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Executive Summary 

Trend analyses performed on many sites are regularly aggregated by water quality variable 

and summarised in tabular, graphical or map format as part of environmental reporting. The 

intention of aggregated site summaries (e.g., proportion improving and degrading, by variable) 

is to provide an overview of recent water quality changes over a domain of interest (e.g., the 

entire country, a region, an environment class).  

In presenting these types of aggregate summaries, it has been typical to tabulate the number 

or proportion of sites for which trends are ‘established with confidence’ at a specified level of 

confidence (generally 95%) and to define the direction of these trends as increasing or 

decreasing (or improving/degrading). Typically, these tabulations also include the number or 

proportion of sites for which there are “insufficient data” to determine trend direction with 

confidence. This categorisation produces two problems. First, the trends for which there are 

insufficient data can be misinterpreted as “no change” or “stable”. This is an incorrect inference; 

insufficient data simply indicates a lack of confidence in the analysis at the nominated level. 

Second, trends with insufficient data to confidently determine direction nonetheless contain 

information about the likely direction of change that is effectively ignored by these tabulations. 

An extreme but plausible outcome is a situation in which, over many sites, no trend direction 

is established with confidence, but all trends are in the same direction at a lower level of 

confidence. The tabulation would show that all trends have insufficient data, implying that 

“nothing is known” about the aggregate trend direction. However, it is likely there is a general 

trend (i.e., the group of sites as a whole exhibit a trend).  

Some studies have sought to overcome these problems by ignoring the levels of confidence 

and considering trends based on the sign of the evaluated trend. This approach is justifiable 

because over many sites, incorrect trend evaluations will tend to cancel each other out (e.g., 

as many sites will be misclassified as increasing as sites misclassified as decreasing). Thus, 

‘count-based’ assessments of the number of trends in a given direction for a domain of interest 

simply count the number of individual trends for which the sign of the evaluated trend is in the 

direction of interest, disregarding the level of confidence in the trend directions. However, such 

assessments are subject to unquantified uncertainty, because the individual trends are always 

an uncertain estimate of the true trend.  

This study developed an approach to quantifying the uncertainty of an assessment of the 

proportion of sites for which water quality was improving (or its complement, the proportion of 

sites that were degrading) based on aggregating site trends. The analysis uses the probability 

that the true direction of an individual site’s trend indicates improvement, which is evaluated 

as part of the analysis of each individual site trend. The approach takes trend assessments for 

multiple sites that represent a domain of interest (e.g., the entire country, a region or a class). 

The proportion of the individual site trends for which the probability of improvement is greater 

than degradation is referred to as the proportion of improving trends (PIT). The probabilities of 

improvement for the individual site trends are used to construct confidence intervals about the 

estimate of PIT. 

The approach was applied to a case study of river water quality trends derived from a national 

dataset assembled by Larned et al. (2015). Site trends were analysed for six water quality 

variables for the same ten-year time-period assessed by Larned et al. (2015): the 10 years 

ending 2013. The method used to evaluate the individual trends in this study differs in the way 

censored values are handled to the method used by Larned et al. (2015). This change allows 

a larger number of site trends to be analysed because it was unnecessary to exclude sites with 

more than 15% of observations being censored values (as was done in Larned et al. 2015).  
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Table S1 shows the results of the analyses. The most important contrast is between the 

proportion of improving trends (i.e., PIT) and the proportion of the trends whose direction was 

established with confidence (at the 95% confidence level) that were improving. The second 

assessment represents conclusions that are likely to be made from a table of results 

comprising trends that are categorised as improving, degrading and insufficient data. The 

potential interpretation is to ignore the trends with insufficient data and assess the overall trend 

considering only the improving trends established with confidence as a proportion of only the 

trends for which direction was established with confidence. For example, Table S1 indicates 

that 83%, 90% and 24% of the trends that were established with confidence for NH4N, TP and 

MCI were improving. However, the PIT statistics for NH4N, TP and MCI were 59%, 75% and 

40% respectively (Table S1). In addition, the results based on just the trends whose direction 

was established with confidence were generally outside the 95% confidence intervals of the 

PIT statistics (Table S1). This indicates that through not including information provided by all 

the site trends, the traditional approach gives a misguided impression of the proportion of 

improving sites. The PIT statistic distils the information contained in all the individual trends 

into a single number (plus its uncertainty), which provides a more robust evaluation of the 

general (aggregate) trend direction because it uses all the available information. As well as 

providing a single easily understood statistic (the proportion of improving trends, or its 

complement), PIT avoids referring to trends with insufficient data and the potential 

misinterpretation as “no change” or “stable”. 

The PIT statistic also has the benefit that it is associated with confidence intervals. For 

example, Table S1 shows that >50% of sites were improving for CLAR, NH4N, TP, DRP, and 

ECOLI. The lower 95% confidence interval was >50% for CLAR, NH4N, TP and DRP, 

indicating that there is high confidence that the majority of sites had improving trends for these 

variables over the 10-year period.  

The count-based estimates (i.e., counting all trends based on the sign of the evaluated trend 

and disregarding the confidence in the trend direction) were always within the 95% confidence 

interval for PIT (Table S1). This indicates that these count-based assessments are a 

reasonable approximation of the proportion of improving site trends. However, it should be 

kept in mind that the count-based assessment is subject to unquantified uncertainty.  

PIT statistics for domains of interest (e.g., nationally, regionally or by classes) enables robust 

identification of spatial patterns in water quality changes that are difficult to perceive by 

examining the individual site trends. For example, as well as establishing with high confidence 

(i.e. the 95% confidence interval does not contain 50%) that trends for CLAR, NH4N, TP and 

DRP were improving at >50% of sites over the 10-year period, our analyses established with 

high confidence that NO3N trends were degrading at >50% of sites over the 10-year period. 

Furthermore, PIT statistics derived for regional domains indicated that NO3N was degrading 

at >50% of sites in six regions for the 10-year period: Waikato, Tasman, Canterbury, West 

Coast, Otago and Southland. These and other patterns we identified elucidate general water 

quality changes and provide insights that are important for making robust inferences from trend 

analyses.  

We recommend that the PIT statistic is used in future to represent aggregate measures of 

water quality change over spatial domains of interest. We also recommend that PIT statistics 

for a specified spatial domain are presented as distinct from the trend evaluations for individual 

sites, for which certainty in trend direction (or significance) remains an important piece of 

information. 
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Table S1: Estimates of proportions of sites with improving trends (PIT) for the 10-year time-

period (national grouping). The PIT statistic and its 95% confidence intervals were derived 

from the probabilities that the true directions of the individual site trend indicated 

improvement. The count-based proportion of improving sites was evaluated by counting the 

number of individual trends for which the sign of the evaluated trend is in the direction of 

interest, disregarding the level of confidence in the trend directions. The proportions of trends 

with insufficient data were based on counting the individual trends for which confidence in 

direction was less than 95%. The proportion improving is based on counting the individual 

improving trends for which confidence was 95% or more. The proportion of trends with 

direction established with confidence that were improving is the sum of the number of 

individual improving trends divided by the total number of trends that were established with 

confidence (at the 95% level). See Table 2 in the main report for an explanation of the water 

quality variables.  

Water 
quality 
variable 

Number 
of sites 

PIT 
(%) 

95% 
confidence 
interval for 

PIT 
(%) 

Count-
based 

proportion 
improving 

(%) 

Proportion 
with 

insufficient 
data 
(%) 

Proportion 
improving 

(%) 

Proportion of trends with 
direction established 
with confidence that 

were improving 
(%) 

CLAR 393 58 55 - 61 58 58 28 67 

NH4N 488 64 60 - 67 63 77 19 83 

TN 274 49 46 - 53 49 54 25 54 

NO3N 524 43 40 - 46 43 50 18 36 

TP 486 79 76 - 81 78 49 46 90 

DRP 520 72 69 - 74 72 49 39 76 

ECOLI 495 50 46 - 53 49 82 10 56 

MCI 462 41 36 - 45 40 79 5 24 
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1 Introduction 

Long term water quality data that are collected at regular intervals (e.g., monthly) at monitoring 

sites are regularly analysed to assess the direction and magnitude of trends (e.g., Larned et 

al., 2004, 2016). Trend analyses performed on many sites are regularly aggregated by water 

quality variable and presented in tabular or graphical form as part of environmental reporting 

(e.g., Ministry for the Environment, 2015, 2017). The aggregated water quality trends are 

intended to provide an overview of recent water quality changes over a spatial domain of 

interest (e.g., the entire country, a region, an environment class). Aggregated trends, for 

example expressed as proportions of site trends in different trend-direction categories, are 

intended to represent the recent progress toward or away from environmental objectives for 

the spatial domain. 

Environmental reports tend to tabulate the numbers or proportions of site trends in three 

categories: increasing, decreasing, and insufficient data to confidently determine direction 

(“insufficient data”). When tabulating site trends by category, it has been usual to adopt a 

default alpha value (generally 0.05) to define trends for which direction is established with 

confidence. This generally means that the insufficient data category can make up a substantial 

proportion of the sites. This type of tabulation has two important problems. First, the insufficient 

data category can be misinterpreted as “no change” or “stable”. This is an incorrect inference; 

the insufficient data outcome simply indicates a lack of confidence in the analysis at the level 

defined by alpha. The second problem is that trends categorised as insufficient data contain 

information about the general direction of change that is effectively ignored. For example, a 

trend’s direction may not be established with confidence at the 95% level but may be 

established with an 80% level of confidence. An extreme but plausible outcome of these 

tabulations is a situation in which, over many sites, no trend is established with confidence at 

the default value of alpha, but all trends are in the same direction at a lower level of confidence. 

The tabulation would show that all trends are in the insufficient data category, implying that 

nothing is known about the aggregate trend direction. However, it is likely there is a general 

trend (i.e., the group of sites as a whole exhibit a trend).  

The purpose of this study was to develop new methods for aggregating site trends 

representing a spatial domain of interest that incorporate all available information and that 

quantifies the uncertainty of the aggregate statistic. The methods use information produced 

by a recently adopted modification to trend evaluation that replaces the traditional test of 

statistical significance with a quantification of the level of certainty in the direction (increasing 

or decreasing) of the evaluated trend (Larned et al., 2015, 2016; McBride, 2018). The new 

trend evaluation procedure treats confidence in the trend direction as a probability (i.e., a 

continuous quantity between zero and one) instead of the traditional binary ‘trend’, ‘no-trend’ 

interpretation. The new trend aggregation methods reduce the risk of misinterpreting 

insignificant or insufficient data trends and make maximal use of the available information. 

This report describes the new aggregation methods and provides a case study of their 

application to a national dataset of river water data that was first reported by Larned et al. 

(2015). 
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2 Trend analysis methods 

2.1 Background to new trend assessment procedure 

Water quality trends are commonly evaluated by fitting a regression to the relationship 

between the water quality variable (e.g., chemical concentration) and time, using the non-

parametric Sen slope estimator (Hirsch et al., 1982; Sen, 1968). The Sen slope estimator is a 

non-parametric statistic, removing the need to make assumptions about the distribution of the 

observations. The method is also robust to missing data, which is also a common feature of 

water quality data (Hirsch et al., 1982). The Sen slope is an estimate of the rate of change in 

the central tendency of the water quality variable through the time-period. 

Evaluations of water quality trends at individual sites are always uncertain. The level of 

uncertainty depends on the number of observations and the magnitude of the water quality 

change through the time-period being analysed. Traditionally, a statistical significance test is 

undertaken that evaluates the uncertainty of the trend by considering if it could have been 

observed if the true trend were exactly zero (Hirsch et al., 1982). An insignificant test indicates 

that the observed trend could have been observed by chance (at a defined level of 

significance---typically denoted by alpha and generally set to 0.05) if the true trend was zero.  

Recently, the logic underlying this significance test has been questioned and a new trend 

assessment procedure has been adopted. The new method posits that there is always a trend, 

no matter how small, but the ability to confidently infer its direction depends on the power of 

the statistical analysis. The method evaluates the 100 – α1 confidence interval for the 

estimated trend magnitude (Larned et al. 2015, 2016). Briefly, if a symmetric confidence 

interval around the trend magnitude does not contain zero, then the trend direction (either 

positive of negative) is “established with confidence”. If it does contain zero, it is concluded 

that the trend has “insufficient data to confidently determine direction”2. 

Irrespective of whether the traditional or new confidence-based trend evaluation procedures 

are used, there are three possible outcomes. Trends are evaluated as increasing, decreasing 

or insignificant (under the traditional procedure) or insufficient data (under the new procedure). 

The division of trends into those that are increasing or decreasing and those that are 

insignificant or insufficient data depends on the value of alpha that is chosen. For a single 

assessment (i.e., a trend in one water quality variable at one site), the value of alpha should 

reflect management risks associated with either incorrectly inferring no trend when there is 

one, or the reverse, (i.e., type 1 and type 2 error rates). However, in practice trends are usually 

reported by adopting a default alpha value (typically 0.05).  

2.2 Aggregation of trend analyse from many sites 

2.2.1 Traditional approach 

Trend analyses performed on many sites are regularly aggregated by water quality variable 

and presented in tabular or graphical form in state-of-environment reports as part of 

environmental reporting (e.g., Ministry for the Environment, 2015, 2017). These tabulations 

are intended to provide an overview of recent water quality changes over a spatial domain of 

interest (e.g., the entire country, a region, an environment class).  

                                                
1 The symbol α (alpha) represents the tolerance of making an incorrect determination as a probability. So α= 0.05 indicates a 

tolerance of incorrect determinations in 5% of cases.  
2 It is noted that a 100(1–2α)% two-sided (symmetrical) CI is used in the procedure to define the 100 – α level of confidence 

(see Larned et al., 2016 for details).  
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It has been common practice when tabulating the numbers or proportions of site trends to 

present results in three categories: increasing, decreasing, and statistically insignificant 

(traditional method) or insufficient data (new method). The insignificant or insufficient data 

category has been defined by adopting a default alpha value (generally 0.05) leading to a 

substantial proportion of the sites being categorised as being insignificant or having insufficient 

data and consequently, the two problems outlined in the introduction.  

When aggregating trends across many sites, some studies have chosen to accept the trend 

direction at the face value of the evaluated trend slope (i.e., accept the direction indicated by 

the estimated Sen slope irrespective of the statistical significance or confidence in the 

evaluation e.g., Ballantine et al., 2010; Scarsbrook et al., 2003). This approach is justifiable 

because over many sites, incorrect classifications of direction will cancel each other out (i.e., 

as many sites will be misclassified as increasing as sites misclassified as decreasing). Thus, 

‘count-based’ assessments of the number of trends in a given direction for a domain of interest 

are made by simply counting the number of individual trends for which the sign of the evaluated 

trend is in the direction of interest, disregarding the level of confidence in the trend directions. 

However, because the evaluated trend at any given site is always an uncertain estimate of the 

true trend, count based assessments are subject to unquantified uncertainty. For example, if 

the proportion of improving trends is the statistic being derived, the estimated proportion is 

uncertain.  

2.2.2 Graphical presentation of aggregated trends 

The new trend assessment procedure enables the uncertainty associated with individual site 

trends to be incorporated in any analysis that aggregates trends over many sites. The basis 

for this is the evaluation of the probability that the true trend (i.e., the trend in the population 

from which the samples were drawn) was decreasing (hereafter ‘probability the trend was 

decreasing’, see details of how this is assessed in S4.2). Note that trend direction is arbitrary 

and the probability that the true trend was increasing is one minus the probability that it was 

decreasing. It follows that for any individual site trend, the direction is a Bernoulli distributed 

variable where the probability of “success” (a decreasing trend) is defined by the evaluated 

probability. Thus, a trend with an evaluated probability >0.5 indicates success (a decreasing 

trend) and conversely the probability of “failure” (an increasing trend) is <0.5. 

The probability that the true trend was decreasing facilitates a more nuanced inference rather 

than the ‘yes/no’ output corresponding to the chosen acceptable misclassification error rate 

(McBride, 2018). Confidence categories can be used to express probability that the trend 

direction is improving (or its complement; degrading). Note that the conversion of the 

probability that a trend is decreasing to the probability it is improving (and its complement, 

degrading) depends on whether decreasing values represent improvement or degradation and 

differs between variables.  

The approach to presenting levels of confidence of the Intergovernmental Panel on Climate 

Change (IPCC; (Stocker et al., 2014) is one way of categorising confidence that trends are 

improving (Table 1). Note that descriptions of the probabilities of degrading trends are the 

complement of the categorical levels of confidence in Table 1, i.e. an “exceptionally unlikely” 

degrading trend is the same as a “virtually certain” improving trend. 
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Table 1. Level of confidence categories used to convey the probability that water quality was 

improving.The confidence categories are those used by the Intergovernmental Panel on 

Climate Change (IPCC; Stocker et al., 2014). 

Categorical level of confidence Probability (%) 

Virtually certain 99–100 

Extremely likely 95–99 

Very likely 90–95 

Likely 67–90 

About as likely as not 33–67 

Unlikely 10–33 

Very unlikely 5–10 

Extremely unlikely 1–5 

Exceptionally unlikely 0–1 

 

The aggregate proportion of sites in each category shown in Table 1 can be calculated for 

sites grouped by some spatial domain of interest, and for each variable. The values can then 

be plotted as colour coded bar charts. These charts provide a graphical representation of the 

proportions of improving and degrading trends at the levels of confidence indicated by the 

categories. 

2.2.3 Evaluation of the proportion of improving trends 

The trends, evaluated at several monitoring sites for a given variable over some domain of 

interest, can be assumed to represent independent samples of the population of trends, at all 

sites within that domain. Let the sampled sites within this domain be indexed by s, so that 𝑠 ∈

{1, … , 𝑆} and let 𝐼 be a random Bernoulli distributed variable which takes the value 1 with 

probability 𝑝 and the value 0 with probability 𝑞 = 1 − 𝑝. Therefore, 𝐼𝑠 = 1 denotes an improving 

trend at site 𝑠 ∈ {1, … , 𝑆} when the estimated 𝑝𝑠 ≥ 0.5 and a degrading trend as 0 when 𝑝𝑠 <

0.5. Then, the estimated proportion of sites with improving trends in the domain is: 

𝑃𝐼𝑇 = ∑ 𝐼𝑠/𝑆
𝑠=𝑆

𝑠=1
 

Because the variance of a random Bernoulli distributed variable is 𝑉𝑎𝑟(𝐼) = 𝑝(1 − 𝑝), and 

assuming the site trends are independent, the estimated variance of PIT is: 

𝑉𝑎𝑟(𝑃𝐼𝑇) =
1

𝑆2
∑ 𝑉𝑎𝑟(𝐼𝑠) =

1

𝑆2
∑ 𝑝𝑠(1 − 𝑝𝑠)

𝑠=𝑆

𝑠=1

𝑠=𝑆

𝑠=1
 

PIT and its variance represent an estimate of the population proportion of improving trends 

and the uncertainty of that estimate. It is noted that the proportion of degrading trends is the 

complement of the result (i.e., 1 - PIT). The estimated variance of PIT can be used to construct 

95% confidence intervals3 around the PIT statistics as follows: 

𝐶𝐼95 = 𝑃𝐼𝑇 ±  1.96 × √𝑉𝑎𝑟(𝑃𝐼𝑇) 

                                                
3 Note that +/- 1.96 are approximately the 2.5th and 97.5th percentile of a standard normal distribution. 
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3 Case study 

River monitoring data collected by regional councils and NIWA (national river water quality 

monitoring network; NRWQN) river are periodically acquired and federated into databases for 

national-scale state-of-environment reports (e.g., Ballantine et al., 2010; Larned and Unwin, 

2012). The most recent national scale assessment of river water quality was by Larned et al. 

(2015) who updated databases to the end of 2013 and produced a report on national river and 

lake state and trends.  

This case study used the same river water quality database used by Larned et al. (2015). 

These data comprised 844 sites, representing the 77 NRWQN sites plus 767 regional council 

state-of-environment river monitoring sites. Several data grooming processes were 

undertaken to ensure the database was consistent and comparable across sites (see Larned 

et al., 2015 for details). The final database comprised 653,351 observations of the eight 

variables shown in Table 2. Each observation was associated with a value, date and an 

observed or modelled flow at the time of sampling. Each site was associated with meta data, 

including the geographic location and the unique identification of the segment of the digital 

river network on which the site was located.  

Table 2. River water quality variables, measurement units and site numbers used in this 

study. 

Variable type Variable Abbreviation Units 
Number of 

monitoring sites 

Physical Visual clarity CLAR m 454 

Chemical 

Ammoniacal nitrogen NH4N mg/m3 364 

Nitrate-nitrogen NO3N mg/m3 586 

Total nitrogen (unfiltered) TN mg/m3 354 

Dissolved reactive 

phosphorus 
DRP mg/m3 518 

Total phosphorus (unfiltered) TP mg/m3 576 

Microbiological Escherichia coli ECOLI cfu/100 mL 485 

Biotic Index 
Macroinvertebrate 

Community Index 
MCI unitless 505 

 

Site and variable combinations in the database represented different monitoring period 

starting and ending dates, numbers of observations and sampling frequencies (see Larned et 

al., 2015 for details). All variables apart from MCI were associated with censored values and 

the proportion of censored values was highest for NH4N and DRP (Figure 1). 
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Figure 1. Proportion of censored samples in the dataset by variable.  

4 Trend analyses 

4.1 Sampling dates and time-periods for analyses 

Trend assessments are specific for a given period of analysis. In this study, trends were 

characterised for the same 10-year time-period assessed by Larned et al. (2015): the 10 years 

up to the end of 2013.  

The dataset had variable starting and ending dates, variable sampling frequencies, and 

variable numbers of missing values. Filtering rules were used to achieve a reasonable degree 

of data-representativeness for all site trends that were analysed. We used the same filtering 

rules as Larned et al. (2015), which restricted site and variable combinations to those for which 

there were measurements for at least 90% of the years and at least 90% of seasons within 

the 10-year time-period of analysis. These are more stringent rules than those suggested by 

Helsel and Hirsch (1992).  

We assessed trends for the water quality variables using seasons defined by months 

preferentially, and quarters when monthly data were not available, provided the filtering rules 

were met. Because MCI is generally sampled annually, analysis of these trends does not 

involve seasons. For some sites and variables there were more than one sample within some 

seasons or years (for MCI). In these cases, we used the median of the values for the season 

(or year for MCI) to be consistent. We note that when there is more than one sample in a 

season, the individual within season samples can be used in a trend analysis resulting in 

increased statistical power and potentially different results. All site by variable combinations 

that did not comply with these filtering rules were excluded from the analysis. 



 

 Page 14 of 35 

4.2 Statistical analyses 

A simple diagrammatic explanation of the method used for statistical trend analyses is shown 

in Figure 2. The basis for the method is the Sen slope estimator (SSE), which is the median 

of all possible inter-observation slopes (i.e., the difference in the measured observations 

divided by the time between sample dates). Consider 5 years of monthly observations (i.e., 

n=60). There are (60 x 59)/2 = 1770 possible inter-observation slopes. These inter-observation 

slopes are ranked from the smallest to largest and the Sen slope is the average of two inter-

observation slopes with ranks 885 and 886 (i.e., the median of all 1770 inter-observation 

slopes). The seasonal version of the SSE is used in situations where there are significant 

differences in water quality measurements between ‘seasons’. Seasons are defined primarily 

by the sampling frequency. In New Zealand, it is common to sample either monthly or 

quarterly, and in these cases, seasons are defined by months or quarters. The seasonal Sen 

slope estimator (SSSE) is the median of all inter-observation slopes within each season. 

Consider monthly data for 5 years of record. All possible inter-observation slopes between 

data pertaining to January are calculated (10 in number). This is then repeated for all other 

months giving 120 inter-observation slopes. The SSSE is the average of the two inter-

observation slopes with ranks 60 and 61 (i.e., the median of all 120 slopes). The SSE and 

SSSE values express trends in units of change in the variable per year. 

In traditional water quality trend analysis, SSE and SSSE values were accompanied by a 

statistical test of significance developed by (Hirsch et al., 1982). The statistical test was 

Kendall’s test of rank correlation, which is a nonparametric correlation coefficient measuring 

the monotonic association between y and x. In water quality trend analysis, y is a sample of 

water quality measurements and x is the corresponding sample dates. However, the trend 

direction assessment procedure developed by (Larned et al., 2015) does not use a Kendall 

test to evaluate the statistical confidence in the trend direction. Rather, confidence intervals 

(defined based on a nominated alpha value) are interpolated from the ranked inter-observation 

slopes (McBride, 2018). The confidence intervals can be used to make inferences about trend 

direction; if a confidence interval around the trend (i.e., the SSE) does not contain zero, then 

the trend direction (either positive of negative) is “established with confidence” (Larned et al., 

2015). If it does contain zero, it is concluded that there is “insufficient data” to determine the 

trend direction at a given level of confidence.  

Confidence intervals are determined by first expressing the ranks of the slopes as quantiles 

of the standard normal distribution (Z-scores). The probabilities of observing those Z-scores 

are then calculated using the normal density function (Figure 2). The slopes and associated 

non-exceedance probabilities can be used to: (1) evaluate the Sen slope, by interpolating the 

slope at which the non-exceedance percentile = 0.5; (2) evaluate the probability that the true 

trend is decreasing, by interpolating the non-exceedance probability at which the inter-

observation slope is equal to zero (note that direction here is arbitrary and the probability that 

the true trend was increasing is one minus the probability that it was decreasing); and (3) 

determine the confidence interval for the Sen slope, by interpolating the slopes at which the 

non-exceedance percentiles are α and 1- α. In this study we have a nominated an alpha value 

of 0.05, to be consistent with Larned et al. (2015). 

When the precision of the measured observations is low, there will be many observations with 

the same value leading to many ties (i.e., inter-observation slopes of exactly zero). This results 

in a high chance of obtaining an upper or lower confidence interval of exactly zero. The 

interpretation of confidence in trend direction when a confidence interval bound of exactly zero 

is equivocal. However, an overarching assumption of the new approach is that there always 

are differences between observations (leading to the assumption that the trend can never by 
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zero; McBride, 2018). It follows that an inter-observation slope evaluated as zero, is in fact 

either an increase or decrease but with a magnitude that cannot be established due to the low 

precision of the variable being measured. To avoid equivocal assessments of confidence in 

trend direction, we use the probability that the trend is decreasing. When this probability is 

interpolated from the slopes and their non-exceedance probabilities, we assume that inter-

observation slopes of zero are equally likely to be increasing as decreasing. Therefore, in the 

case that the probability the inter-observation slope of zero has a non-unique solution, the 

mean of all the probabilities (associated with an inter-observation slopes of zero) is used. If 

this probability is <0.05 and >0.95 then we can conclude, with confidence, that the trend is 

increasing or decreasing respectively. 

 

Figure 2: Pictogram of the steps taken in trend analysis to calculate the Sen slope and the 

probability that the true trend was decreasing. 
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4.3 Censored values 

Censored values are those above or below a detection limit (e.g., >2.5 or <0.001). Values 

above the detection limit are described as right censored and values below the detection level 

are described as left censored. Trends are most robust when there are few censored values 

in the time-period of analysis. It has been common to substitute the censored values with 

0.5×detection limit and 1.1×reporting limit. Although common, replacement of censored values 

with constant multiples of the detection and reporting limits can result in misleading results 

when statistical tests are subsequently applied to those data (Helsel, 2012).  

The previous method of trend analysis (i.e., Larned et al., 2015) substituted censored values 

with values that were imputed from the data. In that study, the effect of censored values and 

missing data on the evaluated trend magnitude was minimal because sites and variable 

combinations were restricted to those for which the number of censored values was <15% of 

the total number of observations. Imputation of censored values is an accepted method for 

obtaining sample statistics (e.g., mean values and standard deviations). The use of imputed 

values in trend analysis by Larned et al. (2015) was not strictly correct because the imputation 

process cannot account for the time order of samples. However, the restriction rules avoided 

making incorrect determinations of trend magnitude because this quantity is unaffected by 

censoring when fewer than 15% of the data are censored values.  

The methods used in this study were based on robust handling of censored values in trend 

analysis (Helsel, 2012). Key calculations that are affected by censored values are the 

calculation of Kendall’s S and its variance4, the estimation of the Sen slope (including the 

seasonal Sen slope) and the estimation of the confidence intervals for Sen slopes. For left-

censored data, increases and decreases in a water quality variable are measured whenever 

possible. Thus, a change from <1 to 10 is an increase. A change from a <1 to a detected 0.5 

is considered a tie, as is a <1 to a <5, because neither can definitively be called an increase 

or decrease. Similar logic applies to right censored values. The variance of the S statistic is 

adjusted for ties (it is reduced) and this influences the computation of confidence intervals.  

The slope between any combination of observations in which either one or both are censored 

cannot be definitively calculated. The slopes associated with censored values are therefore 

ignored (i.e., removed) and SSE and SSSE are calculated as the median of all real valued 

slopes between sample dates. The removal of slopes associated with censored values has 

the effect of decreasing the number of samples used to determine the SSE and SSSE, 

therefore reducing statistical power and increasing the width of the confidence interval. This 

means that when there are many censored values, the analysis produces a low degree of 

confidence in the evaluated trend direction. Where there are fewer than five total and three 

unique, non-censored observations (but when the other filtering criteria are otherwise met), 

the method will not analyse the data and these cases are reported as “not analysed” (see 

Section 3.4).  

4.4 Seasonality 

When there is seasonal variation in the observations, the seasonal Sen slope estimator 

(SSSE) should be used (Hirsch et al., 1982). Larned et al. (2015) evaluated all trends using 

the SSSE, however, the seasonal estimator has lower statistical power than the non-seasonal 

estimator (due to smaller sample sizes). It is therefore advantageous to establish whether the 

water quality observations are seasonally varying and if this is not the case, to use the more 

                                                
4 Note that although neither the previous or new trend assessment methods use Kendall’s rank test of correlation to test the 

significance of trends, both methods use S and the variance of S to compute the confidence intervals for SSE and SSSE.  
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powerful SSE to evaluate the trend. The new method of trend analysis commences by testing 

for the effect of season (i.e., month or quarter) on each site and variable combination using a 

Kruskal Wallis test. The null hypothesis tested is that observations belonging to all seasons 

(month or quarters) come from the same population. If there is evidence to reject this (p < 

0.05) a statistically significant effect of season on the value of a variable is inferred, and the 

SSSE is evaluated, otherwise the non-seasonal SSE is evaluated. 

4.5 Flow adjustment 

Flow rate at the time that a river water quality measurement is made can affect the observed 

values because many water quality variables are subject to either dilution (decreasing 

concentration with increasing flow) or wash-off (increasing concentration with increasing flow) 

(Smith et al., 1996). Different mechanisms may dominate at different sites so that the same 

water quality variable (e.g., E. coli) can exhibit positive or negative relationships with flow 

(Snelder et al., 2016).  

Adjusting the observations to account for the effect of flow (flow adjustment, or any other 

covariate) decreases variation and increases statistical power (i.e., increases the likelihood of 

detecting a trend with certainty; Helsel and Hirsch, 1992). In addition, a trend in a water quality 

variable may arise because there is a relationship between time and flow on sample occasion 

(i.e., a trend in the flow on sample occasion such as increasing or decreasing flow with time). 

Flow adjustment may change this trend’s direction and/or magnitude. Previous studies have 

often provided trend analyses based on both flow adjusted and raw data (e.g., Ballantine et 

al., 2010; Larned et al., 2015). The appropriate interpretation of the two sets of results by 

previous studies has been unclear (e.g., Ballantine, 2012).  

Flow adjustment requires that water quality samples are associated with the flow at the time 

of sampling. Of a total of 785 sites for which we had some water quality data, 547 had no flow 

information provided. Where flow measurements were available, we used these. Flow 

measurements were available for all locations with strongly anthropogenically-modified flows, 

e.g., downstream of hydropower stations, where flows would be otherwise difficult to estimate. 

Where flow measurements were not available, we used flows estimated using a national 

hydrological model (TopNet) as described by Larned et al. (2015). 

In this study we followed the conclusions and recommendations of Snelder (2018) concerning 

flow adjustment of water quality variables. In particular, we did not rely on the automated flow 

adjustment procedure used by Larned et al. (2015) because unsupervised fitting of regression 

models to flow versus concentration relationships can result in the selection of unreliable 

models. We used both generalised additive models (GAM) and locally weighted least squares 

regression (LOESS) models to fit flow-water quality variable models.  We inspected the 

models and used expert judgement to choose the most suitable model based on the 

homoscedasticity (constant variance) of the regression residuals and plausibility of the shape 

of the fitted model. Where there was little difference among models, we used the GAM model 

to maintain consistency with Larned et al. (2015). 

4.6 Categorisation of trends 

The analyses returned site trend outputs for each site and variable combination and these 

were classified into four direction categories: improving, degrading, insufficient data and not 

analysed. An increasing or decreasing trend category was assigned when the 90% confidence 

interval did not contain zero (i.e. when probability ≥95%) and the Sen slope was positive or 

negative, respectively (i.e., the trend direction is established with confidence; Larned et al., 
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2016). An insufficient data trend category was assigned when the 90% confidence interval 

contained zero (i.e. when probability ≤95%; the trend direction was not defined with 

confidence; Larned et al., 2016). Trends were classified as “not analysed” for two reasons: 

1) When a large proportion of the values were censored (data has <5 non-censored 

values and/or <3 unique non-censored values). This arises because trend analysis is 

based on examining differences in the value of the variable under consideration 

between all pairs of sample occasions. When a value is censored, it cannot be 

compared with any other value and the comparison is treated as a “tie” (i.e., there is 

no change in the variable between the two sample occasions). When there are many 

ties there is little information content in the data and a meaningful statistic cannot be 

calculated. 

2) When there is no, or very little, variation in the data because this also results in ties. 

This can occur because laboratory analysis of some variables has low precision (i.e., 

values have few or no significant figures). In this case, many samples have the same 

value resulting in ties.  

4.7 Aggregation of trends 

4.7.1 Graphical presentation of aggregated trends 

The categorical levels of confidence presented in Table 1 were used to express the likelihood 

that water quality was improving for each site and variable. Each site trend was assigned a 

categorical level of confidence that the trend was improving according to its evaluated 

probability and the categories shown in Table 1. For the chemical and microbiological water 

quality measures (Table 2), improvement is indicated by decreasing trends (i.e. decreasing 

concentrations). For MCI and CLAR improvement is indicated by increasing trends. 

The aggregate proportion of sites in each category were then calculated for each variable and 

these values were shown as colour coded bar charts. These charts were produced using all 

available sites (i.e., national scale aggregation). It is noted that this type of chart can be 

produced for sites aggregated according to any grouping. Graphical presentations were not 

produced for other site groupings in this study because we considered that the probabilistic 

assessments of the proportions of improving trends were a simpler way to represent grouped 

aggregate trends.  

4.7.2 Proportion of improving trends 

The proportion of improving trends (PIT) and its uncertainty was evaluated for each water 

quality variable for site trends grouped in four ways. First, all available sites were grouped at 

the national scale. Two groupings were based on classes defined by the River Environment 

Classification (REC; Snelder and Biggs, 2002). The REC is a national classification system of 

rivers that has been frequently used as a basis for environmental reporting. The REC 

distinguishes rivers based on the dominant characteristics of their upstream catchments and 

classes tend to discriminate variation in water quality because this is largely driven by 

catchment character. The two REC groupings used in this study were: 

1. The second (source-of-flow) level of the REC, which distinguishes between 

catchments based on differences in climate and topography. Source-of-flow classes 

are denoted by combination of categories that describe the climate and topography of 

the catchment (Snelder and Biggs, 2002; Table 3). For example, most river segments 
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on the south-eastern coast of New Zealand are categorized as Cool-Dry climate and 

Hill topography and, thus, belong to the CD/H class. 

2. The REC land-cover category. Land-cover categories are denoted by the land cover 

type that dominates the catchment (Snelder and Biggs, 2002). For example, much of 

New Zealand’s lowland catchments are dominated by pasture land-cover and 

mountainous areas are dominated by natural land cover types including native forest, 

scrub or bare ground.  

We used modified source-of-flow classes and land-cover categories defined by Snelder and 

Biggs (2002), which merged those classes for which there were few monitoring sites into a 

smaller number of closely related groups (Table 3). The modification reduced the number of 

groups, which reduced discrimination of environmental variation, but increased the number of 

sites in each group, thus increasing statistical power. 

Table 3. Modified river environment classification (REC) source-of-flow classes and land-

cover categories used by this study.  The original (Snelder and Biggs, 2002) classes and 

categories that were merged to form each modified class are shown. See Snelder and Biggs 

(2002) for a full description of REC classes. 

REC class Class description Original classes 

Source-of-flow level 

CX/H Cool-extremely-wet hill CX/H 

CX/L Cool-extremely-wet lowland CX/L 

CW/M Cool-wet mountain and glacial-mountain, cool-extremely wet 
mountain and glacial mountains 

CW/M, CX/GM, 
CX/M, CW/GM 

CW/H Cool-wet hill CW/H 

CW/L Cool-wet and extremely-wet lowland CW/L, CX/L 

CW/Lk Cool-wet and extremely-wet lake CW/Lk, CX/Lk 

CD/H Cool-dry hill and mountain CD/H, CD/M 

CD/L Cool-dry lowland and lake CD/L, CD/Lk 

WX/L Warm extremely-wet lowland WX/L 

WW/H Warm wet hill WW/H, 

WW/L Warm wet lowland WW/L, 

WW/Lk Warm wet lake WW/Lk, 

WD/L Warm dry lowland WD/L 

Land-cover category 

EF Exotic forest EF 

N Indigenous forest. scrub, bare, wetland, tussock EF, S, B, W, T 

P Pasture P 

U  Urban U 

 

The fourth grouping of sites was by region (Table 4). The data available in each region was 

generally collected by the regional council. The exceptions were sites administered by the 
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Nelson City Council which were grouped with those of Tasman District Council into the 

Tasman region and sites administered by Christchurch City Council, which were grouped with 

those from Environment Canterbury, resulting in 15 regions. In addition, NRWQN sites are 

administered by NIWA, and were assigned to the region in which the sites were located (Table 

4).  

Table 4. Regional groupings and data collecting agency.  

Group Region Data collecting agency 

N Northland Northland Regional Council and NIWA 

A Auckland Auckland Council and NIWA 

Wai Waikato Environment Waikato and NIWA 

BOP Bay of Plenty Bay of Plenty Regional Council and NIWA 

Tar Taranaki Taranaki Regional Council and NIWA 

G Gisborne Gisborne District Council and NIWA 

HB Hawkes Bay Hawkes Bay Regional Council and NIWA 

MW Manawatu-Wanganui Horizons Regional Council and NIWA 

Wel Wellington Greater Wellington Regional Council and NIWA 

Tas Tasman Tasman District Council, Nelson City Council and NIWA 

M Marlborough Marlborough District Council and NIWA 

C Canterbury Environment Canterbury, Christchurch City Council and 

NIWA 

WC West Coast West Coast Regional Council and NIWA 

O Otago Otago Regional Council and NIWA 

S Southland Environment Southland and NIWA 

 

The PIT statistics and the 95% confidence intervals associated with these estimates were 

displayed either as tables or plots. The PIT statistics were compared to the proportion of 

improving trends for which trend direction was established with confidence and with the 

proportions of improving trends derived from count-based assessments of the trend directions 

(i.e. by counting all improving trends irrespective of confidence in direction). PIT results for 

any pair of groups (i.e. domains of interest) that had non-overlapping confidence intervals 

were conservatively (at α = 0.05) interpreted as having statistically significant differences in 

the proportion of improving trends (Cumming et al., 2007).  

4.8 Implementation 

All trend analyses presented in this report were undertaken with purpose written functions that 

implement the new trend assessment method using the R statistical computing environment 

(http://www.r-project.org) that are available here; http://landwaterpeople.co.nz/pdf-reports/. 

The new method of trend analysis has also been implemented in the TimeTrends software 

(Jowett, 2017), which is commonly used by regional councils in New Zealand and is available 

here: http://www.jowettconsulting.co.nz.  

http://www.r-project.org/
http://landwaterpeople.co.nz/pdf-reports/
http://www.jowettconsulting.co.nz/
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The assignment and plotting of categorical levels of confidence and calculation of the PIT 

statistics were undertaken using purpose written functions developed using the R statistical 

computing environment that are available here; http://landwaterpeople.co.nz/pdf-reports/.  

5 Results 

5.1 National scale  

Figure 3 shows the proportion of all sites (i.e., nationally), by variable, for which 10-year water 

quality trends indicated improvement at the nine categorical levels of confidence defined in 

Table 1. Note that probability of improvement is the complement of probability of degradation, 

and therefore sites that are classified as “exceptionally unlikely” to be improving, could equally 

be classified as “virtually certain” to be degrading. The plot indicates that 50% or more of sites 

were at least likely to be improving (i.e., probability ≥ 67%) for CLAR, TP and DRP. The plot 

also indicates that 50% of sites had NO3N trends that were at the most unlikely to be improving 

(i.e., indicating they were at least likely to be degrading). ECOLI and TN had roughly even 

proportions of sites in the unlikely and likely to be improving categories and MCI had more 

sites in the unlikely to be improving categories. 

 

Figure 3. Summary plot representing the proportion of sites with improving 10-year time-

period trends at each categorical level of confidence.  The plot shows the proportion of sites 

with improving trends at levels of confidence defined in Table 1.  

The PIT statistics produced different results to an assessment of the proportion of improving 

trends based only on trends that are established with confidence (Table 5). For example, 83%, 

90% and 24% of trends established with confidence for NH4N, TP and MCI were improving, 

but the PIT statistics indicated 64%, 79% and 41% of sites had improving trends respectively 

http://landwaterpeople.co.nz/pdf-reports/
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(Table 5). The assessments based on the proportion of trends established with confidence 

that were improving were generally outside the 95% confidence intervals of the PIT statistics 

(Table 5). This indicates that through not including information provided by all the site trends, 

the traditional approach gives a misguided impression of the proportion of improving sites. 

The PIT statistics produced similar estimates to the count-based evaluation (Figure 4). The 

95% confidence interval for PIT always included the one to one line of the plot comparing the 

two sets of evaluations for all variables (Figure 4, Table 5). This demonstrates that the count-

based evaluation of the proportion of improving sites is consistent with the PIT statistics. 

   

Figure 4. Comparisons of proportions of sites with improving trends over the 10-year time-

period based on the PIT statistic and the count-based evaluation.  Solid dots are the 

evaluated proportions of improving sites using both methods. Error bars indicate the 95% 

confidence interval for PIT. 

The PIT statistic was 50% or greater for all variables except TN, NO3N and MCI (Table 5). 

The variables with the largest proportions of improving sites were TP (79%), DRP (72%), 

NH4N (64%) and CLAR (58%). NO3N and MCI were improving at only 43% and 41% of sites 

respectively, or conversely were degrading at 57% and 59% of sites respectively (Table 5). 

These results are consistent with the proportions of improving site trends at the different levels 

of confidence shown in Figure 3. 

The confidence intervals for PIT were narrow, at between 5% and 9%. As expected, the 

narrower confidence intervals were associated with the variables for which there were more 

sites and for which a larger proportion of trends were established with confidence (e.g., TP, 

and DRP; Table 5, Figure 3).  
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The trend assessment method used in this study retained a larger number of sites for all 

variables compared to Larned et al. (2015), who filtered (removed) all sites with greater that 

15% of censored observations (Table 5). The largest differences in the number of analysed 

sites between this study and Larned et al. (2015) were for NH4N and DRP, which have the 

largest numbers of censored values (Figure 1). The retention of sites with greater than 15% 

censored samples resulted in a larger proportion of trends categorised as insufficient data by 

this study compared to Larned et al. (2015).  

There were differences between the proportion of improving and degrading trends between 

the two studies (Table 5). For example, this study evaluated 19% of sites had improving trends 

for NH4N compared to 43% for Larned et al. (2015) (Table 5). These differences are 

associated with differences in the numbers of sites included in the two assessments, which is 

related to the filtering of sites with greater than 15% censored values by Larned et al. (2015).  
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Table 5. Estimates of proportions of sites with improving 10-year site-trends (national grouping). The improving and degrading trends in this 

study and Larned et al (2015) refer to trend directions that are established at the 95% level of confidence. The proportion of trends 

established with confidence improving represents the ratio of improving trends to the total number of trends whose directions were 

established at the 95% level of confidence. 

Variable 

This study Larned et al. (2015) results 

Number 

of sites 
Number 

of sites 

not 

analysed 

PIT 

(%) 
95% 

confidence 

interval for 

PIT 

Insufficient 

data (%) 
Improving 

(%) 
Degrading  

(%) 
Proportion trend 

directions established 

with confidence 

improving (%) 

Number 

of sites 
Insufficient 

data (%) 
Improving 

(%) 
Degrading   

(%) 

CLAR 393 0 58 55 - 61 58 28 14 67 386 48 34 18 

NH4N 487 36 64 60 - 67 77 19 11 83 206 31 43 26 

TN 273 0 49 46 - 53 54 25 21 54 243 40 32 28 

NO3N 523 0 43 40 - 46 50 18 33 36 511 39 24 37 

TP 485 0 79 76 - 81 49 46 5 90 421 33 61 6 

DRP 519 5 72 69 - 74 49 39 12 76 391 31 51 18 

ECOLI 494 0 50 46 - 53 82 10 8 56 396 66 20 14 

MCI 249 0 41 36 - 45 78 6 16 24 461 83 13 4 
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5.2 Source-of-flow 

There were differences in the PIT statistics between some pairs of REC source-of-flow classes 

for all variables (i.e., non-overlapping 95% confidence intervals; Figure 5). Confidence that 

CLAR was improving at more than 50% of sites exceeded 95% in six REC source-of-flow 

classes (CX/H, CW/H, CW/L, CD/H, CD/L, WD/L). Confidence that CLAR was degrading at 

more than 50% of sites exceeded 95% in three REC source-of-flow classes (CW/Lk, WW/H 

and WW/L). The latter two classes are predominantly located in the upper half of the North 

Island. Confidence that NH4N was improving at more than 50% of sites exceeded 95% for 

five source-of-flow classes (CD/H, CD/L, WW/L, WW/Lk and WD/L). Confidence that TP and 

DRP were improving at more than 50% of sites exceeded 95% in nine and eight source-of-

flow classes. Confidence that TP was improving at more than 80% of sites exceeded 95% in 

the WW/L and WW/Lk classes. Confidence that TP and DRP were improving at more than 

60% of sites exceeded 95% in seven and 5 classes respectively.  

NO3N had the lowest PIT statistics (i.e., the highest proportions of degrading trends), in 

particular in the CW/H, CW/Lk, CD/H, CD/L and WX/L source-of-flow classes. In these 

classes, degradation occurred at between 64% to 71% of sites. Patterns in TN were similar to 

those of NO3N. Confidence that TN was degrading at more than 50% of sites exceeded 95% 

in CX/L, CW/H, CD/H, CD/L, WX/L and WW/H classes. There were no REC source-of-flow 

classes for which there was a 95% level of confidence that ECOLI was degrading and there 

was only one class (CW/H) for which there was 95% confidence that ECOLI was improving at 

more than 50% of sites. There were no REC source-of-flow classes for which there was a 95% 

level of confidence that MCI was improving at more than 50% of sites. In addition, there were 

three source-of-flow classes for which there was a 95% level of confidence that MCI was 

degrading at more than 50% of sites (CX/H, CW/M and WD/L, Figure 5). 

The uncertainty of the estimated proportion of improving sites in each source-of-flow class 

was strongly related to the number of sites in the class (Figure 5). Uncertainties were generally 

larger when there were fewer sites in the class. Where there were few sites in a class but high 

certainty, the probabilities that individual sites trends were improving were high for most of the 

sites. 
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Figure 5. Evaluated PIT statistics for 10-year flow adjusted trends grouped by REC source-

of-flow classes.  The numbers after the source-of-flow class labels indicate the number of 

sites used in the evaluation. The error bars indicate the 95% confidence interval for the PIT 

statistic. The red line indicates 50% of sites with improving trends. 

5.3 Land cover 

There were differences in the PIT statistics between some pairs of REC land-cover categories 

for most variables (i.e., non-overlapping 95% confidence intervals; Figure 6). Confidence that 

CLAR was improving at more than 50% of sites exceeded 95% for three of the four land cover 

categories (N, P and U; Figure 6). Confidence that NH4N was improving at more than 50% of 

sites exceeded 95% for two land cover categories (P and U).  

Confidence that ECOLI was improving or degrading at more than 50% of sites did not reach 

95% for any land-cover category. Confidence that TP and DRP was improving at more than 

50% of sites exceeded 95% for four and three land-cover categories respectively and were 
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improving at more than 76% and 73% of sites respectively in the P (Pasture) category. 

Confidence that NO3N was degrading at more than 50% of sites exceeded 95% in the EF 

(Exotic Forestry) and P (Pasture) land-cover categories. In these categories, there was 95% 

confidence that degradation occurred at 60% and 56% of sites respectively. Confidence that 

TN was improving at more than 50% of sites exceeded 95% in only the U land-cover category. 

Confidence that MCI was degrading at more than 50% of sites exceeded 95% in all land-cover 

categories except P and there was 95% confidence that it was degrading at more than 58% 

of sites in the Natural (N) land cover category. 

 

Figure 6. Evaluated PIT statistics for 10-year flow adjusted trends grouped by REC land-

cover categories.  The numbers after the land-cover category labels indicate the number of 

sites used in the evaluation. The error bars indicate the 95% confidence interval for the 

proportion of improving trends. The red line indicates 50% of sites with improving trends. 



 

 Page 28 of 35 

5.4 Region 

There were differences in the PIT statistics between some pairs of regions for all variables 

(i.e., non-overlapping 95% confidence intervals; Figure 7). Confidence that CLAR was 

improving at more than 50% of sites exceeded 95% for six regions (Auckland, Bay of Plenty, 

Wellington, Tasman, West Coast and Southland; Figure 7). Confidence that CLAR was 

degrading at more than 50% of sites exceeded 95% for the Waikato region (Figure 7). It is 

noted that the Auckland region had PIT statistic for CLAR of 100% (Figure 7). This arises 

because both sites representing trends in CLAR in the region had site trends that were virtually 

certain to be improving. 

Confidence that NH4N was improving at more than 50% of sites exceeded 95% in five regions. 

Confidence the NH4N was degrading at more than 50% of sites exceeded 95% in three 

regions (Marlborough, Taranaki, and Gisborne). Confidence that TP and DRP was improving 

at more than 50% of sites exceeded 95% for 10 and nine regions respectively. There were no 

regions for which there was 95% certainty that TP was degrading at more than 50% of sites 

and only four regions for which there DRP was degrading at 50% or more sites with 95% 

certainty (Taranaki, West Coast, Tasman and Marlborough).  

Confidence that NO3N was degrading at more than 50% of sites exceeded 95% for six regions 

(Waikato, Tasman, Canterbury, West Coast, Otago and Southland). Confidence that NO3N 

was improving at more than 50% of sites exceeded 95% for five regions (Northland, Auckland, 

Taranaki, Manawatu-Wanganui and Wellington). Patterns in TN were similar to those of 

NO3N.  

Confidence that ECOLI was improving or degrading at more than 50% of sites exceeded 95% 

for in two (Bay of Plenty and Tasman) and four (Taranaki, Gisborne, Hawkes Bay and Otago) 

regions respectively (Figure 7). Finally, confidence that MCI was improving at more than 50% 

of sites exceeded 95% in only two regions Northland and Manawatu-Wanganui (Figure 7). 

Confidence that MCI was degrading at more than 50% of sites exceeded 95% in four regions 

Auckland, Gisborne, Hawkes Bay and Tasman. 

 



 

 Page 29 of 35 

 

Figure 7. Evaluated PIT statistic for 10-year flow adjusted trends grouped by region.  The 

numbers after the region labels indicate the number of sites used in the evaluation. The error 

bars indicate the 95% confidence interval for the proportion of improving trends. The red line 

indicates 50% of sites with improving trends. 
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6 Conclusions 

6.1 New trend aggregation methods 

In this study we introduced two new methods for presenting aggregated trends (site trends 

from many sites that are grouped to represent the ‘overall’ change in water quality that has 

occurred over some domain of interest). Aggregated trends can be presented as charts that 

show the proportions of improving sites at different categorical levels of confidence. 

Alternatively, an assessment of the proportion of improving trends (PIT) can be made that 

includes the quantification of the uncertainty of this statistic. Both methods treat confidence in 

trend direction as a probability i.e., a continuous quantity between zero and one, instead of 

the traditional binary ‘trend’, ‘no-trend’ interpretation. These approaches overcome two 

problems associated with presenting tables of the proportion or numbers of sites categorised 

as increasing, decreasing and insufficient data. First, the incorrect inference that trends 

categorised as insufficient data are “no change” or “stable” is less easily made. Second, 

information about the direction of change that is associated with the trends categorised as 

insufficient data is utilised. 

Plots representing the proportion of site trends that indicate improvement at each categorical 

level of confidence demonstrate that there is a continuous, not binary, confidence in trend 

direction. This is consistent with the philosophy behind the new trend assessment procedure, 

that there is always a trend but confidence in its direction depends on the available data. The 

plots of confidence in trend direction provide a visualisation of the confidence in the direction 

of all the included site-trends and the confidence that the dominant direction of the trends (i.e. 

the highest proportion) was improving (or its complement; degrading).  

Tabulations that include trends categorised as improving, degrading and insufficient data 

invite the interpretation to ignore the trends categorised as insufficient data and make 

conclusions about the overall trends based only on the trends whose directions are 

established with confidence. This approach can potentially lead to incorrect conclusions being 

drawn as it fails to consider all available information about site trends. To address this problem, 

we developed the PIT statistic as a more robust alternative for presenting aggregate trend 

results. The PIT statistic distils the information contained in all the individual trends into a 

single number (plus its uncertainty). We demonstrated that PIT can potentially be different to 

the proportion of trends with directions established with confidence that are improving. For 

example, the PIT statistic indicated 64%, 79% and 41% of sites were improving for NH4N, TP 

and MCI respectively (Table 5). However, of trends with directions established with 

confidence, 83%, 90% and 24% of NH4N, TP and MCI were improving, and these results were 

generally outside the 95% confidence intervals of the PIT statistic (Table 5). This indicates 

that through not including information provided by all the site trends, the traditional approach 

gives a misguided impression of the proportion of improving sites. 

As well as providing a single easily understood statistic (the proportion of improving sites, or 

its complement), the PIT statistic avoids referring to trends categorised as insufficient data (or 

the traditional insignificant trends). PIT statistics for domains of interest (e.g., nationally, 

regionally or by classes) also help to elucidate patterns in water quality changes that are 

difficult to perceive by examining the individual site trends. We therefore recommend that PIT 

statistics are used in future to represent aggregate measures of water quality change over a 

spatial domain of interest. Proportions of improving sites for each spatial domain can be shown 

as tables or figures, as has been demonstrated in this report. We recommend that the spatial 

domain(s) is made clear when these types of tables or figures are presented. We also 
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recommend that PIT statistics are presented as distinct from the trend evaluations for 

individual sites, for which certainty in trend direction (or significance) remains an important 

piece of information. 

Our study has also shown that count-based estimates are plausible realisations of the PIT 

statistic (Figure 4) and are therefore a reasonable approximation of the proportion of improving 

sites. However, it should be kept in mind that count-based estimates are subject to 

unquantified uncertainty. 

6.2 Inferences from aggregated trends for 10 -year period ending 2013 

For the 10-year period, sites with improving trends dominate (i.e., are > 50%) nationally for 

CLAR, NH4N, TP, DRP and ECOLI. The PIT statistics indicate that the lower 95% confidence 

interval was >50% for all these variables except ECOLI (Table 5). There is therefore high 

confidence that the majority of sites had improving CLAR, NH4N, TP and DRP over the 10-

year period. For the 10-year period, sites with degrading trends dominate (i.e., are > 50%) 

nationally for NO3N and MCI. The upper 95% confidence interval was <50% for these 

variables indicating high confidence that degradation occurred at the majority of sites (Table 

5). 

Some clear patterns at smaller spatial scales are also clarified by the PIT statistics. CLAR was 

improving at the majority (i.e., >50%) of sites in most environmentally defined river classes 

and regions. The exceptions to this were REC Source-of-flow classes that are prevalent in the 

upper North Island (WX/L, WW/H, WW/L and WD/L). Correspondingly of the majority of sites 

in the Waikato and Hawkes Bay regions had degrading trends for CLAR. In addition, TP and 

DRP were improving at a majority (i.e., >50%) of sites in the majority of REC source-of-flow 

classes (Figure 5) and regions (Figure 7).  

Larned et al. (2016) noted that TP and DRP decreased over the 2004–2013 period at median 

rates >1.5% yr−1 and that CLAR was improving at a majority of sites. Larned et al. (2016) 

suggested stock exclusion from waterways, improved farm effluent treatment, improved 

fertiliser management and reductions in phosphorus fertiliser use may be contributing factors. 

This study shows that TP, DRP and CLAR were improving at a majority of sites belonging to 

Natural REC Land cover category over the 10-year period (Figure 6). Therefore, changes in 

clarity and phosphorus are occurring systematically (i.e. >50% of sites) in river classes that 

have relatively low levels of resource use. It should be noted however, that sites classified as 

Natural land cover can include up to 15% urban land cover and 25% pastoral land cover. It 

has been known for some time that both improving and degrading trends in a variety of water 

quality variables can be associated with climatic variation (Scarsbrook et al., 2003) and that 

water quality trends occur at minimally impacted sites (e.g., Larned et al., 2004). This means 

that decision makers need to be cautious about attributing the causes of trends to human 

activities.  

Another pattern that is clarified by the PIT statistics is increasing nitrogen. Over both the 10-

year period, NO3N and TN was degrading at >50% of sites in some REC classes and regions. 

In particular, the PIT statistic for NO3N for regions with more than 10 sites indicates that the 

upper 95% confidence interval was <50% for six regions: Waikato, Tasman, Canterbury, West 

Coast, Otago and Southland (Figure 7). These results indicate high confidence that the 

majority of sites had degrading nitrate concentrations over the time-period. It is noteworthy 

that the 95% confidence interval for the proportion of sites with degrading NO3N in the Natural 

REC Land cover category included 50% in the 10-year time-period (Figure 6). This indicates 

that there were no systemic changes in NO3N at sites in river classes that have relatively low 



 

 Page 32 of 35 

levels of resource use (i.e., similar proportions of sites had increasing and decreasing NO3N). 

This strengthens the evidence that observed changes in NO3N in some regions are related to 

human activities.  

Finally, over the 10-year time-period, the PIT statistic indicates that the upper 95% confidence 

interval for the proportion of sites nationally with improving MCI was 44% (Table 5). This result 

indicates high confidence that the majority of sites nationally had degrading MCI over the 10-

year time-period. The majority of sites also had degrading MCI trends in all land-cover 

categories (Figure 6). The upper 95% confidence interval for the proportion of sites in the 

Natural (N) land cover category with improving trend was 45%. This indicates high confidence 

that degradation occurred at the majority of sites in river classes that have relatively low levels 

of resource use. This indicates systemic changes may be occurring in MCI and means that 

decision makers need to be cautious about attributing the causes of MCI trends to human 

activities. We recommend that further research is carried out on MCI observations to 

determine if the trends can be explained either by changes in sampling, analysis of samples 

or calculation of individual MCI scores, or by environmental changes (for example, climatic 

variation).  

6.3 Limitations of the PIT statistic 

The PIT statistic is being calculated as though the probability that the trend is decreasing (or 

improving) were a population parameter associated with each of the individual site trends 

involved. However, the probability that the trend is decreasing is, itself, an estimate that is 

uncertain. This means that not all sources of uncertainty in the estimation of PIT are accounted 

for in our approach. This issue could be addressed by reformulating the trend aggregation 

problem as a Bayesian model. This was beyond the scope of this study and we consider that 

it is unlikely to greatly change conclusions when PIT statistics are calculated using reasonable 

numbers of sites (e.g., >100).  

Another advantage of taking a Bayesian approach would be that the uncertainty of PIT could 

be expressed as a Bayesian credible interval. This would allow the interpretation that the true 

value of PIT lies within the interval at the level of confidence expressed by the credible interval. 
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