

Memorandum

То:	James Court, MFE	Date:	30 September 2002
From:	Chris Hickey – NIWA	Our Ref:	MFE02237
Сору:	Dr Wayne Donovan, Bioresearches; Dr Michael Warne, NSW EPA	, Dr John Cl	hapman, NSW EPA
Subject:	Nitrate guideline values in ANZECC 2000		

Background

The issue has been raised as to the certainty associated with the nitrate trigger values as given in Table 3.4.1 of the ANZECC 2000 water quality guidelines. These trigger values indicate that for 95% protection the toxicity of nitrate is higher than for ammonia (by 1.3-times) and for markedly higher for 99% protection (by 19-times).

The basis for the derivation of these numbers was investigated.

ANZECC guidance

The new ANZECC guidelines use acute and chronic laboratory toxicity data for the derivation of "trigger values" for nitrate. The detailed toxicity data for nitrate is provided in Appendix 1 and freshwater toxicity data used for statistical calculation is given in Appendix 2. The guideline summary for freshwaters is: "A freshwater moderate reliability trigger value for nitrate toxicity as NO_3 (nitrate) of 700 µg/L was calculated using the statistical distribution method 95% protection and the default ACR."

The stated guideline value of 700 μ g/L for 95% protection is consistent with the value given in summary table 3.4.1 of the guidelines, but not consistent with the present figure, which indicates a guideline value of approximately 10,000 g/L.

Recalculation procedure

The nitrate database is predominantly acute data, with chronic data for two Australian species (Appendix 2). Based on inspection of the data plot (Appendix 1), it would appear that a mix of acute and chronic data was used for guideline calculation, followed by application of a 10x application factor (AF).

The geometric mean values for the acute toxicity data were converted to chronic values using a 10x AF (Figure 8.3.2, and page 8.3-31, ANZECC 2000). The two chronic values were converted from NO_3 -N to NO_3 prior to this analysis (the values summarised in the database were the NO_3 -N data as reported in Rippon & McBride (1994), Greg Rippon, pers. comm. 11 Sept 2002). The acute and chronic data were then combined prior to guideline calculation using the BurrIII statistical program provided on the Guidelines CD. The recalculated trigger values (rounded) are summarised in the table below together with the values presented in the Guidelines.

	Chemical	Trigger values for freshwater					
		(μg/L <u>)</u>					
			Level of protec	tion (% species	6)		
		99%	95%	90%	80%		
ANZECC 2000 values	Nitrate	17	700	3400	17000		
Recalculated values	Nitrate	21,600	31,900	38,500	52,000		
Recalculated values	Nitrate-N	4900	7200	8700	12,000		

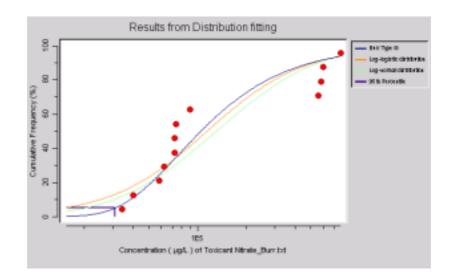


Figure. Distribution of recalculated nitrate toxicity data.

These recalculated nitrate trigger values are markedly higher than those presented in the guidelines. The recalculated values are more consistent with ambient nitrate values (see Table 8.2.6 – but multiply numbers by 4.43x to convert to nitrate as NO₃, ANZECC 2000) and relative to the toxicity trigger values for ammonia.

It appears that the nitrate values given for toxicants are as NO_3 (based on checking against values in one reference, Rubin & Elmaraghy 1977). This differs from the normal way that laboratory results would be presented and how nutrient trigger values are presented in the Guidelines.

I would suggest that the toxicant trigger values should also be presented as NO_3 -N values for consistency of practice.

histopher W. thinky.

Dr Chris Hickey 30 September 2002

References:

- ANZECC & ARMCANZ (2000). Australian and New Zealand guidelines for fresh and marine water quality. National Water Quality Management Strategy Paper No 4, Australian and New Zealand Environment and Conservation Council & Agriculture and Resource Management Council of Australia and New Zealand, Canberra, Australia.
- Rippon,G.D and P.McBride (1994). Biological Toxicity Testing of Gadjarrigamarndah Creek Water at Na [sic] Final Report for Project.
- Rubin, A.J. and G.A.Elmaraghy 1977 Studies on the Toxicity of Ammonia, Nitrate and Their Mixtures to Guppy Fry *Water Res.* 11 (10): 927-935

Appendix 1. Nitrate section from ANZECC 2000 guidelines and graphical presentation of data as provided on the guidelines CD

Nitrate

Nitrate is essential for growth of aquatic plants. The main issue with elevated levels of nitrate is its potential to stimulate algal growth and hence to be a factor in nuisance algal blooms and eutrophication of waterways — usually from human wastes or fertilisers. At high enough levels, nitrate can be toxic to aquatic life. Toxicity data were reviewed for both potassium nitrate (KNO₃; CAS 7757-79-1) and sodium nitrate (NaNO₃; CAS 7631-99-4).

Aquatic toxicology

Potassium nitrate was generally more toxic than sodium nitrate (many of the comparative tests were reported in the same publication). Figures are given as mg NO₃/L.

Freshwater fish: (48–96 h LC₅₀): 6 spp, 99–10 000 mg/L (i.e. x 1000 µg/L). Chronic 9-d

NOEC of 14 mg/L to Australian Mogurnda adspersa

Freshwater crustaceans: 48-96 h LC50 to Daphnia magna, 23-4206 mg/L

Freshwater molluscs: Lymnaea sp. 96-h LC50, 664 mg/L

Freshwater insects: 2 spp, 72–96 h LC₅₀, 430–930 mg/L

Freshwater hydra: *Hydra viridissima* 6 d chronic NOEC (population growth) of 9 mg/L (Australian)

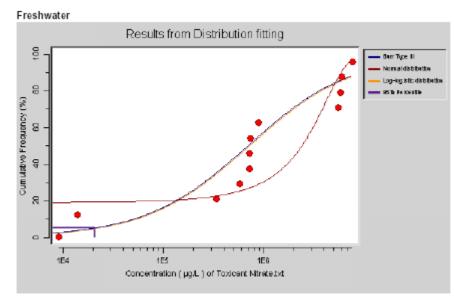
Marine fish: 6 spp, 96-h LC50, 2536–13 280 mg/L

Marine mollusc: 1 sp, 96-h LC50, 11 510-27 580 mg/L

Australian and New Zealand data

The only chronic data were for potassium nitrate were on Australian purple-spotted gudgeon *Mogurnda mogurnda* and hydra, *Hydra viridissim*a. There were no overseas chronic data for comparison. Tests with the marine prawn *Penaeus monodon* (Muir et al. 1991), indicated that nitrate had a significant effect on survival of larvae at 1000 μ g/L but no dose-response figures were given.

Guideline


As nitrates are a known stimulant for algal growth at low concentrations, it was considered acceptable to derive trigger values on an adequate number of data without algae. Separate marine figures were derived because of the apparent differences in sensitivity on the limited marine data.

A freshwater moderate reliability trigger value for nitrate toxicity as NO₃ (nitrate) of 700 μ g/L was calculated using the statistical distribution method 95% protection and the default ACR.

Although a marine low reliability figure of 13 000 μ g/L (13 mg/L) could be calculated using an AF of 200 (limited data but a lesser factor due to essentiality), it is preferable to adopt the freshwater figure of 700 μ g/L for nitrate toxicity as NO₃ (nitrate) as a marine low reliability trigger value.

NIWA Taihoro Nukurangi

Nitrate

Appendix 1. Nitrate toxicity data from ANZECC 2000 guidelines database Water Quality Search Results Toxicant nitrate

Date: 2/08/2002

Toxicant nitrate Latin Name Common	Test Media	Test Type	Duration(h	Endpoin	Effec	Temp pH	Method	Concentratio Code n Used	e Unit	Ref No
				Fish						
<i>Gambusia holbrooki</i> Eastern mosquitofish	Freshwater	Acute	48	LC50	MORT		NR	U 1E+07	ug/L	200508
<i>Gambusia holbrooki</i> Eastern mosquitofish	Freshwater	Acute	48	LC50	MORT		NR	U 137000	ug/L	200508
<i>Gambusia holbrooki</i> Eastern mosquitofish	Freshwater	Acute	96	LC50	MORT		NR	U 99000	ug/L	200508
Gambusia holbrooki Eastern mosquitofish	Freshwater	Acute	96	LC50	MORT		NR	U 99000	ug/L	200508
Geometric								340406.42 U		
Lebistes reticulatus Guppy	Freshwater	Acute	48	LC50	MORT		NR	969000 U	ug/L	207635
<i>Lebistes reticulatus</i> Guppy	Freshwater	Acute	72	LC50	MORT		NR	881000	ug/L	207635
<i>Lebistes reticulatus</i> Guppy	Freshwater	Acute	96	LC50	MORT		NR	U 845000	ug/L	207635
Geometric								896847.91		
<i>Lepomis macrochirus</i> Bluegill	Freshwater	Acute	96	LC50	MORT		NR	U 1.4165E	ug/L	208037
<i>Lepomis macrochirus</i> Bluegill	Freshwater	Acute	96	LC50	MORT		NR	U 885300	ug/L	208037
Friday, 2 August 2002									Pa	ge 1 of 6

National Institute of Water & Atmospheric Research Ltd Gate 10, Silverdale Road, Hamilton P O Box 11115, Hamilton, New Zealand www.niwa.co.nz

, , , , ,	En el errer	A	06	1.050	MODT	ND	U	. /T	200020	
<i>Lepomis macrochirus</i> Bluegill	Freshwater	Acute	96	LC50	MORT	NR	900000	ug/L	200930	
<i>Lepomis macrochirus</i> Bluegill	Freshwater	Acute	96	LC50	MORT	NR	U 940000	ug/L	200930	
<i>Lepomis macrochirus</i> Bluegill	Freshwater	Acute	96	LC50	MORT	NR	U 186000	ug/L	208037	
<i>Lepomis macrochirus</i> Bluegill	Freshwater	Acute	96	LC50	MORT	NR	U 1E+07	ug/L	200930	
Geometric							7630126.27 U			
Micropterus treculi Guadalupe bass	Freshwater	Acute	96	LC50	MORT	NR	558200	ug/L	211794	
Geometric							5582000.00 U			
Oncorhynchus mykiss Rainbow trout	Freshwater	Acute	96	LC50	MORT	NR	599800	ug/L	205115	
Geometric							5998000.00 U			
Oncorhynchus Chinook salmon	Freshwater	Acute	96	LC50	MORT	NR	579900	ug/L	205115	
Geometric							5799000.00			
				cr	ustaceans		U			
Daphnia magna Water flea	Freshwater	Acute	48	LC50	MORT	NR	358100	ug/L	200915	
Daphnia magna	Freshwater	Acute	48	LC50	MORT	NR	U 358100	ug/L	202465	
Water flea							U			
<i>Daphnia magna</i> Water flea	Freshwater	Acute	48	LC50	MORT	NR	301000	ug/L	200915	

Friday, 2 August 2002

National Institute of Water & Atmospheric Research Ltd Gate 10, Silverdale Road, Hamilton P O Box 11115, Hamilton, New Zealand www.niwa.co.nz Page 2 of 6

							U	
<i>Daphnia magna</i> Water flea	Freshwater	Acute	72	LC50	MORT		0 ug/L	200915
<i>Daphnia magna</i> Water flea	Freshwater	Acute	72	LC50	MORT		U 0 ug/L	200915
<i>Daphnia magna</i> Water flea	Freshwater	Acute	96	LC50	MORT		U 0 ug/L	200915
<i>Daphnia magna</i> Water flea	Freshwater	Acute	96	LC50	MORT		U 0 ug/L	200915
<i>Daphnia magna</i> Water flea	Freshwater	Acute	96	LC50	MORT		U 0 ug/L	200915
Geometric						720085.68	;	
				Iı	nsects			
<i>Cheumatopsyche pettiti</i> Caddisfly	Freshwater	Acute	72	EC50	MORT		U 0 ug/L	203879
<i>Cheumatopsyche pettiti</i> Caddisfly	Freshwater	Acute	72	EC50	MORT		U 0 ug/L	203879
<i>Cheumatopsyche pettiti</i> Caddisfly	Freshwater	Acute	96	EC50	MORT		U 0 ug/L	203879
<i>Cheumatopsyche pettiti</i> Caddisfly	Freshwater	Acute	96	EC50	MORT		U 0 ug/L	203879
Geometric						733058.47	,	
<i>Hydropsyche</i> Caddisfly	Freshwater	Acute	72	LC50	MORT	NR 65700	U 0 ug/L	203879
<i>Hydropsyche</i> Caddisfly	Freshwater	Acute	72	LC50	MORT		U 0 ug/L	203879
Friday, 2 August 2002							Pa	ge 3 of 6

National Institute of Water & Atmospheric Research Ltd Gate 10, Silverdale Road, Hamilton P O Box 11115, Hamilton, New Zealand www.niwa.co.nz Page 7 of 10

<i>Hydropsyche</i> Caddisfly	Freshwater	Acute	96	LC50	MORT	NR	U 430000 ug/L	203879		
<i>Hydropsyche</i> Caddisfly	Freshwater	Acute	96	LC50	MORT	NR	U 482000 ug/L	203879		
Geometric							576645.92			
Molluscs										
<i>Lymnaea sp</i> Pond snail	Freshwater	Acute	48	EC50	HAT	NR	U 914000 ug/L	200508		
<i>Lymnaea sp</i> Pond snail	Freshwater	Acute	72	EC50	HAT	NR	U 624000 ug/L	200508		
<i>Lymnaea sp</i> Pond snail	Freshwater	Acute	96	EC50	HAT	NR	U 664000 ug/L	200915		
Geometric							723490.70			
				Fis	sh					
<i>Mogurnda mogurnda</i> Purple SpottedGudgeon	Freshwater	Chronic	216	NOEC	MORT	NR	U 14000 ug/L	300119		
Geometric						14000.00 CORRECTED TO N	$O3 = \frac{62020}{62020}$			
				Co	oelentrates					
<i>Hydra viridissima</i> Hydra	Freshwater	Chronic	144	NOEC	PGR	NR	U 9000 ug/L	300119		
Geometric						9000.00 CORRECTED TO N	O3 = <mark>39870</mark>			
				Fis	sh					
Centropristis striata Black sea bass	Marine	Acute	96	LC50	MORT	NR	U 1.0624E ug/L	209424		
Geometric						1	0624000.00			

Friday, 2 August 2002

National Institute of Water & Atmospheric Research Ltd Gate 10, Silverdale Road, Hamilton P O Box 11115, Hamilton, New Zealand www.niwa.co.nz Page 8 of 10

Page 4 of 6

Monacanthus hispidus	Marine	Acute	96	LC50	MORT	NR	U 253600 ug/L	209424
Plane headFilefish Geometric							2536000.00 U	
<i>Oncorhynchus mykiss</i> Rainbow trout Geometric	Marine	Acute	96	LC50	MORT	NR	465000 ug/L 4650000.00	205115
<i>Oncorhynchus</i> Chinook salmon	Marine	Acute	96	LC50	MORT	NR	U 440200 ug/L	205115
Geometric							4402000.00 U	
Pomacentrus Beaugregory	Marine	Acute	96	LC50	MORT	NR	1.328E+ ug/L	209424
Geometric							13280000.00	
<i>Trachinotus carolinus</i> Florida pompano	Marine	Acute	96	LC50	MORT	NR	U 442600 ug/L	209424
Geometric							4426000.00	
				M	olluscs		U	
<i>Crassostrea virginica</i> American or virginia	Marine	Acute	96	EC50	MORT	NR	1.6821E ug/L	205098
Crassostrea virginica American or virginia	Marine	Acute	96	EC50	MORT	NR	U 1.1509E ug/L	205098
Crassostrea virginica American or virginia	Marine	Acute	96	EC50	MORT	NR	U 1.8946E ug/L	205098
Crassostrea virginica American or virginia	Marine	Acute	96	EC50	MORT	NR	U 2.7578E ug/L	205098
Geometric							17833739.78	

Friday, 2 August 2002

National Institute of Water & Atmospheric Research Ltd Gate 10, Silverdale Road, Hamilton P O Box 11115, Hamilton, New Zealand www.niwa.co.nz Page 5 of 6

U - Unmodified

- C Converted NOEC
- H Hardness Corrected

HC - Hardness Corrected, Converted NOEC UI - Unmodified Unionized UD - Unmodified Dissociated T - Unmodified Total Tp -Total at pH8.0 TpC -Total at pH8.0, Converted NOEC

Friday, 2 August 2002

National Institute of Water & Atmospheric Research Ltd Gate 10, Silverdale Road, Hamilton P O Box 11115, Hamilton, New Zealand www.niwa.co.nz Page 6 of 6