fitting 

dataset. The most obvious situations where this is likely are lakes at low elevations whose 

catchments are largely unmodified, and lakes with cold climates (i.e., low catWinTemp) but 

low elevation. The model predictions are therefore likely to be less reliable in geographic 

regions that have low elevation lakes combined with lake catchments that have relatively 

unmodified catchment land cover, such as the West Coast of the South Island, Fiordland and 

Stewart Island.  

5.2 Comparison with previous study 

The lake water quality models represented in this study update previous modelling work 

carried out by Snelder et al. (2016), for the period 2009-2013.  The same methodology was 

used by the two studies, so the only difference is related to the change in time period, which 

led to differences in the number of lakes included in the spatial models (Table 1). In most 

cases there was an increase in the number of lakes used. This study also generally had slightly 

higher model performance.  

In general, the spatial models were very similar for both the Snelder et al. (2016) and current 

studies, in terms of model performance, predictor importance levels and prediction patterns. 

As such, the broad scale conclusions are the same for both studies.   
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5.3 Model uncertainty 

In this study, we modelled broad-scale patterns in lake water quality using catchment 

characteristics and lake-scale descriptors as predictor variables. Because the processes 

determining water quality in a lake are complex, some unexplained variation in our models is 

to be expected. Predictions made for individual lakes are associated with uncertainties that 

are characterised by model RMSD (Table 4). However, the level of model bias for each water 

quality variable was low, which indicates that the predicted patterns reflect broad scale relative 

differences between lakes. 

The 95% confidence intervals for median values of the water-quality variables predicted by 

our models for individual lakes can be obtained using the Equation 1. Equation 1 accounts for 

the log10 transformation of the response variables prior to model fitting, which means the 

prediction uncertainty (RMSD) values have been reported in the log10 transformed space.  

95% 𝐶𝐼 =  10[log10(𝑥) ± 1.96×𝑅𝑀𝑆𝐷] (1) 

where 𝑥 is the estimated value in the original units, RMSD is the model error and 1.96 is the 

standard normal deviate or Z-score for probability (0.025 ≤ Z ≥ 0.975). The prediction 

confidence intervals for the log10-transformed variables, when expressed in the original units 

of the variables, are asymmetric and their values vary in proportion to the predicted water 

quality value. For example, if we let 𝑥 be a predicted value for SECCHI of 0.1 m, the lower and 

upper 95% confidence intervals are 0.04 and 0.25 m, respectively, whereas if 𝑥 is 1.0 m the 

lower and upper 95% confidence intervals are 0.4 and 2.5 m, respectively. 

RF model performance differed between modelled variables and this variation may be 

attributable to differences in the biophysical processes that control different aspects of water 

quality in lakes. Some biophysical processes may be poorly represented by our catchment-

averaged spatial predictor variables. For example, concentrations of TN and TP in lakes are 

influenced to differing degrees by adsorption-desorption processes, deposition and 

suspension, and biological assimilation, transformation and removal; these mechanisms are 

not explicitly represented in the RF models. The absence of predictors that account for these 

and other processes means that some level of unexplained variation is inevitable.  
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Appendix A Exploration of lake loads as predictors for lake 
random forest models 

A recent study by  (Snelder et al., 2017) made predictions of nutrient loads for all segments in 

the national digital river  network (REC2). By identifying those reaches that drain into lakes, it 

is possible to evaluate incoming lake nutrient loads using these estimates.  Although these 

model predictions are uncertain, they have the potential to be useful predictors in the random 

forest modelling of lake water quality state.   

In this appendix we explore the effect of including these additional predictors in the random 

forest models of lake water quality state.  We examine the significance of any improvement in 

model performance (as compared to models where load estimates were not included as 

predictors), and compare predictions made with and without loads. 

The main disadvantage of including the loads as predictors, is that there are fewer load 

predictions (978) than lakes in the lakes database (3802), and there are also fewer lakes in 

the training dataset (Table 6). This is because inflow streams and rivers for smaller lakes are 

often not represented by the digital river network because their catchment areas are 

insufficiently large to define a network segment. The numbers of lakes with estimated loads 

and observations of SECCHI and NH4N were too few to fit random forest models, and these 

variables were excluded from the following analysis. 

Table 6: Number of lakes in the model training set and number of lakes that also have load 

predictions 

Model Number of lakes Number of lakes 

with load estimates 

CHLA 101 78 

NH4N 64 45 

SECCHI 61 46 

TLI3 99 76 

TN 104 81 

TP 99 74 

 

We evaluated the statistical significance of the difference in model performance by 

determining the 95% confidence intervals for R2 values for the random forest models that 

included and excluded the estimated loads as predictors. To determine the confidence 

intervals of R2, we refitted the random forest model 500 times and used the R2 values returned 

for each realisation to determine the overall mean and standard deviation of R2. Note, we 

refitted the random forest models without loads using only the subset of lakes that had load 

predictions (978 lakes), hence there are some differences in the model performance presented 

in this appendix compared with the results in the body of the report.   

We calculated the 95% confidence intervals of R2 for each model from its overall mean and 

standard deviation of R2. We inferred that there was a statistically significant difference in 

model performance when the 95% confidence intervals did not overlap. The results are 

demonstrated in Table 7 and Figure 6. . Three of the four variables (TLI3, TN and TP) had 
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statistically significant improvements in model performance. The increases in model 

performance were most notable for TP. 

Table 7: Performance of lake water quality models with ad without nutrient loads as 

predictors. 

Variable R2  

Model without 

loads 

95% CI R2 

Model including 

loads  

95% CI  

CHLA 0.50 (0.49-0.51) 0.49 (0.47-0.5) 

TLI3 0.64 (0.63-0.65) 0.67 (0.66-0.67) 

TN 0.69 (0.68-0.69) 0.72 (0.71-0.73) 

TP 0.38 (0.36-0.39) 0.52 (0.51-0.53) 

 

Figure 6 shows both the performance of the random forest models with and without loads as 

predictors, compared against observed water quality. Overall, the patterns of both models with 

the observations are very similar.   

 

Figure 6. Comparison of observed water quality versus values predicted by the RF models. 

Note that the observed values are plotted on the Y-axis and predicted values on the X-

axis, following Piñeiro et al. (2008). Blue and Green lines: best fit linear regression of 

the observed and predicted values, for the model with and without loads as predictors. 

respectively. The solid red line is one-to-one. Units for the variables are the log10 of 

the original units. 
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Both random forest models were used to make predictions for all lakes that had load 

predictions (978). Figure 7 shows a comparison of the national scale predictions of water 

quality.  TP is the only variables for which there appears to be any non-random differences in 

the predictions, with the RD model including loads tending to predict slightly higher 

concentrations at low concentrations, compared to the RF model excluding loads as 

predictors. 

 

 

Figure 7. Comparison of predicted water quality for 978 lakes (those with load predictions) 

from RF models.. The solid red line is one-to-one. Units for the variables are the log10 

of the original units. 
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Appendix B Mapped predictions from random forest models 

 

 

Figure 8. Predicted chlorophyll for New Zealand lakes.  The lakes are indicated by points 

located at the lake centre 
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Figure 9. Predicted NH4N for New Zealand lakes.  The lakes are indicated by points located 

at the lake centre 



 

 Page 30 of 33 

 

Figure 10. Predicted SECCHI for New Zealand lakes.  The lakes are indicated by points 

located at the lake centre 
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Figure 11. Predicted TLI3 for New Zealand lakes.  The lakes are indicated by points located 

at the lake centre 
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Figure 12. Predicted TNl for New Zealand lakes.  The lakes are indicated by points located 

at the lake centre 
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Figure 13. Predicted TP for New Zealand lakes.  The lakes are indicated by points located at 

the lake centre 

 


