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Executive Summary 

This report provides supplementary information that assists with the interpretation of the 

recently completed assessment of trends in the water quality of New Zealand’s lakes and rivers 

(Larned et al., 2018a; Larned et al., 2018b). Although based on the assessments and datasets 

from these studies, the results and conclusions in the current report are more broadly 

applicable to the evaluation and interpretation of water quality trends. 

Using river water quality data and results of trend assessments produced by Larned et al. 

(2018a) we undertook analyses in three steps: 

1. assessment of the factors that are associated with variation in the confidence of trend 

evaluations,  

2. assessment of variation in trends with time-period length (e.g., a ten-year trend period 

from 2008 to 2017 compared to a five-year period from 2013 to 2017), and  

3. assessment of variation in trends with time-period window (e.g., a ten-year trend period 

window from 2007 to 2016 compared to the window from 2008 to 2017).  

Analyses undertaken at step one established that variation in the confidence of trend 

evaluations was linked to a variety of factors but most strongly linked to trend magnitude itself. 

Confidence (or precision) in estimated trend magnitude was negatively related to trend 

magnitude (described by the relative Sen slope) but confidence in trend direction (as indicated 

by Kendall test p-value) was positively related to trend magnitude. The trend period length was 

also moderately negatively correlated the with confidence in predicted trend direction, while 

the precision of the data (proportion of unique observations) for DRP, TP and TN were 

moderately positively correlated to the confidence in predicted trend direction. Based on these 

observations, we were able to approximately define the minimum detectable trend magnitude 

at a given level of confidence for each water quality variable, for a given time-period length.  In 

general, as the time-period length increases, smaller trends can be detected with confidence. 

The second set of analyses established that trend magnitudes tend to decrease with increasing 

time-period length. This indicates that trend magnitudes estimated for shorter periods are 

unlikely to persist over longer periods. In addition, the results indicate the need to be cautious 

when comparing trends evaluated over time periods of differing length.  

The third set of analyses established that trends are sensitive to the time-period window. This 

means that, for different time-period windows, there can be large variation in both the 

magnitude of trends at individual sites and the proportion of sites with improving trends. In 

addition, our analyses showed a strong association between temporal variation in climate 

conditions and both individual water quality observations and fluctuations in trends between 

time-period windows. For example, for most water quality variables, the southern oscillation 

index (SOI) explained in the order of 10%, 30% and 80% of the variation in the proportion of 

improving site trends for time-period lengths of 5, 10 and 20-years respectively. 

Our analyses were based on flow adjusted water quality data, so we assume the observed 

patterns are not simply due to the influence of climate on river flows. Furthermore, we showed 

that water quality observations at baseline (i.e., minimally impacted by human activities) and 

impacted sites were similarly associated with the monthly value of the SOI as at impact sites. 

This provides evidence for the association of patterns observed with aspects of natural climate 

variability (e.g., temperature and hydrological regimes) rather than with the influence of 

changing land management practices in association with climate variation.  
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The results of our study do not mean that climate is solely responsible for long term changes 

in water quality. However, our results indicate that climate exerts considerable influence over 

water quality at inter-annual time scales. These findings are consistent with one previously 

published New Zealand study and a limited number of studies in other countries.  

Trend assessments provide no information about the causes of water quality trends. However, 

there is always an interest in attributing the observed water quality changes to drivers of water 

quality such as land use and management. Attributing trends to causes helps to understand 

the efficacy of management actions and contributes to the feedback part of the policy cycle. 

This study has shown that in order to understand anthropogenic effects on water quality, it is 

necessary to control for the confounding effects of climate.  

Our study suggests two relatively simple statistical treatments of trend data may improve the 

quality of inferences drawn from trend analyses. First, climate indices such as the SOI could 

be treated as a covariate in trend analysis of individual sites in much the same way that flow 

adjustment is performed. Second, large scale studies seeking to explain variation in trends 

between many sites could include the influence of the SOI, as defined by the correlation of the 

monthly observations with the monthly value of the SOI, as an explanatory variable. However, 

the SOI measures one aspect of climate variation and it may be that more appropriate or 

additional measures should be used. We therefore recommend that further research on the 

role of climate on water quality and practical methods to account for climate variation’s effect 

on water quality measurements is undertaken. 

 



 

 Page 7 of 51 

1 Introduction 

This report is part of a larger project that analysed state and trends in the water quality of New 

Zealand’s lakes and rivers (Larned et al., 2018a; Larned et al., 2018b). In the larger project, 

river water quality trends were assessed for sites that are monitored as part of the State of 

Environment (SOE) programmes operated by Regional Councils and unitary authorities and 

the National River Water Quality Network (NRWQN) operated by NIWA. Trends were 

analysed for time periods of differing lengths, all of which finished in 2017 (Larned et al., 2018). 

The present study aimed to provide supplementary information to assist with the interpretation 

of the river water quality trend assessments. In particular, the study aimed to assist interpreting 

differences in trend assessments pertaining to different time-period lengths (e.g., a ten-year 

trend period from 2007 to 2016) and time-period windows (e.g., a ten-year trend period window 

from 2007 to 2016 compared to the window from 2008 to 2017). 

There were three key objectives set out in the study scope. First, the study was to characterize 

the effects of data variability on confidence in assessment of temporal trends in water quality. 

Second, the study was to evaluate the effects of trend period window on trend direction, 

magnitude and confidence. The third objective was also to provide guidance on the use of the 

‘indeterminate trend’ category when reporting and modelling water quality trends.  

The third objective was intended to provide a rationale for accounting for statistical confidence 

in trend evaluations both on a case by case basis and when aggregating trends over groups 

of sites to represent the general changes on water quality over a domain of interest. However, 

subsequent to the commencement of the present study, McBride (2019) showed how a 

statistic describing the level of confidence in a trend could be produced and provided guidance 

on describing this confidence. In addition, Snelder and Fraser (2018) showed how the 

statistics describing the level of confidence in individual trends could be aggregated to produce 

a statistic describing the proportion of improving trends (PIT) over a domain of interest. The 

techniques described by these two studies have provided a basis for maximising the 

information available from indeterminate trends and obviated the need to undertake work to 

achieve the third objective in the present study. This report does not address the third objective 

set out in the original scope and refers the reader to McBride (2019) and Snelder and Fraser 

(2018) for guidance on methods for accounting for statistical confidence in trend evaluations. 

It is noted that the analyses of lake and river water quality trends Larned et al. (2018) and 

Larned et al. (2018) and the present study have made extensive use of the methods set out 

by McBride (2019) and Snelder and Fraser (2018).  

This report aimed to address the first and second objectives of the original scope. To do this 

we undertook analyses in three steps: 

1. assessment of the factors that are associated with variation in the confidence of trend 

evaluations,  

2. assessment of variation in trends with time-period length, and  

3. assessment of variation in trends with time-period window.  

The statistical confidence of trend analyses is affected by both the inherent variability in water 

quality at monitoring sites and sample size. Because water quality monitoring is conducted at 

a fixed time interval (e.g., monthly), sample sizes for sites in state-of-environment monitoring 

networks are a function of the time-period length. Therefore, the ability to confidently detect a 

trend of a given magnitude is a function of the data variability and the time-period length. At 
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step one we therefore investigated which aspects of water quality data were most strongly 

associated with the level of confidence achieved by trend analyses. We used the results of 

this analyses to guide an evaluation of the minimum trend magnitude that can be detected 

with a specified level of confidence. 

Trends are always specific to a time-period length and a time period window. It is generally 

observed that as time-period length increases the absolute magnitude of the trends 

decreases. Further, for any time-period length, there are large changes in the direction and 

magnitude of individual site trends pertaining to different trend period windows. The aggregate 

behaviour of the individual site trends across many sites can result in significantly different 

proportions of degrading or improving sites between time-period windows.  

Although a trend assessment provides no information about the causes of the detected trends, 

there is always an interest in attributing the observed water quality changes to drivers such as 

land use. Attributing trends to causes is of particular interest in the context of managing to 

limits because this helps to understand the efficacy of management actions and contributes 

to the feedback part of the policy cycle. Differences in site and aggregate trends between time-

period windows (for example, 10-year trends ending in 2013 compared to ending in 2017) 

invites speculative suggestions of what has caused these changes. However, water quality 

trends are frequently detected with high levels of confidence at sites that are unimpacted by 

human activities. This suggests that differences in results obtained for different trend period 

windows are at least partly associated with natural processes. A previous study by Scarsbrook 

et al. (2003) showed that variability in trends between time periods was associated with the El 

Niño Southern Oscillation (commonly called ENSO). Therefore, another important 

consideration in attributing trends to causes is the degree to which water quality variation is 

associated with these natural cycles.  At step three we quantified the variability in trends of 

the same time-period length, but for different time-period windows and examined the 

association between this variability and ENSO. 

2 Data 

2.1 2017 trends dataset 

We used the river water quality input dataset and analysis outputs of Larned et al. (2018), 

including both the raw water quality observation data and the flow adjusted water quality 

observations.  The water quality observation data set was sourced from regional councils, 

LAWA and NIWA, as described by Larned et al. (2018) and represents the most up to date 

available national water quality dataset.  

Larned et al. (2018) evaluated site trends for three time periods, 10, 20 and 28 year, all of 

which ended in December 2017. Trends were evaluated for all combinations of site, variable 

and time period for which the minimum data requirements were met (see Larned et al. (2018) 

for details). In this report, we refer to this set of trends as the “2017 trends dataset”.  

Table 1 provides a summary of the water quality variables used in this report, as well as the 

number of trends that were calculated for each time period by Larned et al., (2018). Figure 1 

shows a map of the sites used in this study, by variable, and distinguished by the maximum 

time-period length for which trend analysis was performed. 
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Table 1. River water quality variables included in this study.  

    Number of site trends  

Variable type Variable Abbreviation Units 10 year 20 year 28 year 

Physical 
Visual clarity CLAR m 457 230 78 

Turbidity TURB NTU 718 79 77 

Chemical 

Ammoniacal nitrogen NH4N mg/m3 731 298 106 

Nitrate nitrogen NO3N mg/m3 749 309 112 

Total nitrogen (unfiltered) TN mg/m3 660 162 83 

Dissolved reactive 

phosphorus 
DRP mg/m3 

750 328 122 

Total phosphorus (unfiltered) TP mg/m3 663 307 110 

Microbiological Escherichia coli ECOLI 
cfu/100 

mL 

748 152 16 

Macroinvertebrate 
Macroinvertebrate 

Community Index 
MCI unitless 

575 334 72 
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Figure 1. River water quality monitoring sites included in the 2017 trends dataset analyses. 

Colours indicate the longest trend period analysed at that site.  
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2.2 NRWQN rolling trends dataset 

The 2017 trends dataset maximises the number of sites nationally for which there are ‘up to 

date’ trend assessments (i.e., trends ending in 2017). However, the 2017 trends dataset had 

some inconsistencies that may have influenced our analyses.  In particular:  

(1) the total number of sites represented in each time period decreases as the time-period 

length increases (due to increasing numbers of monitoring sites over time), resulting 

in differing sample sizes for the different time periods; and  

(2) the time periods analysed represent specific time-period windows, but one of our study 

aims was to examine the general effect of time-period window on trends. 

To overcome these inconsistencies, we conducted some analyses associated with step 2 of 

this study and all of the analyses associated with step 3 using only the NRWQN sites (Figure 

2). The NRWQN sites have consistent record of monthly sampling for 28 years 1990 – 2017 

for most of the water quality variables shown in Table 1. The NRWQN data have few missing 

values except for TN and NH4N in 1994. In addition, monitoring of ECOLI at NRWQN sites 

only started in 2004. NRWQN sites are categorised as “baseline” and “impact” (Smith and 

Maasdam, 1994; Figure 2).  

For the NRWQN sites, we evaluated trends using rolling analysis periods of 5, 10 and 20 

years. (i.e., trend period lengths of 5, 10 and 20 year with trend period windows starting in 

1990 and incrementing by one year to a final period ending in 2017). This resulted in 24, 19 

and 9 time-period windows of length 5, 10, and 20 years respectively. MCI was excluded from 

the rolling trend analysis because in the analyses associated with step 3, monthly values were 

required but MCI is based on annual observations. From here on we refer to these trends as 

the “NRWQN rolling trends dataset”.   

 

Figure 2. Location of NRWQN sites showing their classification into impact and baseline 

sites.  
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3 Methods 

3.1 Site trends  

Site trends were calculated using the methodology outlined in Larned et al. (2018). Briefly 

trends were analysed for all site and variable combinations with observations in >90% of years 

and >90% of seasons (Figure 1). Trend analyses were conducted using flow adjusted data 

following the procedure described in Larned et al. (2018) Where water quality observations 

were strongly associated with the flow on the sampling occasion, they are statistically adjusted 

to account for the influence of flow on the variable; at sites where the flow-concentration 

relationships are weak, raw observations are used in the assessment. 

For assessments of trends in water quality variables other than MCI, we used seasons defined 

by months preferentially, and quarters when there were insufficient monthly observations. For 

some sites and variables, there was more than one sample within some seasons. In these 

cases, we used the median of the within-season values for (or the year for the invertebrate 

samples) and conducted the trend analyses with these data. 

Trend analyses for every site and variable were undertaken using the LWP-Trends library and 

produced two key statistics: the Sen slope and the probability that the true trend was 

decreasing. The Sen slope describes trend magnitude and is expressed as the rate of change 

of the variable (year-1). In this report, trends across sites and variables are made comparable 

by expressing them as a relative Sen slope (RSS), which is calculated by dividing the Sen 

slope by the median of all the observations within the time period.  

Traditionally trends are declared to be detected with confidence when statistical confidence 

exceeds a nominal level. The probability that the true trend was decreasing provides a 

continuous measure of confidence in the trend direction. Larned et al. (2018) evaluated the 

probability that the true trend was decreasing from the Kendall p-value as follows: 

𝑃(𝑆 < 0) = 1 − 0.5 × 𝑝𝑣𝑎𝑙𝑢𝑒 

𝑃(𝑆 > 0) = 0.5 × 𝑝𝑣𝑎𝑙𝑢𝑒, 

where 𝑝𝑣𝑎𝑙𝑢𝑒 is the p-value returned by Kendall test (either seasonal or non-seasonal), S is 

the S statistic returned by Kendall test (either seasonal or non-seasonal) and P is the 

probability that the trend was decreasing. The trend direction is interpreted as decreasing 

when P > 0.5 and increasing when P < 0.5.  For some of the analyses in this study that were 

not dependent on trend direction, we used the raw p-value to represent confidence in the 

evaluated trend. A p-value of <0.1 is equivalent to a >95% confidence that a trend is 

decreasing, or a <5% confidence that the trend is decreasing (i.e., 95% confidence that the 

trend is increasing). 

The precision in the Sen slope is evaluated as part of the Sen Slope calculation. Briefly, the 

Sen slope is calculated by determining all possibly inter-observation slopes and ordering them 

from highest to lowest. The inter-observation slope is converted to a Z-score, allowing the 

evaluation of the probability of exceedance of any given slope.  The Sen slope is the median 

(50th percentile) of all intersample slopes, and the 90% confidence interval of the Sen slope is 

defined by the 5th to 95th percentile. 

3.2 Trend aggregation 

We summarised the results over many sites using two measures of ‘aggregate trend’. First, 

we used the median of site RSS values as an aggregate measure of trend magnitude and 



 

 Page 13 of 51 

examined the distribution of the RSS values using box plots. Sites were grouped in a variety 

of ways including nationally (i.e., all sites) and by sites belonging to designated classes (see 

section 3.5.2).  

The second measure of aggregate trend was the proportion of improving trends (PIT) statistic 

(Snelder and Fraser, 2018). The PIT statistic was also calculated for groups of sites including 

nationally (i.e., all sites) and by sites belonging to designated classes (see Section 3.5.2). The 

PIT statistic is derived from the probability that the true trend was improving of the individual 

site trends. ‘Improving trends’ corresponded to decreasing trends in nutrient and ECOLI 

concentrations and TURB and increasing trends in CLAR and MCI. Conversely, ‘degrading 

trends’ corresponded to increasing trends in nutrient and ECOLI concentrations and TURB, 

and decreasing trends in CLAR and MCI.  

The PIT statistic for a given water-quality variable assumes that the trends at multiple 

monitoring sites distributed across a domain of interest (e.g., a spatial domain such as the 

whole of New Zealand or a class of rivers) represent independent samples of the population 

of trends, for all sites within that domain. Let the sampled sites within this domain be indexed 

by s, so that 𝑠 ∈ {1, … , 𝑆} and let 𝐼 be a random Bernoulli distributed variable which takes the 

value 1 with probability 𝑝 and the value 0 with probability 𝑞 = 1 − 𝑝. Therefore, 𝐼𝑠 = 1 denotes 

an improving trend at site 𝑠 ∈ {1, … , 𝑆} when the estimated 𝑝𝑠 ≥ 0.5 and a degrading trend as 

0 when 𝑝𝑠 < 0.5. Then, the estimated proportion of sites with improving trends in the domain 

is: 

𝑃𝐼𝑇 = ∑ 𝐼𝑠/𝑆
𝑠=𝑆

𝑠=1
 

Because the variance of a random Bernoulli distributed variable is 𝑉𝑎𝑟(𝐼) = 𝑝(1 − 𝑝), and 

assuming the site trends are independent, the estimated variance of PIT is: 

𝑉𝑎𝑟(𝑃𝐼𝑇) =
1

𝑆2
∑ 𝑉𝑎𝑟(𝐼𝑠) =

1

𝑆2
∑ 𝑝𝑠(1 − 𝑝𝑠)

𝑠=𝑆

𝑠=1

𝑠=𝑆

𝑠=1
 

PIT and its variance represent an estimate of the population proportion of improving trends, 

within a spatial or environmental domain, and the uncertainty of that estimate. It is noted that 

the proportion of degrading trends is the complement of the result (i.e., 1 - PIT). The estimated 

variance of PIT can be used to construct 95% confidence intervals1 around the PIT statistics 

as follows: 

𝐶𝐼95 = 𝑃𝐼𝑇 ±  1.96 × √𝑉𝑎𝑟(𝑃𝐼𝑇) 

We calculated PIT and its confidence interval for all water quality variables over only the 

NRWQN rolling trends dataset; PIT statistics for the 2017 trends dataset were presented in 

Larned et al. (2018). 

3.3 Variation in the confidence of trend evaluations 

There were two tasks in this analysis: (1) to investigate differences in the confidence of trend 

evaluations, and (2) to evaluate the minimum trend magnitude that can be detected with a 

specified level of confidence. We characterised the confidence of trend evaluations in two 

ways: the confidence in the estimated trend magnitudes and the confidence in the estimated 

trend direction. The confidence (or precision) in the estimated trend magnitude was quantified 

as the difference between upper and lower 90% confidence intervals of the trend Sen slop. 

                                                
1 Note that +/- 1.96 are approximately the 2.5th and 97.5th percentile of a standard normal distribution. 
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The confidence in the estimated trend direction was quantified by the Kendall test p-value; the 

closer this value is to zero, the greater the confidence in trend direction. Note that the trend 

probability statistic quantifies the confidence that the trend was decreasing and is calculated 

from the Kendall test p-value (Section 3.1). We did not use the trend probability in these 

analyses because we were interested in the confidence in direction and not the direction itself.  

We used both the 2017 trends and the NRWQN rolling trends datasets to explore whether 

characteristics of the observation datasets were associated with variation in the confidence in 

evaluations of trend magnitude and direction. First, we calculated several statistics from the 

observation datasets to characterise the site/variable observations. Characteristics that we 

hypothesised might be related to variability in trend evaluation confidence included: the 

variability of the observations, number of observations, the time-period length, number of 

unique values, degree of censoring, median observation value and trend magnitude. The 

complete list of characteristics that we used are in Table 2.  For sites and variables with more 

than one observation within seasons, we used the median of within-season values to calculate 

the statistics listed in Table 2.  

We also hypothesised that there would be differences in the confidence of trend evaluations 

between water quality variables, due to between-variable differences (e.g., differences in 

physical properties, chemical behaviour, analytical techniques and precision etc), and 

therefore all analyses were performed separately for each variable. We calculated the strength 

of the association between the characteristics of the observations listed in Table 2 and the 

confidence in the estimated trend magnitudes and direction using the non-parametric 

Spearman rank correlation coefficient which is a suitable test when the distributional 

assumptions of a parametric correlation test (e.g., absence of outliers, normality of variables, 

linearity, and homoscedasticity) are not met. The Spearman rank correlation coefficient is 

similar to the Pearson correlation coefficient, in that it represents the proportion of variability 

that is common to two variables. However, the Spearman correlation coefficient is computed 

from ranks, and therefore evaluates the monotonic relationship between two variables rather 

than the linear relationship that is evaluated by the Pearson correlation coefficient. 
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Table 2: Observation characteristic statistics 

Statistic name Description 

nObs Number of observations 

PeriodLength Time-period length of the trend analysis (years) 

prop.censored Proportion of observations that are censored 

prop.unique Number of unique observations as a proportion of total number of 

observations. This provides an indication of the analytical precision. 

nuniqueObs Total number of unique observations (prop.unique x nObs) 

absRSS The absolute Sen Slope divided by the median (% year-1; RSS) 

absSenSlope The absolute Sen Slope (units of the original variable year-1) 

Median The median of the observations 

sdlog10 The standard deviation of the log of the observations 

 

For task two we used the combined trends dataset (both the 2017 trends and the NRWQN 

rolling trends) to explore minimum detectable trends at three nominated levels of confidence: 

80%, 90%, 95%. For each variable, we ranked the trends in descending order of absolute 

magnitude (both as RSS and Sen Slopes) and calculated the cumulative count of statistically 

significant trends (at each of the three confidence levels) and divided by the cumulative count 

of the total number of trends, thus obtaining a relationship between the percentage of 

significant trends for all trends above a certain trend magnitude. We then identified the lowest 

RSS and Sen slopes at which 90% of the trends above this value were detectable at the three 

confidence levels.   

3.4 Variation in trends with time-period length 

We investigated how trend magnitude (RSS) and proportion of improving trends (PIT) vary 

with time-period length using both the 2017 trends dataset and the NRWQN rolling trends 

dataset. We plotted the distributions of RSS values associated with differing time-period 

lengths for both datasets (i.e., 10, 20 and 28 years for the 2017 trends dataset and 5, 10 and 

20 years for the NRWQN rolling trends dataset). The boxplots of RSS values provided a 

graphical representation of how the distribution of RSS values varied with time-period length.  

We also plotted PIT statistics for all variables derived from the 2017 trends dataset and the 

NRWQN rolling trends dataset. For the 2017 trends dataset we calculated the PIT statistic 

using all sites (i.e., representing the proportion of improving trends at the national scale) for 

the three time-period windows ending in 2017 of length 10, 20 and 28 years. For the NRWQN 

rolling trends dataset, we calculated the PIT statistic using all sites (i.e., representing the 

proportion of improving trends at the national scale) for the 24, 19 and 9 time-period windows 

of length 5, 10, and 20 years and ending in yearly increments up to 2017. The NRWQN rolling 

trends dataset therefore represented the distribution of PIT statistics for each of the time-

period lengths but for the smaller NRWQN dataset. 
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3.5 Variation in trends with time-period window 

3.5.1 Temporal variability in aggregate trends with time-period window 

To characterise the temporal variation in trends across time-period windows, we graphed the 

NRWQN rolling trends dataset for each variable to demonstrate changes in the distribution of 

RSS values for each window. Similarly, for each variable we calculated and plotted the PIT 

statistic derived from the NRWQN rolling trends dataset for each time-period window and time-

period length. 

Variability in evaluated trends between different time-period windows can be related to 

sampling error, trends in water quality due to anthropogenic actions and trends associated 

with other forcing (e.g., ENSO) or to a combination of these three factors. Scarsbrook et al. 

(2003) showed that temporal patterns in water quality observations and water quality trends 

were correlated with the El Niño Southern Oscillation (commonly called ENSO) climate 

pattern. ENSO constitutes the single largest source of inter-annual variability in the global 

climate system (Diaz et al., 1992). While this pattern is best known for the extremes of the 

oscillation (i.e., El Niño and La Niña) the phenomenon is in fact part of a continuum reflecting 

changes in sea level atmospheric pressure in the tropical Pacific Ocean (Allan et al., 1996).  

The SOI is calculated as the normalized anomalies of the monthly mean sea level pressure 

difference between Tahiti and Darwin. The SOI typically ranges from -30 to 30 and is quasi-

periodic with a typical period of 3 to 7 years. An El Niño phase is defined when the SOI < 0 

and a la Niña phase when the SOI > 0.  Examples of the impact of ENSO on New Zealand 

climate can be seen at https://www.niwa.co.nz/our-science/climate/information-and-

resources/clivar/elnino. Several other indices have been developed, but the SOI is most 

frequently used (Allan et al., 1996; Mosley, 2000). Monthly values of the SOI for the period 

from 1989 to 2017 were obtained from the Australian Bureau of Meteorology 

(http://www.bom.gov.au/climate/current/soi2.shtml) and we use the Troup convention, 

whereby normalized index values are multiplied by 10. 

Following Scarsbrook et al. (2003), we examined the association between water quality trends 

and climate forcing in two steps. First, for each site and variable, we characterised the 

association between individual water quality observations and the SOI. Second, for each trend 

period length, we examined the aggregate behaviour of site trends in each trend period 

window in relation to the linear trend in the SOI for the corresponding window. These two steps 

are described in more detail in the subsequent sections.  

3.5.2 Association between water quality observations and the SOI  

The Pearson correlation coefficient was used to indicate the strength of linear relationships 

between SOI and individual water quality variables at each site (Figure 3). We used all the 

observations in the entire period of record at for each site to calculate the correlation 

coefficients. To reduce the variability associated with regular seasonal changes, all water 

quality observations were deseasonalised by employing 12-month centred moving averages 

and the SOI was treated similarly (Figure 3). For each variable, we classified each site as 

either a negative or positive responder to the SOI depending on whether the Pearson 

correlation coefficient was positive or negative (Figure 3). We mapped these SOI response 

classes to examine their spatial distribution.  
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Figure 3. Examples of correlations between water quality observations and SOI. The top plot 

is nitrate at CHO2 (Hurunui @ SH1 Bridge), which has a correlation of 0.72. The lower plot 

is DRP at RO05 (Rangitaiki @ Te Teko) which has a correlation of -0.55. The lines are the 

deseasonalised data (I.e., 12-month centred moving average values) and the points are the 

individual monthly observations. 

To provide further insights into the reasons for the spatial distribution of SOI response classes, 

we used statistical modelling. A statistical classification model was used to explain the 

geographic distribution of SOI response classes using geographic coordinates and catchment 

characteristics as explanatory variables. The statistical modelling methods and detailed 

results are provided in Appendix 2. 

3.5.3 Association between water quality trends and SOI trends 

We used the SOI response classes to examine the association between trends in each water 

quality variable and trends in the SOI in three steps. First, we quantified the monotonic trend 
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in the SOI for every time-period window associated with the rolling trends (i.e., 5, 10 and 20-

year time-period lengths starting from 1990 with time-period windows incrementing by one 

year to a final time-period window ending in 2017). We quantified the trend in the SOI by 

regressing the monthly values of SOI against their respective dates. We used simple linear 

regression because the SOI data are approximately normally distributed.  

At the second step we plotted the RSS and PIT statistics against the end year of each time-

period window for all eight water quality variables and the three time-period lengths. On these 

plots we grouped sites by their SOI response classes and superimposed the SOI trends for 

the corresponding time-period windows. We expected that there would be relationships 

between the “aggregate trend” (i.e., the mean RSS values and PIT statistics) and the SOI 

trends. In addition, we expected that there would be systematic differences in those 

relationships between SOI response classes. In particular, we expected that when the SOI 

trend was negative, the positive SOI response class would tend toward negative RSS values 

and, for variables where decreasing RSS indicates improvement, this would produce high PIT 

statistics, and vice versa. For variables where increasing trends suggest improvement (e.g. 

CLAR), in this example, the reverse relationship with PIT would be expected. There are four 

combinations of SOI trend and SOI response class, each associated with a differing expected 

aggregate trend response, which are summarised on Table 3. 

Table 3. Expected aggregate water quality trend outcome.Each of the four combined SOI 

response and SOI trend classes are represented by the four cells in the table.  

 SOI trend  

SOI response class Decreasing Increasing 

Positive High PIT1 & Negative RSS Low PIT2 & Positive RSS 

Negative High PIT1 & Positive RSS Low PIT2 & Negative RSS 

Notes: 

1. Low PIT for CLAR 

2. High PIT for CLAR 

The third step used the site correlation with the SOI and the SOI trend in each trend period 

window to explain the between site differences in RSS values and PIT statistics for each time-

period window. For each water quality variable and time-period length (i.e., taking all the time-

period windows) we fitted a linear regression model of the form: 

RSSSW ~ SOICorS + SOITrendW Equation 1 

where RSSSW is the trend magnitudes of all sites and all windows (i.e., the individual RSS 

values), SOICorS is the observation - SOI correlation of all sites and SOITrendW is the linear 

trend in the SOI for the time-period window.  

For each water quality variable and time-period length (i.e., taking all the time-period windows) 

we fitted a second linear regression model of the form: 

PITWC ~ SOIClass x SOITrendw  Equation 2 

where PITWC is the PIT statistic for each SOI response class and all time-period windows, 

SOIClass is the SOI response class of the sites from which PIT is calculated and SOITrendW 

is the linear trend in the SOI for the time-period window. This second model specifies an 

interaction between SOIClassC and SOITrendW (indicated by the multiplication operator in the 
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above model). The interaction allows the effect of the SOI trend to depend on the SOI class 

of each site, which allows the model to represent the expectations set out in Table 3. 

4 Results 

4.1 Variation in confidence of trend evaluations 

Correlations between measures of confidence in the trend direction and various distributional 

characteristics of the observation datasets are shown in Figure 4 and Figure 5. Confidence in 

trend direction is quantified by the p-value and the confidence trend magnitude (or precision 

of) is quantified by the 90% confidence intervals of the Sen slope. A full set of correlation 

matrices pertaining to each individual water quality variable is provided in Appendix A.  

For all variables, the p-value is strongly negatively correlated to the magnitude to the trend 

and moderately negatively correlated to the trend period length, i.e. as the trend magnitude 

and trend periods increase, confidence in the trend direction increases. Other characteristics 

of the water quality observations were also associated with the confidence in trend direction. 

For DRP, TP and NH4N, the p-value was moderately positively correlated with the proportion 

of unique observations (i.e., the p-values are influenced by measurement precision). These 

variables have low measurement precision leading to many observations having the same 

numeric value, and therefore low proportions of unique observations. There were also 

moderate negative correlations between confidence in trend direction and Sen slope 

precision. 

Variation in the confidence in trend magnitude was most strongly correlated with the absolute 

RSS (i.e., the trend magnitude). The correlation coefficients were positive indicating that trend 

precision is lower for higher magnitude trends. There were also strong negative correlations 

with time-period length and number of observations, indicating that estimates of trend 

magnitudes become more precise with increasing dataset size.  It is also noted however, that 

trend magnitude and period are moderately negatively correlated hence these observations 

are not independent. 

The variability in the observations (as characterised by the standard deviation of log10 of the 

observations) only had moderate to low correlations with the p-value.  The Sen slope 

confidence intervals for TURB, MCI and NH4N increase as the observation variability 

increased; the relationship for other water quality variables were in the same direction, but the 

correlations were weaker.  
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Figure 4: Correlations between the trend analysis Kendall test p-value and characteristics of 

the observation datasets and the evaluated trends, by water quality variable.Values in the 

cells are the Spearman rank correlation coefficient. Cells with no values had Spearman rank 

correlation coefficient p-values > 0.05. 

  

Figure 5: Correlations between width of the Sen slope 90% CI (precision) and characteristics 

of the observation datasets and the evaluated trends, by water quality variable. Values in 

cells are the Spearman rank correlation coefficient.  Cells with no values had correlations 

with p-values >0.05. 
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Generally, the minimum detectable trend magnitudes (RSS and Sen slopes) decreased as 

time-period increased for all confidence levels (Table 4). For example, for a 5-year time-period 

length, 90% of trends with RSS >12.6% were detected with a confidence of 95% but for a 10-

year time-period length 90% of trends with RSS >6.6% were detected with this level of 

confidence. There were some deviations from this pattern between the 5 and 10-year values, 

which is likely due to the differences in the sampled sites in each group (a maximum of 77 

NRWQN sites for 5 years, compared with approximately 300 sites for the 10-year samples).  
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Table 4. Minimum detectable trend magnitudes as RSS and absolute Sen Slopes, by time-

period length, confidence level and water quality variable. The values in the cells are the 

trend magnitudes at which 90% of trends have the indicated confidence levels. The cells are 

coloured on one colour scale (white to red) from lowest to highest RSS across all variables. 

Sen Slope cells are coloured from white to red, with scales individualised to each water 

quality variable. 

Variable 

Time-
period 
length 

Absolute RSS (%) Absolute Sen Slope1 

Confidence level 

80th 90th 95th 80th 90th 95th 

CLAR 

5 4.4 9.7 12.6 1.2E-01 2.7E-01 4.4E-01 

10 1.3 2.5 3.6 2.4E-02 8.1E-02 1.3E-01 

20 0.3 0.5 0.9 3.8E-03 9.5E-03 2.5E-02 

28 0.2 0.3 0.3 2.4E-03 3.6E-03 4.0E-03 

DRP 

5 2.7 5.0 7.9 2.9E-04 9.1E-04 3.7E-03 

10 0.7 1.5 2.6 3.7E-03 1.8E-03 1.7E-03 

20 0.1 0.4 0.6 5.6E-06 2.3E-05 2.1E-03 

28 0.0 0.3 0.4 1.6E-06 3.0E-05 4.6E-05 

ECOLI 

5 6.9 12.6 22.9 1.5E+01 4.3E+01 4.7E+01 

10 2.9 7.0 11.8 4.7E+01 5.7E+01 9.2E+01 

20 0.6 1.9 2.4 3.4E+00 8.3E+00 1.3E+01 

28 0.4 0.4 1.2 2.1E+00 2.1E+00 2.1E+00 

MCI 
10 1.4 3.0 4.6 1.3E+00 2.7E+00 1.0E+00 

20 0.4 0.7 1.6 3.8E-01 6.9E-01 1.7E+00 

28 0.2 0.3 0.4 1.7E-01 3.1E-01 4.2E-01 

NH4N 

5 3.4 6.9 10.6 8.5E-04 2.5E-03 6.8E-03 

10 0.9 2.2 3.4 1.3E-04 3.5E-03 1.1E-01 

20 0.1 0.4 0.7 1.1E-05 4.6E-05 7.9E-05 

28 0.0 0.2 0.5 0.0E+00 1.7E-05 4.6E-04 

NO3N 

5 3.6 6.8 10.6 1.5E-02 2.5E-02 6.0E-02 

10 0.9 1.9 3.2 3.2E-03 1.1E-02 6.7E-02 

20 0.1 0.4 0.6 1.3E-04 4.1E-04 1.6E-03 

28 0.1 0.1 0.4 5.0E-05 2.5E-04 7.4E-04 

TN 

5 2.4 4.2 5.7 1.6E-02 3.5E-02 4.7E-02 

10 12.7 12.7 7.3 4.1E-03 2.4E-02 1.0E-01 

20 0.1 0.4 0.5 1.7E-04 8.7E-04 2.2E-03 

28 0.1 0.1 0.2 1.2E-04 4.9E-04 6.7E-04 

TP 

5 4.3 9.1 12.8 1.2E-03 3.6E-03 6.7E-03 

10 1.4 2.9 4.9 4.0E-04 1.1E-03 8.0E-03 

20 0.3 0.6 0.9 6.9E-05 1.5E-04 2.4E-04 

28 0.1 0.2 0.4 1.8E-05 3.1E-05 1.1E-04 

TURB 

5 5.8 10.6 16.4 2.6E+00 6.9E+00 1.3E+01 

10 1.7 3.3 4.8 5.1E-01 1.5E+00 2.4E+00 

20 0.5 0.9 1.4 1.5E-02 5.1E-02 1.9E-01 

28 0.2 0.5 0.6 1.1E-02 2.3E-02 6.7E+00 
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4.2 Variation in trends with time-period length 

RSS values decreased with increasing time-period length for both the 2017 trends dataset 

and the NRWQN rolling trends dataset (Figure 6). For a given time-period length, the RSS 

values were lower for the NRWQN rolling trends data than the 2017 trends data. This is likely 

related to differences in the sites represented in the two datasets. The NRWQN sites are 

generally located on larger rivers, which may damp the impact of drivers of water quality 

change (e.g., land use changes or climate variation effects) compared to smaller catchments. 

The differences in the RSS values between datasets were generally smaller than those 

between time periods (Figure 6). 

 

 

Figure 6. Distributions of RSS values associated with differing time-period lengths for the 

2017 trends dataset (10, 20 and 28 years) and the NRWQN rolling trends dataset (5, 10 and 

20 years). 

PIT statistics were variable with respect to time-period length for both the 2017 trends 

dataset and the NRWQN rolling trends dataset (Figure 7). For the 2017 trends dataset, 

PIT was >50% (i.e., a majority of sites were improving) for most time-period windows 

except for TN and TURB. For each variable, there was at least one significant difference 

in PIT statistics (i.e., non-overlapping 95% confidence intervals) between time-period 

lengths (e.g., DRP for the 20-year period compared to the 28-year period). 

The PIT statistics were highly variable for the NRWQN rolling trends dataset (Figure 7). 

The distribution of PIT across time-period windows was generally evenly split between the 
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majority of sites improving and degrading (i.e. the distributions lay either side of the 50% 

line on Figure 7). Exceptions to this were CLAR and TN for time-period lengths of 10 and 

20-years, for which PIT was >50% and <50% for all time-period windows (i.e., the entire 

distributions were above and below the 50% line on Figure 7).   

  

 

Figure 7: PIT statistics derived from the 2017 trends dataset (10, 20 and 28 years) and the 

NRWQN rolling trends dataset (5, 10 and 20 years) for differing trend period lengths. A 

single PIT statistic is shown for each variable and time-period length for the 2017 trends 

dataset, which pertains to the period ending 2017. The error bars show the 95% confidence 

intervals for this PIT statistic. The boxplots show the distribution of PIT statistics for each 

variable for all the analysed time-period windows for the NRWQN rolling trends dataset. No 

confidence intervals are shown for the PIT statistics associated with the NRWQN rolling 

trends dataset.  

4.3 Variation in trends with time-period window 

4.3.1 Temporal variation in aggregate trends 

For all variables, the distribution of NRWQN site trend magnitudes was sensitive to time-period 

of analysis (Figure 8). For all variables and time-period windows, the site median RSS 

fluctuated between positive and negative values, but the variability of the site median RSS 
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values decreased with increasing time-period duration (Figure 8). For example, for the 5-year 

time-period length, there were windows for which CLAR had absolute site median RSS values 

greater than 5%, whereas for the 10 and 20-year time periods the highest absolute site median 

RSS values were <3% and <0.5% respectively (Figure 8).  

The changes in the RSS values were quasi periodic for most variables and trend durations. 

For example, for the 5-year time period there were up to 3 peaks and troughs (e.g., CLAR, 

DRP; Figure 8). The temporal patterns in the median RSS values differed between variables 

and were inversely related for some pairs of variables (e.g., NH4N compared to DRP and 

NO3N for the 10- and 20-year time-period windows; Figure 8). 

 

Figure 8. Temporal variation in trend magnitude with time-period window. The points 

represent the median RSS value (over all NRWQN sites) and the grey ribbon indicates the 

interquartile range.   

For all variables, the proportion of sites with improving trends (PIT statistic) was sensitive to 

time period of analysis (Figure 9). For all variables and time-period windows, the PIT statistic 

fluctuated between values greater than and less than 50% (Figure 9).  The variability of the 
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PIT statistics decreased with increasing time-period duration (Figure 9). For example, for the 

5-year time period there were examples of greater than 95% confidence that the majority 

improving of sites improved (i.e., the lower 95% confidence interval for PIT was greater than 

50%) to majority degrading trends (i.e., the upper 95% confidence interval for PIT was less 

than 50%) within a one or two year change in the trend period, whereas this did not occur for 

the 20-year period.  

The temporal variation of the PIT statistics exhibited the same pattern to the temporal variation 

in the trend magnitudes and were quasi-periodic for most variables and trend durations. For 

example, for the 5-year time period there were up to 3 peaks and troughs for both the trend 

magnitude and PIT statistics for CLAR; Figure 8 and Figure 9). The temporal patterns in the 

PIT statistics differed between variables and were inversely related for some pairs of variables 

(e.g., NH4N compared to TN, NO3N and TP for the 10- and 20-year time-period windows; 

Figure 9). 
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Figure 9. Variation in the characteristic trend magnitude with time-period window. The points 

represent the PIT statistic (proportion of improving NRWQN sites) and the grey ribbon 

indicates the 95% confidence interval of PIT.   

4.3.2 Association between water quality observations and SOI 

There was significant variation in the strength and direction of the relationship between the 
monthly deseasonalised water quality observations and the monthly deseasonalised SOI at 
individual NRWQN sites (Figure 10). Pearson correlation coefficient values ranged from-0.5 
to 0.7. The mean of the absolute values of correlation differed by water quality variable and 
was lowest for TURB and highest for DRP (Table 5). Site type (i.e., impact or baseline) 
explained a maximum of 12% of the variation in the correlation coefficients and was only 
significant for DRP, NH4N and TN (note the p-value was 0.06 for NO3N) (Table 5).  
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Figure 10. Distributions of Pearson correlation coefficient measuring the linear relationships 

between water quality observations and the SOI at the NRWQN sites. The red line indicates 

a correlation coefficient of zero. 
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Table 5. Pearson correlations of monthly deseasonalised water quality observation and the 

monthly deseasonalised SOI by water quality variable. The mean absolute correlations are 

shown for all sites and sites grouped by site type (impact or baseline). The ANOVA statistics 

test whether site type (i.e., impact or baseline) explains the value of the site correlations.  

Variable Mean absolute correlation ANOVA statistics 

All sites Impact sites Baseline sites R2 (%) P value 

CLAR 0.15 0.16 0.13 2 0.19 

DRP 0.29 0.26 0.35 7 0.02 

ECOLI 0.19 0.19 0.20 0 0.75 

NH4N 0.22 0.20 0.26 12 0.002 

NO3N 0.24 0.26 0.20 5 0.06 

TN 0.18 0.19 0.15 9 0.01 

TP 0.13 0.13 0.15 2 0.25 

TURB 0.12 0.12 0.13 0 0.83 

 

Sites were predominantly assigned to the positive SOI response class (i.e. concentrations are 

on average higher when SOI > 0) for all variables except NH4N (Table 6). 

Table 6. Proportion of the 77 NRWQN sites in the positive and negative SOI response 

classes. 

Variable Positive Negative 

CLAR 60 40 

DRP 81 19 

ECOLI 61 39 

NH4N 27 73 

NO3N 70 30 

TN 62 38 

TP 45 55 

TURB 55 45 

 

The spatial patterns associated with the SOI response classes indicated that the direction of 

response of water quality to the SOI for a given site differs by water quality variable (Figure 

11). The mapped patterns suggest that the causes of SOI response class membership are not 

purely spatial and are complex (e.g., for a given water quality site, adjacent sites could belong 

to different classes (Figure 11). See Appendix A2 for further analysis of spatial variation in SOI 

response classes.  
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Figure 11. Geographic patterns in SOI response classes for NRWQN sites and the six water 

quality variables.   

4.3.3 Association between water quality and SOI trends 

The linear trend in the SOI varied between time-period windows for all three trend period 

lengths (i.e., 5, 10 and 20 years; Figure 12). All three trend periods lengths were represented 

by trend period windows with both positive and negative SOI trends. However, the magnitudes 

of the SOI trends generally decreased with increasing time-period length (Figure 12).  
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Figure 12. Linear trends in the SOI for three trend period lengths of 5, 10 and 20 years. Each 

point represents the linear trend in the SOI for the time-period window (panels) with the 

indicated end year (x-axis). 

For all variables, the distribution of NRWQN site trend magnitudes for sites grouped by SOI 

response class were sensitive to the time-period of analysis (Figure 13). There was a degree 

of correspondence between the linear trend in the SOI for the time-period window and the site 

trend magnitudes (Figure 13). For example, for DRP and the 5-year time-period lengths, the 

median RSS values for the positive SOI response group tended to be positive for time-period 

windows when the SOI trend was positive and vice versa. There was also a degree of 

correspondence between the expected aggregate water quality trend outcome (Table 3) and 

the variation in median RSS values of the sites grouped by positive and negative SOI response 

classes. For example, when the SOI trend was positive, the RSS values for DRP for sites in 

the positive SOI response class tended to be positive and the RSS values for DRP for sites in 

the negative SOI response class tended to be negative (Figure 13). 

The degree to which median RSS values for the individual variables followed the expected 

outcomes (Table 3) differed (Figure 13). In addition, within a variable the correspondence of 

median RSS values and expected outcomes (Table 3) differed between trend period lengths 

(Figure 13). For example, for NO3N and the five-year trend period windows, there were trend 

periods where both positive and negative SOI response classes had median RSS values that 

were positive (e.g., periods ending 2000, 2001, 2002 and 2003; Figure 13). This was contrary 

to the expected outcomes described in Table 3. However, for the 10-year time-period length, 

the median RSS values for the positive and negative SOI response classes were in close 

agreement with expectations for most time-period windows (i.e., the negative class had 

negative median RSS values when the linear trend in the SOI was positive and vice versa; 

Figure 13).   
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Figure 13. SOI trend and aggregate water quality trends (represented by median RSS 

values) for NRWQN sites grouped by SOI response class. The columns represent the three 

trend period lengths and the rows represent the water quality variables. The linear trend in 

the SOI is the green line on each panel. The aggregate water quality trends are shown by 

the red and blue lines which indicate the median of the site RSS values for the positive and 

negative SOI response classes respectively.  

For all variables, the PIT statistics for sites grouped by SOI response class were sensitive to 

time-period of analysis (Figure 14). There was a degree of correspondence between the linear 

trend in the SOI for the time-period window and the site trend magnitudes (Figure 14). For 

example, for NO3N and the 10- and 20-year time-period lengths, the PIT statistics for the 

positive SOI response group tended to be below 50% (i.e., a majority of sites were degrading) 
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for time-period windows when the SOI trend was positive and vice versa. Note that the reverse 

pattern is evident for CLAR because increasing clarity indicates improvement; hence the PIT 

statistics for the negative SOI response group tended to be below 50% when the SOI trend 

was positive and vice versa.  

There was a degree of correspondence between the expected aggregate water quality trend 

outcome (Table 3) and the variation in PIT statistics of the sites grouped by positive and 

negative SOI response classes. For example, when the SOI trend was positive, the PIT 

statistics for DRP for sites in the positive SOI response class tended to be below 50% (i.e., a 

majority of sites were degrading) and the PIT statistics for DRP for sites in the negative SOI 

response class tended to be above 50% (Figure 14). 

The degree to which PIT statistics for the individual water quality variables followed the 

expected outcomes (Table 3) differed (Figure 14). In addition, within a variable the 

correspondence of PIT statistics and expected outcomes (Table 3) differed between trend 

period lengths (Figure 13). For example, for NO3N and the five-year trend period windows, 

there were trend periods where both positive and negative SOI response classes had PIT 

statistics above or below 50% (i.e., a majority of sites were improving or degrading) (e.g., 

periods ending 2000 - 2003; and 2005 – 2008; Figure 14). This was contrary to the expected 

outcomes described in Table 3. However, for the 10-year time-period length, the PIT statistics 

for the positive and negative SOI response classes were in close agreement with expectations 

for most time-period windows (i.e., the negative class had PIT>50% when the linear trend in 

the SOI was positive and vice versa; Figure 14). 
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Figure 14. SOI trend and aggregate water quality trends (represented by PIT statistics) for 

NRWQN sites grouped by SOI response class.The columns represent the three trend period 

lengths and the rows represent the water quality variables. The SOI trend is the green line 

on each panel. The PIT statistics for each SOI response class are shown by the red and 

blue points and lines and the ribbon represents the 95% confidence interval for PIT. 
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Figure 15 illustrates the relationship between the SOI trend and trend magnitude for DRP in 

each of the 15 time-period windows of 10-year duration. The relationship between the RSS 

values and SOI correlation (shown by the red regression line in Figure 15) corresponds to the 

direction of the SOI trend in each time-period window. For example, for the time-period window 

ending 2000 the regression slope was strongly positive, which corresponds to the positive SOI 

trend for that window (see Figure 12). For the time-period window ending 2017 the regression 

slope was strongly negative, which corresponds to the negative SOI trend for that window (see 

Figure 12). 

 

Figure 15. Example of the relationship between the SOI trend and the magnitude of DRP 

trends for the 10-year time-period windows.  Each panel represents a time-period window, 

labelled according to the end year of the window, each of which has a different linear trend in 

the SOI (see Figure 12 for SOI trend directions and magnitudes for each window). The x-

axis represents the SOI correlation coefficient for the site. 

The details of fitting Equation 1 to the site RSS values for each water quality variable and all 

time-period durations are shown in Table 7. Most models were statistically significant 
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indicating that variation in between-site trend magnitude is partly explained by the combination 

of observation - SOI correlation and the linear trend in the SOI for the time-period window.  

The variation in site RSS values explained by the models differed between water quality 

variables and was highest for DRP, NH4N and TN and lowest for CLAR, ECOLI and TP (Table 

7). In general, the variation in RSS explained by the models increased with time-period length. 

The models explained in the order of 1%, 4% and 20% of the RSS values, depending on the 

variable for time-period lengths of 5, 10 and 20-years (Table 7).  

Table 7. Explanation of between site variation in RSS by observation - SOI correlation and 

the linear trend in the SOI for the time-period window.  Each model reported in the table 

represents the application of Equation 1 to the site RSS and SOI correlations for each time 

period window within each of the three time period lengths (5, 10 and 20 years).  

Variable Time-period 
length 
(Years) 

Number of 
cases 

Variation explained 
(R2 %) 

P-value 

CLAR 5 1837 0.3 0.080 

10 1460 4 0.000 

20 693 16 0.000 

DRP 5 1837 9 0.000 

10 1460 20 0.000 

20 693 27 0.000 

ECOLI 5 705 2 0.000 

10 405 2 0.009 

20 7 16 0.705 

NH4N 5 1452 1 0.000 

10 1460 4 0.000 

20 693 29 0.000 

NO3N 5 1837 3 0.000 

10 1460 7 0.000 

20 693 24 0.000 

TN 5 1452 1 0.000 

10 1460 6 0.000 

20 693 27 0.000 

TP 5 1837 1 0.000 

10 1460 5 0.000 

20 693 18 0.000 

TURB 5 1837 0.8 0.001 

10 1460 1 0.001 

20 693 19 0.000 
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The details of fitting Equation 2 to the time-period window PIT statistics for each water quality 

variable and time-period duration are shown in Table 8. Most models were statistically 

significant indicating that variation in PIT between time-period windows is partly explained by 

the combination of SOI response class and the linear trend in the SOI for the time-period 

window.  

The variation in PIT statistics explained by the models was reasonably uniform among the 

water quality variables and increased with time-period length (Table 8). For most variables, 

the models explained in the order of 10%, 30% and 80% of the variation in PIT statistics, 

depending on the water quality variable, for time-period lengths of 5, 10 and 20-years 

respectively.  

Table 8. Explanation of variation in PIT statistics by SOI response class and the linear trend 

in the SOI for the time-period window.  

Variable Time-period 
length 
(Years) 

Number of 
cases 

Variation explained 
(R2 %) 

P-value 

CLAR 5 48 11 0.166 

10 38 45  0.000 

20 18 87 0.000 

DRP 5 48 43 0.000 

10 38 57 0.000 

20 18 83 0.000 

ECOLI 5 26 3 0.894 

10 18 37 0.087 

NH4N 5 38 11 0.256 

10 38 19 0.064 

20 18 85 0.000 

NO3N 5 48 29 0.002 

10 38 54 0.000 

20 18 99 0.000 

TN 5 38 11 0.267 

10 38 31 0.005 

20 18 94 0.000 

TP 5 48 23 0.010 

10 38 44 0.000 

20 18 87 0.000 

TURB 5 48 11 0.170 

10 38 12 0.233 

20 18 93 0.000 
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5 Discussion 

The primary purposes of the analyses reported here were to investigate three aspects of 

variability in water quality trends;  

1. variation in the confidence of trend evaluations,  

2. variation in trends with time-period length, and  

3. variation in trends with time-period window.  

The first set of analyses (section 4.1) established that variation in the confidence of trend 

assessments was linked to a variety of factors but most strongly linked to trend magnitude 

itself. The range of the 90th confidence intervals  (a measure of precision of in trend magnitude) 

was positively related to trend magnitude (RSS) and was positively related to confidence in 

trend direction (p-value). The trend period length was also moderately negatively correlated 

the with confidence in predicted trend direction, while the precision of the data (proportion of 

unique observations) for DRP, TP and TN were moderately positively correlated to the 

confidence in predicted trend direction. Based on these observations, we were able to 

approximately define the minimum detectable trend magnitude at a given level of confidence 

for each water quality variable, for a given time-period length (Table 4). In general, as the time-

period length increases, smaller trends can be detected with confidence.  

This information provided by Table 4 can inform the design of monitoring and trend evaluation 

strategies.  If a trend magnitude of interest is defined, the information in Table 4 can be used 

to determine the minimum trend-period length required to detect trends of interest at a given 

level of confidence. Or, alternatively, if trend-period length and a trend magnitude of interest 

are both defined, but it is found that this magnitude/time period combination is unlikely to be 

detected with sufficient confidence, consideration can be given to increasing the frequency of 

monitoring. 

The second set of analyses (section 4.2) established that trend magnitudes tend to decrease 

with increasing time-period length. This indicates that comparing trends evaluated over 

different time-period lengths is inappropriate. Apparent decreases in trend magnitude may be 

due to the dampening effect of lengthening time period.  Further, as was demonstrated in 

section 4.3.3, other confounding factors, such as climate, can influence trend magnitude and 

direction, and different period lengths will be subject to different climate conditions (even if 

some of the periods overlap).  

The third set of analyses (section 4.3) established that trends are sensitive to the time-period 

of analysis (i.e., time-period window; Figure 8). This means that there can be large variation 

in the magnitude of trends at individual sites when the trend period window is shifted (e.g., 

changing a ten-year trend period from 2007 – 2016 to the period 2008-2017). The analyses 

also established that the changes in trend magnitudes over many sites between trend periods 

are, to some extent, consistent because there can be large differences in the proportion of 

sites with improving (and conversely, degrading) trends between trend periods (Figure 9). This 

indicates that the trend directions over many sites are to some extent synchronous (i.e., 

exhibiting the same change from positive to negative and vice versa) between trend periods. 

The sensitivity of trends to the time-period window has implications for the reporting of trends 

as part of state of environment reporting. Regional and national state of environment reports 

are produced at regular intervals, often of between two and five years, and generally, water 

quality trends are presented in these reports. Our results indicate that there will often be large 
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fluctuations in the proportions of trends indicating improving or degrading conditions in 

adjacent reporting periods. 

Based on earlier work by Scarsbrook et al. (2003), we hypothesised that the observed 

synchronisation of site trends is partly driven by climatic forcing. We represented climatic 

forcing by the SOI which measures the El Niño Southern Oscillation (ENSO) climate pattern. 

Part of the evidence for the involvement of the ENSO climate pattern in the synchronisation of 

site trends is our observation that the volatility of site trend magnitudes and directions reduces 

with increasing time-period duration (Figure 8, Figure 9). This observation is consistent with 

the pattern of reducing volatility in the monotonic trend in the SOI as time-period increases 

(Figure 12). 

We showed that there are associations between monthly water quality observations and the 

monthly value of the SOI at many sites and that some of these were relatively strong i.e., > 

0.25; Figure 10). Our analysis was simplistic; we did not test for the effect of lags on the 

correlation between water quality and SOI. However, because our results were based on flow 

adjusted water quality data, we assume the observed patterns are not simply due to the 

influence of climate on river flows (Scarsbrook et al., 2003). Furthermore, we showed that 

water quality observations at baseline sites were similarly associated with the monthly value 

of the SOI as at impact sites (Table 5). This suggests that the observed variation in water 

quality is associated with aspects of natural climate variability (e.g., temperature and 

hydrological regimes) rather than with the influence of changing land management practices 

in association with climate variation.  

We also showed that site water quality observations could be either positively or negatively 

associated with the SOI (Figure 10). Scarsbrook et al. (2003) had previously shown that a 

significant proportion of the variation in the direction of the association could be explained by 

six climate regions that were a simplification of the eight rainfall and three temperature regions 

of New Zealand (Salinger and Mullan, 1999). However, in this study, the mapped patterns of 

SOI response class membership did not strongly suggest that the relationship between SOI 

and water quality was regional (Figure 11). We therefore used statistical classification models 

to attempt to explain spatial variation in the SOI response classes. The models explained the 

SOI response class membership as a function of both geographic coordinates (i.e., similar to 

the geographically defined climate regions used by Scarsbrook et al., 2003) and several 

characteristics of each site’s catchment (e.g., elevation, geology, topography). Our hypothesis 

was that the geographic region may differentiate differences in the regional climate’s response 

to the SOI and that catchment characteristics may differentiate the between site water quality 

response to regional climate. Although our statistical models did statistically discriminate SOI 

response classes, the models were generally weak (i.e., no better than satisfactory; Appendix 

B, Table 10). In addition, the relationships fitted by the spatial model offered little insight into 

the mechanisms determining SOI response class membership. CLAR, TURB and TP were 

related to both North and East indicating geographic variation in the water quality – SOI 

association (Figure 11. This may be because variation in measurements of these variables 

are associated with the degree of surface runoff and this is more strongly associated with the 

immediate influence of climate (i.e., rainfall) than other catchment characteristics. We 

therefore conclude that this study has merely indicated that SOI response classes vary in 

geographic and environmental space and that the mechanisms underlying these responses 

are yet to be determined.  

Finally, our analyses showed that aggregate trends (i.e., the mean trend magnitude (RSS) 

and the proportion of improving trends (PIT)) were strongly associated with the combination 
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of the SOI response class of sites and linear trend in the SOI for the time-period window under 

consideration (Figure 13, Figure 14, Table 7, Table 8). The outcomes were not precisely as 

hypothesised on Table 3, but there was a general tendency for the expected pattern to be 

followed. We consider that deviations from the hypothesised pattern can be expected because 

climate is not the only influence on trends and anthropogenic drivers such as increasing land 

use intensity will also be influencing the trends. We showed that the expected pattern was 

generally followed for all trend period durations that we analysed (i.e., 5, 10 and 20). However, 

we found that as time-period length increased, the SOI explained a greater proportion of the 

between site trend magnitudes (RSS; Table 7) and between time-period window proportion of 

improving trends (PIT; Table 8). This may indicate that site trends become more synchronous 

at longer time scales because differences in the short-term responses of individual catchments 

(e.g., lags and sudden responses to large changes in anthropogenic drivers) are dampened.  

Our findings are consistent with those of a limited number of studies in other countries. In 

international studies of rivers draining agricultural areas, long-term records generally show a 

clear upward trend in nitrate concentrations since the 1960s (e.g., Betton et al., 1991; Burt et 

al., 1988; Burt and Worrall, 2009; Van Herpe and Troch, 2000). However, alongside the 

longer-term trends, other temporal variation of nitrate fluxes and concentrations in rivers, have 

been observed at seasonal, interannual (i.e., over 2–6 years) and decadal time scales (Burt 

and Worrall, 2009; Gascuel-Odoux et al., 2010; Van Herpe and Troch, 2000). Inter-annual 

cycling in the norther hemisphere has been explained by climatic drivers and associated with 

the North Atlantic Oscillation (NAO). This has been demonstrated for nitrogen in rivers 

(Mitchell et al., 1996; Monteith et al., 2000; Straile et al., 2003) but also for a range of water 

quality variables in both rivers and lakes (Weyhenmeyer, 2004).   

A study of long-term records in 30 coastal rivers of western France by Gascuel-Odoux et al. 

(2010) indicated inter-annual cyclic behaviour in the fluxes and concentrations of nitrate. The 

study used deterministic hydrological modelling to highlight that the behaviour results from the 

interaction of climate, hydrology and land management practices. The study showed that the 

causes of the observed behaviours was complex. They found that the timing and amount of 

nitrate leached at the scale of soil profiles is strongly controlled by the balance of the 

fertilisation and by the rate of the biological processes in the soil. Inter-annual variations in 

leaching was therefore related to climate variables (temperature, rainfall) and to management 

practices. However, at the catchment scale, the behaviour of nitrate concentrations and fluxes 

was strongly influenced by the buffering effect of the groundwater system, which delayed 

delivery to the streams and dampened the variation in nitrate leaching.  

Gascuel-Odoux et al. (2010) showed that although the inter-annual climatic variation can 

strongly influence nitrate concentrations and fluxes at the catchment scale, long term 

agricultural changes were the main drivers of the long-term trends. However, catchment 

hydrology induced large variations in the dynamics of the response to climatic and 

anthropogenic drivers. Gascuel-Odoux et al. (2010) concluded this variability presents 

difficulties to assessing the effects of pollution mitigation measures.  

Our study indicates that attributing trends to causes is complex and that the role of climate is 

significant and needs to be accounted for. The results of our study do not mean that climate 

is responsible for long term changes in water quality. However, our results indicate that climate 

exerts considerable influence over water quality at inter-annual time scales. Because our trend 

analyses always involve periods in which climate is variable, attributing trends to causes will 

need to control for climate variation. Our study suggests two relatively simple statistical 

treatments of trend data may improve the quality of inferences drawn from trend analyses. 
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First, climate indices such as the SOI could be treated as a covariate in trend analysis of 

individual sites in much the same way that flow adjustment is performed. Second, large scale 

studies seeking to explain variation in trends over many sites could include the influence of 

the SOI, as defined by the correlation of the monthly observations with the monthly value of 

the SOI, as an explanatory variable. This type of analysis would benefit from the inclusion of 

additional explanatory variables such as of changes in land use or land management (e.g., 

(Snelder, 2018). This type of approach could statistically control for the influence of the SOI 

and evaluate the component of the trend that was attributable to land use or land 

management. Finally, the SOI is one index that measures an aspect of climate variation. It 

may be that more appropriate or additional measures of climate variability are appropriate. We 

therefore recommend that further research on the role of climate on water quality and practical 

methods to account for the effect of climate variation on water quality measurements is 

undertaken.  
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A1 Correlation matrices for characteristics of the trends and observation datasets 

   

Figure 16. Matrices showing the correlation between all trend analysis outcomes and the characteristics of the observation datasets and the 

evaluated trends, by water quality variable.  This includes all the variables in Table 2 as well as the p-value (p) and Sen slope 90% 

confidence intervals (SenPrecision). Values in the cells are the Spearman rank correlation coefficient. Cells with no values had Spearman 

rank correlation coefficient p-values > 0.05
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A2 Statistical modelling of SOI response classes 

A2.1 Methods 

The strength of the relationship between individual water quality observations at a site and the 

SOI was characterised by the Pearson correlation between deseasonalised SOI and the 

deseasonalised water quality observations at each site as described in Section 3.5.2Error! R

eference source not found.. Sites were assigned to SOI response classes based on the sign 

of the Pearson correlation coefficient and irrespective of the level of confidence (i.e., the p-

value) of the coefficient. This decision is justifiable on the basis that the p-values indicate 

confidence in the sign of the correlation coefficient at individual sites, and hence their 

assignment to SOI response classes. The acceptable risk of making incorrect assignments at 

individual sites is arbitrary (i.e., alpha value of 0.05 is arbitrary but is generally accepted). The 

confidence in the SOI response class assignment for individual sites can be disregarded when 

considering all sites globally because it is assumed that incorrect classifications will cancel 

each other (i.e., as many sites will be misclassified as positive as sites misclassified as 

negative). Therefore, the “face value” of each site’s correlation coefficient (i.e., the direction 

indicated the Pearson correlation coefficient) was used to assign each site to an SOI response 

class, irrespective of the p-value.  

Statistical classification models were used to discriminate between sites assigned to the 

negative and positive SOI response classes based on many potential predictor variables 

including geographic coordinates and catchment characteristics. The statistical modelling 

used the same approach as those used to generate predications of river and lake water quality 

state (Whitehead, 2018, Fraser et al. 2019) and other predictions of water quality at regional 

to national scales (e.g., Larned et al., 2016; Unwin et al., 2010). The approach combines the 

monitoring site locations with a spatial framework provided by a database representing the 

national river network. The database contains a range of variables that represent the 

characteristics of the catchments upstream of every segment of the river network (Wild et al., 

2005). The statistical spatial models used the same catchment characteristics as Larned et al. 

(2016) and Snelder et al. (2018) as predictor variables in the models (Table 9).  
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Table 9. Predictor variables used in spatial models of SOI response class. 

Predictor Abbreviation Description Unit 

Geography 
and 
topography 

North  Site location coordinate  m 

East Site location coordinate m 

usArea Catchment area m2 

usLake Proportion of upstream catchment occupied by lakes % 

usCatElev Catchment mean elevation m ASL 

usAveSlope Catchment mean slope degrees 

segAveElev Segment mean elevation degrees 

Climate and 
flow 

usAvTWarm Catchment averaged summer air temperature degrees C x 10 

usAvTCold Catchment averaged winter air temperature degrees C x 10 

usAnRainVar Catchment average coefficient of variation of annual 
rainfall 

mm y-1r 

usRainDays10 Catchment average frequency of rainfall > 10 mm days month-1 

usRainDays20 Catchment average frequency of rainfall > 20 mm days month-1 

usRainDays100 Catchment average frequency of rainfall > 100 mm days month-1 

segAveTCold Segment mean minimum winter air temperature degrees C x 10 

usFlow Estimated mean flow m3 s-1 

Geology* usHard Catchment average induration or hardness value Ordinal* 

usPhos Catchment average phosphorous Ordinal* 

usParticleSize Catchment average particle size Ordinal* 

Land cover usPastoral Proportion of catchment occupied by combination of high 
producing exotic grassland, short-rotation cropland, 
orchard, vineyard and other perennial crops (LCDB3 
classes 40, 30, 31, 33) 

Proportion 

usIndigForest Proportion of catchment occupied by indigenous forest 
(LCDB3 class 69) 

Proportion 

usUrban Proportion of catchment occupied by built-up area, urban 
parkland, surface mine, dump and transport infrastructure 
(LCDB3 classes 1,2,6,5) 

Proportion 

usScrub Proportion of catchment occupied by scrub and shrub 
land cover (LCDB3 classes 50, 51, 52, 54, 55, 56, 58) 

Proportion 

usWetland Proportion of catchment occupied by lake and pond, river 
and estuarine open water (LCDB3 classes 20, 21, 22) 

Proportion 

usBare Proportion of catchment occupied by bare ground 
(LCDB3 classes 10, 11, 12,13,14, 15) 

Proportion 

usExoticForest Proportion of catchment occupied by exotic forest 
(LCDB3 class 71) 

Proportion 

usGlacial Proportion of catchment occupied by ice (LCDB3 classes 
14) 

Proportion 

 

We fitted the classification model using Random Forest (RF) modes; the same type of 

statistical model that Whitehead (2018) and Fraser et al. (2019) used to model water quality 

state but in a classification mode. RF models are a machine learning method that automatically 

detects and fits non-linear relationships and high order interactions, both of which we expected 
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may be involved in discriminating SOI response class membership due to the sites being 

located over large environmental gradients (Unwin et al., 2010). Determining and specifying 

non-linearities and interactions in more traditional statistical models such as linear models 

requires significant skill and insight by the modeller into the relationships being modelled. 

Because RF models automatically detect and fit these complex relationships, it is more likely 

that results generated by different modellers will be comparable.  

A RF model is an ensemble of individual classification and regression trees (CART). In a 

regression context, CART partitions the observations (the site SOI response classes) into 

groups that minimise the misclassification of sites based on a series of binary rules or splits 

that are constructed from the predictor variables. CART models require no distributional 

assumptions and automatically fit non-linear relationships and high order interactions. 

However, single regression trees have the limitations of not searching for optimal tree 

structures, and of being sensitive to small changes in input data (Hastie and Tibshirani, 1990). 

RF models reduce these limitations by using an ensemble of trees (a forest) and making 

predictions based on the average of all trees (Breiman 2001). Detailed descriptions of RF 

models and their diagnostic tools are described in detail in Breiman (2001) and Cutler et al. 

(2007). 

Misclassification rates and receiver operating curves (ROCs) were used to evaluate the 

performance of the classification models. ROC plots show the true positive rate (sensitivity) 

against the false positive rate (1−specificity) as the probability threshold used to classify a 

case varies from 0 to 1 (Hanley and McNeil, 1982). Good models have high true positive rates 

and relatively small false positive rates and, therefore, have ROC plots that rise steeply at the 

origin, and level off near the maximum value of 1. The ROC plot for a poor model lies near the 

diagonal, where the true positive rate equals the false positive rate for all thresholds. The 

model performance was quantified using the area under the ROC curve (AUC). AUC is a 

measure of the performance of a binary classifier, with a good model having an AUC near 1, 

while a poor model will have an AUC near 0.5 (Hanley and McNeil, 1982). The following rules 

of thumb were used to express the quality of the model indicated by AUC in narrative terms: 

very good (0.9 – 0.8); good (0.8 - 0.7); satisfactory (0.7 - 0.6); poor (0.6 - 0.5). 

The relationships between predictor and response variables represented by RF models were 

represented by importance measures and partial dependence plots (Breiman 2001; Cutler et 

al. 2007). The importance of each predictor variable is indicated by the degree to which 

prediction accuracy decreases when the response variable is randomly permuted. Importance 

is defined in this study as the total decrease in node impurities (a measure of misclassification 

rate) associated with splits based on the predictor variable, averaged over all trees.  

A partial dependence plot is a graphical representation of the marginal effect of a predictor 

variable on the response variable, when the values of all other predictor variables are held 

constant. The benefit of holding the other predictors constant (generally at their respective 

mean values) is that the partial dependence plot effectively ignores their influence on the 

response variables. Partial dependence plots do not perfectly represent the effects of each 

predictor variable, particularly if predictor variables are highly correlated or strongly interacting, 

but they do provide an approximation of the modelled predictor-response relationships that 

are useful for model interpretation (Cutler et al. 2007). 

RF models can include any of the original set of predictor variables that are chosen during the 

model fitting process. Inclusion of marginally important and correlated predictor variables does 

not degrade the performance of the RF models. However, these predictor variables may be 

redundant (i.e. their removal does not affect model performance) and their inclusion can 
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complicate model interpretation. We used the predictor elimination procedure (Svetnik et al., 

2004) to remove redundant predictor variables from the models. The procedure first assesses 

the model error (miss-classification rate) using a 10-fold cross validation process. The 

predictions made to the hold out observations during cross validation are used to estimate the 

miss-classification rate and its standard error. The model’s least important predictor variables 

are then removed in order, with the miss-classification rate and its standard error being 

assessed for each for each successive model. The final, ‘reduced’ model is defined as the 

model with the fewest predictor variables whose error is within one standard error of the best 

model (i.e. the model with the lowest cross validated miss-classification rate). This is 

equivalent to the “one standard error rule” used for cross validation of classification trees 

(Breiman et al., 1984). 

An alternative approach is to choose the model with the smallest error. We used the former 

procedure as it retains fewer predictor variables than the latter procedure, while achieving an 

error rate that is not different, within sampling error, from the “best solution”. Importance levels 

for predictor variables were not recalculated at each reduction step to avoid over-fitting 

(Svetnik et al., 2004). 

All calculations were performed in the R statistical computing environment (R Development 

Core Team 2009) using the randomForest package and other specialised packages. 

A2.2 Results 

All RF models were able to significantly discriminate positive and negative response classes 

on the basis of the site geographic coordinates and catchment characteristics of the upstream 

catchment (Table 10). Model performance as indicated by AUC were at least satisfactory (0.7 

- 0.6) for CLAR, DRP. NO3N, TN and TURB but were poor (0.6 - 0.5) for ECOLI, NH4N, and 

TP (Table 10).  

Table 10. Performance of the RF models of SOI response class.  

Variable Misclassification rate (%) AUC  

CLAR 36 0.64 

DRP 21 0.62 

ECOLI 39 0.56 

NH4N 35 0.59 

NO3N 29 0.70 

TN 35 0.71 

TP 55 0.53 

TURB 39 0.63 

 

Model simplification reduced the number of predictor variables in all models considerably. The 

CLAR model included three predictors (North, usPhos and East; Figure 17). The TN model 

included two predictors (usRain and usArea) and the NO3N model included two predictors 

(segTmin and usTmin) (Figure 17). All other models included two predictors (Figure 17). The 

models of SOI response class for CLAR, TURB and TP included only North and East as 
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predictors indicating geographic variation in the direction of water quality – SOI association. 

This may be because variation in measurements of these predictors are associated with the 

degree of surface runoff and this is more strongly associated with climate (i.e., rainfall) than 

other catchment characteristics. For the other water quality variables, the predictors and partial 

plots characterising the fitted relationships between the predictor and response (probability 

the site belonged to the Positive class) were difficult to interpret. A mix of predictors were 

included in these models that suggest SOI response class is associated with catchment 

geology (i.e., usCalc, usPhos), land cover (i.e., usIntensiveAg, usWetland, usUrban), climate 

(i.e., usRain, usTmin, segTwarm) and as well as river size (i.e., usArea, MeanFlow) and 

catchment topography (usElev). It is difficult to understand why these variables are associated 

with SOI response class and we conclude that the results indicate that the causes of water 

quality response to variation in climate are complex. 

  

Figure 17. Partial plots characterising the relationships between the 15 predictors included in 

at least one of the RF models and the response (probability the site belonged to the Positive 

class) fitted by the simplified RF models.  


