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Executive summary 
The Ministry for the Environment has requested advice on a number of statistical issues pertinent to 

the 2014 National Policy Statement for Freshwater Management, having particular regard to its 

National Objectives Framework (‘NOF’). Three broad topics are to be addressed: Interpreting current 

NOF statistics; Guiding a consistent approach to future attributes; Assessing the human health value.  

Rather than immediately addressing these topics, this report first presents some fundamental 

statistical issues, and an analysis of the statistical and sampling issues raised by the current 

expression of ‘Numeric Attribute States’. Foremost among these is the issue of sampling variability, 

sometimes denoted as ‘statistical sampling error’. In particular, this means that we never know the 

true Attribute State (as a percentile of time), because we only ever have an estimate of that and such 

an estimate is influenced by the variability components we happen to capture in our samples. 

Sometimes it will be higher than the true value, sometimes lower. It will seldom if ever be the true 

value. Hence the proposed motto: “Always be wary of the influence of ‘statistical sampling error’”. 

 It is noted that for the most part the NOF is silent on the burden-of-proof that underlies the various 

percentile requirements, seemingly because they have been regarded as percentiles of samples 

rather than percentiles of time. If the latter is intended then there will need to be a direct 

consideration of the burden-of-proof and misclassification error risks when assessing Numeric 

Attribute States. The implications for sampling effort are detailed. It is noted that adopting a 

precautionary approach generally considerably increases the needed number of samples (proof-of-

safety is more onerous than proof-of-hazard), as indicated in the look-up tables presented. 

It is noted that the primary contact recreation human health Numeric Attribute State is already 

based on a precautionary approach to the burden of proof. 

The propensity for “State Switching” (e.g., inferring states A-B-A-B-B in five successive years when in 

fact the waterbody was always in State B) has been analysed using a set of Monte Carlo numerical 

experiments and both normal and lognormal distributions. Under annual assessments, using only 

that year’s data, the degree of switching seems unacceptably high. Instead it is suggested that a five-

year assessment period be adopted with rolling annual assessment frequency.  

A recently-developed (and implemented) direction-of-trend assessment procedure is recommended 

for progress assessment for the various attributes, after a few years of data have been analysed. 

For the secondary contact in the human health value it is seems largely unnecessary to restrict 

sampling to seasons and lower flows, with one possible exception. That is, consideration should be 

given to (if possible) sampling for E. coli only on the rising limb of a flood hydrograph. For primary 

contact there should be sampling stratification based on season and on flow (when conditions may 

be unsuitable for swimming). The identification of what elevated flows and seasons should be so-

treated will vary from location to location. 

Consistency of approach should be aimed for with future Attributes (or revisions of the current set), 

but may not always be achievable. Issues that may arise with a percentage change approach (from a 

reference state or an upstream state) for sediment attributes will need careful consideration in light 

of the findings in this study. 
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Recommendations are made for future work, including:  

(i) Conducting annual progress assessment for median thresholds using a rolling or (rarely) 

an adjacent window of at least three year’s data, preferably five;  

(ii) Using single-year adjacent assessments for high percentiles in cases where rare events 

may occur (e.g., lake hypolimnion hypoxia, E. coli spikes resulting from a WWTP failure);  

(iii) Identifying appropriate burdens-of-proof;  

(iv) Stating rules for inferring percentile attainment using simple “look-up” tables;  

(v) Using two-one sided interval tests for state-switching considerations, such that a possible 

outcome is “U” (undecided);  

(vi) Examining the feasibility of detecting a percentage change (for future attributes such as 

sediment) where a percentage change from some reference value is contemplated, given 

the potential for statistical sampling error to frustrate the ability to detect it;  

(vii) Directing sampling for primary contact recreation toward times when these recreational 

activities are occurring;  

(viii) Making some changes to the wording of Numeric Attribute States’ assessment metrics to 

clarify their intention and scope.  

Finally a three-step decision template is recommended, covering:  

a) Choosing a time period and assessment regime;  

b) Deciding on the burden-of-proof;  

c) Choosing a comparison reference?  

This template is applied in indicative fashion to total phosphorus in lakes; E. coli in rivers, and to a 

possible future attribute: visual clarity in rivers. 

 



 

8 National Objectives Framework 

 

1 The Ministry’s brief 

1.1 Topics to be addressed 

The Ministry for the Environment has contracted NIWA (via the author) to report on three broad 

issues concerning the NPS-FM National Objectives Framework (NOF), NZ Government (2014). These 

are quoted verbatim below (italicised text). 

1.1.1 Interpreting current NOF attribute statistics 

Guidance on how to interpret the current NOF attribute state sample statistics, given the problem of sample 

statistic imprecision. The issues to be addressed are the number of samples and sampling duration needed to 

characterise the state of a managed environment, and how the choices made when deciding a sampling regime 

can affect what the current attribute state of an environment is assessed as. Guidance will provide practical 

approaches available for councils to assess current state for the range of attributes. It is expected this will include 

advice concerning the intent of NOF attributes (i.e., that these define objectives as opposed to standards), and 

any implications imprecision has for the estimated state to be interpreted. The guidance should also include a 

tool (such as a look-up table) which can be used to determine an appropriate sampling regime given the numeric 

attribute percentile, necessary characteristics of the data or environment being sampled, and the appetite for 

uncertainty. 

1.1.2 Consistent approach to future attributes  

Advice for how the Ministry could define sample statistics in a consistent way for future attributes. This should 

include a review of approaches used for existing attributes, and a recommendation in the interest of improving 

consistency and clarity. The Contractor shall include guidance on how to specify "annual" or other such statistics, 

percentiles, and minimum sample durations and number of samples. ln preparing this advice, the Contractor will 

consult with the coordinator of the ANZECC Guideline Revision (Dr Chris Humphries of the Australian Department 

of the Environment) and Dr Brent Henderson (a statistician at CSIRO) who are currently preparing guidance on 

sampling statistics. The Contractor will endeavour to align the approaches where applicable. To extent the 

approaches do not align, the Contractor shall explain the reasons for non-alignment. Reviewing these Attribute 

tables for inconsistencies and potential future improvements; 

1.1.3 Human health for recreation 

Specific advice concerning the appropriateness of season and/or flow stratification of sample data used for 

assessing the non-compulsory Human Health for Recreation primary contact objective. 

1.2 Information requirements 

The National Policy Statement for Freshwater Management 2014 (NPS-FM) is the Government's national 

direction for freshwater management. The NPS-FM defines numeric attribute states, which guide the setting of 

freshwater objectives by numerically describing different levels (states) to which a water body might provide for 

a given value. The Ministry requires advice on three broad issues associated with using sample statistics to define 

these numeric attribute states:  

1.2.1 Number of samples 

The first issue requiring advice is the number of samples and sampling duration needed to characterise the state 

of a managed environment. The NPS-FM describes some numeric attribute states using sample statistics such as 

medians, maximums or other percentiles. Most of these descriptions are prefixed by the word "annual", for 
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example, the nitrate toxicity attribute state is defined by the annual median and annual 95th percentile, and the 

ammonia toxicity attribute state is defined by the annual median and annual maximum. However, there is no 

direction concerning the number of samples required to inform estimates of current state.  

There are other attribute states which are not prefixed by the word "annual", and the minimum number of 

samples and duration is more clearly specified. lt is unclear whether these sampling regimes should inform 

minimum sampling requirements for attributes lacking such specifications. For example, the Planktonic 

Cyanobacteria attribute state is defined by the 80th percentile of at least 12 samples collected over three years, 

and the periphyton attribute state is defined as the 92nd percentile of monthly samples collected over at least 

three years. The Ministry requires guidance on the practical approaches available for councils to assess current 

state for the range of attributes.  

1.2.2 Attribute state switching 

A second issue is how the choices made when deciding a sampling regime can affect what the current attribute 

state of an environment is assessed as. This issue is most likely to arise where uncertainty associated with the 

estimate of an attribute state is high, and the true state of the environment is near a threshold boundary. High 

uncertainty could occur if the word "annual" is interpreted to mean that the relevant sample statistic is to be 

estimated from one year of data, which may mean only 12 or 4 samples are used depending on whether 

sampling is monthly or quarterly. When the number of samples is limited, there will be high uncertainty 

associated with the estimated statistic. This imprecision reflects sample variability and potentially inter-annual 

variation in the drivers of the attribute state. lf the site's true status is close to the threshold of interest, the 

estimated (imprecise) statistic may switch between meeting and not meeting the objective in successive years. 

This switching of the assessed attribute state is problematic and not helpful to council staff and communities 

implementing the NPS-FM. lt creates issues in establishing the current state (policy CA2) and recognising the 

importance of 'long-term' trends in monitoring progress towards achieving objectives in plans (policy CB1 of the 

NPS-FM).  

It is noted that for State of Environment (SoE) reporting, regional councils, Land Air Water Aotearoa and the 

Ministry typically calculate sample statistics, such as the median, using 3-5 years of monthly samples. The 

rationale for this has been that most SoE monitoring is monthly and therefore 3-5 years of data is considered to 

represent a reasonable trade-off between site numbers, precision of the estimated statistic (e.g., a median value) 

and limiting effect of long term trends on the statistic. The Ministry requires advice on how councils can best 

consider uncertainty in their sampling regime. 

1.2.3 Sample statistic for E. coli 

The third issue relates specifically to the sample statistic for assessing the non-compulsory primary contact 

objective for Human Health for Recreation. The assessment statistic for primary contact is the 95th percentile. 

There is a view that stratifying the monitoring data by season and/or flow may be appropriate to restrict the 

assessment to periods when primary contact recreation occurs. Such stratification would affect the total 

number of samples in an annual period and could reduce the precision of the statistic. The Ministry requires 

advice as to the appropriateness and implications of stratifying the monitoring data, and implications for the 

sampling regime and uncertainty. 

1.3 Approach taken in this report 

Chapter 2 addresses some fundamental statistical issues and possible means of their resolution and 

implementation. In that chapter bold words signify key concepts. Subsequent chapters address the 

brief’s topics to be addressed. Footnotes are used liberally, and some more extensive technical 

material is in the Appendices.   
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2 The broad statistical issues 

2.1 General principles and why they should be understood 

Environmental monitoring inevitably impinges on the realm of statistics. So some general 

understanding of that interaction is desirable, not least because terms may have different meanings 

in each discipline.1 

Most importantly, to an environmental professional a sample is a volume or mass of material taken 

from the environment—for example, a container of stream water for subsequent laboratory analysis. 

But to a statistician, a sample is a collection of results, called observations: for example, phosphorus 

concentrations from a set of physical samples.2 So to a statistician one sample contains many data 

(i.e., observations) and the sample size is the number of data in the sample—not the volume of the 

sampling container. The context usually makes the meaning clear. Similarly, an environmental 

professional would regard an error as just that—a mistake. But to a statistician, sampling error is the 

natural variability inherent among data taken from a population and is therefore always present and 

needs to be accounted for (Barnett & O’Hagan 1997). 

2.1.1 Statistical population 

With existing technology it is often impossible to measure water quality attributes in lakes and rivers 

continuously (temperature, pH and nitrates are exceptions). Therefore we take occasional samples 

(i.e., make observations). That’s because the laboratory effort required for many attributes is 

substantial (e.g., total nitrogen, dissolved reactive phosphorus), as is the cost of running field parties 

who perform the sampling. These physical samples are understood to be taken from a population. 

We make inferences about the form of that population using the field and laboratory data we obtain. 

These inferences concern the shape of the population’s statistical distribution and its parameters, 

for example the mean and standard deviation of a normal distribution, for which these two 

parameters reflect the distribution’s central tendency and variance around that.3 

2.1.2 Statistical “sampling error” and uncertainty 

When the population distribution is unknown, the presence of sampling error is inevitable. It is the 

result of observing a sample instead of the whole population. In precise terms, sampling error is the 

difference between a sample statistic used to estimate a population parameter and the actual but 

unknown value of that parameter.4 

Physical samples are generally only a tiny fraction of the total water volume about which we wish to 

make inferences, typically on the order of 1 in a billion. That means that our inferences are 

necessarily uncertain. So when we make inferences about the population from a set of sample data 

we need always to be wary of the influence of statistical sampling error.  

More generalised discussion of uncertainty issues is given by Norton et al. (2015). 

2.1.3 Accuracy (precision and bias) 

To be accurate, data must be both precise and unbiased, as depicted in Figure 2-1.  

                                                           
1 The following material is based on McBride (2005). 
2 https://stats.oecd.org/glossary/detail.asp?ID=6132 
3 A statistical distribution can be seen as the form of a frequency histogram as the number of observations becomes huge (see Section 
2.1.4). 
4 https://en.wikipedia.org/wiki/Sampling_error 
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Figure 2-1: Accurate observations are both precise and unbiased.  Source: McBride (2005). 

 

Random sampling removes sampling bias, but if there are errors in measurement (nothing in this 

world is perfect), bias can still appear caused by measurement error.  

Note that many environmental sampling programmes are systematic, not random. They are 

conducted at regular intervals (typically monthly) and often at the same-time-of-day. This is true for 

data intended to be used for state-of-the-environmental and (especially) for trend analysis. 

Systematic programmes are chosen for three reasons: 

1. To meet the requirements of trend assessment models (most time-series analysis methods 

demand equally-spaced data)5. 

2. To facilitate efficient sampling by field parties. 

3. To reduce known variability.  

An example of the last item is fixed-interval sampling of river dissolved oxygen at the same time-of-

day. River dissolved oxygen often follows a regular sinusoidal variation over 24 hours and so known 

variability is removed when sampling at the same-time-of-day, as depicted in Figure 2-2. Inferences 

then become less uncertain. 

At first glance, systematic sampling compromises accuracy. It certainly does for same-time-of-day 

sampling of water quality attributes that show regular variations but only if inferences were to be 

made about patterns appearing over the full 24 hours. If inferences were restricted to dissolved 

oxygen around mid-morning the bias is effectively removed, because the population being sampled 

has been restrained. Inferences for other times-of-the-day would have to come from other special 

investigations.  

The same caveats apply when sampling attributes exhibiting irregular variations. And note that “The 

researcher must ensure that the chosen sampling interval does not hide a pattern”.6 For example a 

factory on a river may discharge cleaning agents only on a Friday. If river sampling is always on a 

Tuesday that “hidden” pattern will not be sampled—though it could be discovered under strict 

random sampling. 

                                                           
5 https://en.wikipedia.org/wiki/Unevenly_spaced_time_series 
6 https://en.wikipedia.org/wiki/Systematic_sampling 

INACCURATE INACCURATE INACCURATE ACCURATE

(a) Biased, imprecise (b) Unbiased, imprecise (c) Biased, precise (d) Unbiased, precise
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Figure 2-2: Reducing data variance by regular monthly sampling at same-time-of-day  (9 a.m.) 

2.1.4 Probability distributions 

Statistical distributions lie at the heart of much of statistical inference—their shape and parameters 

must be estimated. This requires understanding of the symmetric normal distribution (e.g., as may 

apply to total nitrogen concentrations in lakes), or the right-skewed lognormal distribution 

(especially for E. coli).7 Familiarity with these fundamental features should facilitate ready 

understanding of many of the following issues.  

Populations are expected to be characterised by such statistical distributions. We can use accurate 

(or at least unbiased) data collected from a population to infer the shape and parameters of that 

distribution by plotting the observation’s frequencies as a histogram, and then imagining what the 

shape would be were a huge number of accurate samples to be taken. Such a process is depicted in 

Figure 2-3 (for the normal distribution) and Figure 2-4 (for the lognormal distribution). It gives rise to 

probability density functions (pdf), as shown by the smooth curves on these figures. 

                                                           
7 Both these distributions are fully defined given values of the population’s median and coefficient of variation (the standard deviation 
divided by the mean). For low coefficients of variation (e.g., 0.2) the two distributions are quite similar but for high values of that 
parameter (e.g., 1.0) the two are quite dissimilar, with the lognormal distribution being asymmetric and right-skewed. 
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Figure 2-3: From normal histograms to distributions.  Random samples drawn from a normal distribution 
with its two parameters known: (i) median (= mean = mode) = 800 ppb; (ii) coefficient of variation = 25% (so 
the standard deviation is 200 ppb). The green shaded bins are the relative frequencies divided by their width. 
For example, the number of observations in the first bin in Figure 2-3(a) is 1 (i.e., only one observation was 
between 200 and 300 ppb). The total number of data is 12, so the relative frequency is 1/12. The bin width is 
100 ppb, and so the scaled histogram height for the first bin on Figure 2-3(a) is 1/(12x100) = 0.000833—
because the total area under the bars must be unity. [For Figure 2-3(b) that bin contains 2 data and so its 
scaled height is 0.0004 and for Figure 2-3(c) that bin contains 5 data and so its scaled height is considerably 
diminished (0.00005).] 

 

Figure 2-4: From lognormal histograms to distributions.  Random samples drawn from a lognormal 
distribution with its two parameters known: (i) median = 800 per 100 mL; (ii) coefficient of variation = 200% (so 
standard deviation of natural logarithms of concentrations = 1.27).8 From these data we calculate mode = 160 
(where the pdf is 0.00088), and mean = 1789 per 100 mL.9 The green shaded bins are the relative frequencies 
divided by their width. For example, the number of observations in the first bin in Figure 2-4(a) is 8 (i.e., 8 
observations are between 0 and 1,000 per 100 mL). The number of data is 12, so the relative frequency is 2/3. 
The bin width is 1000 per 100 mL, and so the scaled histogram height is 0.000666 [for Figure 2-4(b) that bin 
contains 23 data and so its scaled height is 0.00046 and for Figure 2-4(c) the first bin contains 548 data and so 
its scaled height is 0.000548]. 

                                                           
8 Approximate value for many Freshwater Microbiological Research Programme sites’ E. coli data (McBride et al. 2002, Till et al. 2008).  
9 The mode is calculated from exp(μy – σy

2) and the mean is exp(μy + ½σy
2), where μy is the mean of (natural) logarithms of the data and σy is 

their standard deviation, calculated from √[ℓn(1 + η2)], and η is the coefficient of variation of the raw (non-transformed) data—Gilbert 
(1987, p. 156); Millard (1998, p. 149).  
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From Figure 2-3 and Figure 2-4 notice that: 

1. Each of these distributions can be characterised by two variables: (i) median and (ii) coefficient 

of variation (the standard deviation divided by the mean).10 

2. The total area under each histogram or density curve is one. 

3. The height of a density curve is not a probability; probabilities are given by areas under the 

density curve. This means that for continuous attributes (such as total nitrogen) the probability 

that it takes a specific value is virtually zero (because the width of a bin bounded above and 

below by that specific value is zero)—even though TN must be a value. 

4. In order to preserve the unit area under the histograms we see a pattern of “unders” = “overs”. 

For example, in Figure 2-3(b) compare the 700–800 ppb bin with the 900–1000 ppb bin.  

5. With few data, samples from a strongly skewed lognormal distribution can throw up occasional 

high values such that the histogram bar can lie considerably above the density curve [Figure 

2-4(a)]. However, the more random data we have the closer the histogram mimics the 

continuous distribution line [compare (a), (b) and (c) panels in these Figures]. 

6. Normal distributions can intrude into the negative horizontal axis—lognormal distributions 

can’t.11 

7. For lognormal distributions the median is a much better indicator of central tendency compared 

to the mode (much too low) or the mean (much too high). 

Note that these results are obtained using a known distribution with known parameters. In 

environmental science we seldom have such luxury and so the form of the distribution and its 

parameters must be inferred from data. With few data such inference is quite uncertain. Even with 

50 samples uncertainty remains: examining the histogram alone in Figure 2-3(b) might just as well 

hint at a left-skewed distribution as it does the truth (i.e., those samples were drawn at random from 

a normal distribution).  

2.1.5 Parametric versus non-parametric methods 

As we have seen, some water quality data can have pronounced skew, in that occasional very high 

values are observed whereas most of the time the observations are much smaller (e.g., E. coli in 

rivers, Figure 2-4). In many cases this can be accommodated by using methods that are based on 

skewed distributions (particularly lognormal, sometimes also the gamma distribution). But in other 

cases there can be too much uncertainty in the choice of distribution, particularly when there are 

only small sets of observations. In such cases it can be attractive to use a class of statistical methods 

that require rather fewer assumptions about distributions. These are the “non-parametric” methods. 

They are not completely free of the need to assume certain distributions,12 but nearly so. Their use in 

multiple-site multiple-attribute trend assessments hugely simplifies the effort—by not requiring an 

                                                           
10 Usually the lognormal distribution is characterised by the mean and standard deviation of the natural logarithms of the data. These are 
not as easily grasped as are the median and coefficient of variation of the raw (not transformed) data. So the result from mathematical 
statistics that these logarithm quantities can be replaced by such well-understood quantities is as remarkable as it is helpful.  
11 They can produce a negative result if the distributions two parameters are augmented by a third “shift” parameter. 
12 For example, the well-used “Wilcoxon Signed Ranks Test” assumes that the distribution of differences between paired samples are 
symmetric (Conover 1980, p. 281). 
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examination of each and every case for an appropriate distribution (which, as noted, can be very 

uncertain anyway). 

In general these non-parametric procedures operate on the ranks of data rather than their actual 

magnitude. So they make inferences about medians whereas parametric methods would make 

inferences about means.  

Nonparametric methods are less powerful than parametric methods, if the latter’s assumptions are 

met.13 If that is not the case (e.g., applying normal distribution’s results to a lognormal distribution 

population) the non-parametric method’s results should be relied upon. These methods are 

therefore often used in water-related environmental statistical methods, especially for trend 

analyses, because parametric assumptions may be inappropriate. 

2.1.6 Confidence intervals 

Confidence intervals are ranges within which a parameter (e.g., median, a percentile) may lie most 

of the time, under repetitive sampling. Statistical theory enables their calculation, parametric or non-

parametric, which is generally straightforward. They may be two-sided (a finite range) or one-sided 

(greater than a stated value, or less than that value). Two-sided confidence intervals tend to shrink as 

the sample size is increased.14 Indeed for an infinite sample size these intervals have zero width, 

because the population parameter is then known exactly.  

See Appendix A for a more detailed discussion of their interpretation, in the light of the “repetitive 

sampling” requirement in the previous paragraph. 

2.1.7 Percentiles 

Percentiles of contaminant concentrations are increasingly used in water management. Merely 

stating a maximum-not-to-be-exceeded is insufficient to characterise the environment in which 

communities want aquatic life to be safeguarded. Aquatic organisms “see” time-histories of the 

concentration of contaminants and we need to characterise usual and unusual concentrations in that 

time-history, using percentiles. 

In particular, a percentile indicates the value below which a given percentage of data fall. Those data 

can be actual observations (sampling result) or the random variable of a distribution. For example, 

the sample 80th percentile (denoted herein as 80%ile) is the value below which 80 percent of 

observations may be found, but this will always be different from the 80%ile of the population from 

which samples have been drawn! That outcome is the result of uncertainty—statistical sampling 

error. It is therefore, important to always make clear whether a percentile refers to observations or 

to populations. This will become more clear when we consider hypothesis testing (section 2.1.10) 

and burden-of-proof (section 2.1.11). 

Note that there is no one correct way to calculate percentiles. Software help files often fail to alert 

users to this fact. Percentile calculation methods generally involve an interpolation between adjacent 

ranked data. For example, if we want to calculate a 95%ile from 22 data, ranked from lowest to 

highest, which datum or data should we use? Should that be the highest (22nd), the next highest (21st) 

or some combination thereof? What if we had 12 samples and wish to estimate the 80%ile. Should 

that be the 9th or 10th highest or something in between?  

                                                           
13 Less power implies that statistical assessment of data will be more uncertain. 
14 The more samples we have the more confident we can be about our estimates (e.g., of a distribution’s mean). 

https://en.wikipedia.org/wiki/Percentage
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Three methods are often used to calculate sample percentiles: Excel, Weibull and Hazen (Ellis 1989, 

McBride 2005, chapter 8). For 22 data, these calculate the 95%ile as the datum with rank 20.95 

(Excel), 21.4 (Hazen), 21.85 (Weibull), so interpolation between adjacent ranked data is required. 

One can see that if the 21st and highest data differ substantially, markedly different 95%ile values 

may be calculated. Examples of how to do these calculations are given in a footnote.15 

For any valid sample size the Weibull result always exceeds the Hazen result which always exceeds 

Excel result. International practice for microbiological water quality (WHO 2003), and the New 

Zealand primary contact guidelines (MfE/MoH 2003), use the Hazen method, as a half-way house 

between the Excel and Weibull methods.16 Note that the Hazen method requires a minimum of 10 

data to be able to calculate a 95%ile; Weibull needs 19 and the Excel method requires only one!17 

2.1.8 Tolerance intervals 

A tolerance interval limit is effectively a percentile inflated or deflated a little to take account of 

statistical sampling error.18 They can be one-sided or two-sided, but the one-sided version is 

particularly appropriate for the NOF. Using these intervals, instead of using percentiles directly, 

allows for the influence of statistical sampling error. In doing so, deciding on the appropriate burden 

of proof will be necessary, as discussed in section 2.1.11. Their use in the NOF for E. coli seems 

unwarranted as the burden-of-proof has already been decided (see section 5.1.2), but they could be 

considered for other attributes. 

Appendix D of McBride (2014) shows that for a small sample size (n = 12) the 95% upper one-sided 

tolerance interval (for a coverage of 95%) is greater than the Hazen 95%ile, as may be expected. 

However for a larger sample size (n = 60) these two quantities are very similar in value, as expected. 

Further technical details are given in Appendix B.  

2.1.9 Misclassification error risk 

As an extreme case of the effects of statistical sampling error consider lake TP, where the A/B 

attribute band threshold is an annual median of 10 ppb.19 Let’s say that year after year the lake’s 

concentration history just qualifies it for Attribute A, in that its true (but unknown20) annual median 

concentration was always in fact 9.99 parts per billion. If we take 13 samples each year from that 

lake (i.e., one every four weeks), what may we find? Standard theory says that about half of those 

years the sample median (the seventh highest value) will be greater than 10 and so the lake would be 

misclassified for about half of the years assessed. This is the effect of the statistical sampling error, 

reflected as “unders and overs”, denoting the effect of uncertainty when estimating the lake’s annual 

TP concentration. That value (9.99 ppb) will seldom be attained exactly in the results of a sampling 

programme—precisely because of statistical sampling error. If the “annual median” is interpreted as 

the median of sample values the response of many can be to translate “annual median” in the 

                                                           
15 Let p = percentile fraction (e.g., p = 0.95) and n the sample size (e.g., n = 22). Using the formula embedded in Excel, the rank of the 95%ile 
is r = 1 + p(n–1) = 20.95. Using linear interpolation between adjacent ranked data this value is the weighted average of the 20th and 21st 
ranked data, with weight of 0.05 on the 20th ranked datum and weight 0.95 on the 21st ranked datum. For Hazen the ranking formula is r = 
½ + pn = 21.4, while the Weibull formula is r = p(n+1) = 21.85. 
16 A Hazen percentile estimator can be found at http://www.mfe.govt.nz/publications/fresh-water/bathewatch-user-guide/hazen-
percentile-calculator. It may be possible to simplify this estimator in the form of a UDF in Excel (User Defined Function).  
17 The minimum sample size formulae are as follows. Weibull: p/(1–p). Hazen: 1/(2p). Excel requires only one datum (an extremely 
undesirable property; any number is its own percentile of any order!) 
18 Inflation is appropriate if you want to be very sure that the true percentile is below the limit, in which case we would use an upper one-
sided tolerance limit on the 95%ile. 
19  Refer to the Attribute Table on Page 26 in NZGovernment (2014). 
20 Indeed this concentration is unknowable. 

http://www.mfe.govt.nz/publications/fresh-water/bathewatch-user-guide/hazen-percentile-calculator
http://www.mfe.govt.nz/publications/fresh-water/bathewatch-user-guide/hazen-percentile-calculator
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percentile statement into medians of samples. This therefore accepts (often unwittingly) a 

misclassification risk as high as 50%.  

2.1.10 Hypothesis testing 

Hypothesis tests aim to see whether we can give credence to a stated hypothesis, or its alternative, 

given new data. Many tests in current use address what some have called the “nil hypothesis” 

(Cohen 1994) because they test the notion that there is no (‘nil’) difference whatsoever between a 

parameter and some stated value. As we have already seen (section 2.1.4) there is virtually no 

chance that such a hypothesis could be true. Not surprisingly, there are therefore many problems in 

this approach (McBride et al. 2014).21 Fortunately, these generally do not arise in the context of the 

National Objectives Framework—because the issues to be faced are one-sided—has a threshold 

been exceeded or not? 

One-sided tests nicely portray the burden-of-proof issue (considered in more depth in the next 

section). Let’s take lake TP as an example again and interpret its A/B threshold as a median of time 

(over a year), not necessarily of samples. If we take a precautionary approach we would test the 

hypothesis that the true annual median phosphorus concentration is greater than 10 ppb, i.e., it is in 

attribute states B, C or D. We would only reject that hypothesis if data are sufficiently convincing to 

do so.22 And if we did we would infer attribute state A. On the other hand, if we take a permissive 

approach we would test the hypothesis that the true annual median phosphorus concentration is 

less than 10 ppb, i.e., it is in attribute state A. We would only reject that hypothesis if data are 

sufficiently convincing to do so.23 And if we did, we would infer attribute state B, C or D. So the form 

of the test used has everything to do with the burden-of-proof.  

One-sided approaches can also be used in the context of assessing trend direction, a notion very 

consistent with the idea of “progress assessment”. McBride et al. (2015) and Larned et al. (2015, 

2016) present and utilise a “two one-sided” procedure that first seeks to identify the trend direction. 

It only goes on to consider its environmental significance (rather than its statistical significance) if the 

trend direction can be confidently inferred. If that can’t be done one infers that there are insufficient 

data or that trends have reversed during the period of record. This trend direction-detection 

procedure uses the Greek symbol alpha (α) to denote the maximum permissible misclassification 

error risk,24 whereas the P-value-based hypothesis test procedure uses α as the “significance level”, 

the maximum “Type I error rate”.25 See McBride et al. (2015) for a discussion of all the subtleties 

involved. (It should be noted that this procedure has yet to be fully evaluated by independent 

statisticians.)26 

2.1.11 Burden-of-proof 

This matter is discussed at some length by McBride (2014). The issue concerns how we account for 

sampling error when assessing the true Attribute State. As discussed in section 2.1.10, if the true 

                                                           
21 These issues have been well-discussed in the statistical literature (http://warnercnr.colostate.edu/~anderson/thompson1.html), but they 
seldom find their way into applied science texts. 
22 The sample median would have to be somewhat less than 10 ppb for that to occur, wherein “somewhat” has to do with sample size—the 
more data we have the smaller that “somewhat” would be. 
23 The sample median would have to be somewhat greater than 10 ppb for that to occur. Again, the more data we have the smaller that 
“somewhat” would be. 
24 Falsely inferring a negative trend direction, and vice versa.  
25 A type I error occurs when the analyst rejects a true hypothesis. 
26 It should also be noted that the presentation of this trend direction assessment procedure was presented in McBride et al. (2015) 
(Appendix A of the Larned et al. 2015 report) as a form of hypothesis test. On reflection, it should not be so-regarded. Even though its 
mechanics are somewhat similar to test procedures (especially the TOST, Two One-Sided Test for interval hypotheses, McBride 2005, sec. 
5.3.2), it is an assessment procedure, not a test. 

http://warnercnr.colostate.edu/~anderson/thompson1.html
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state was close to a NOF threshold, misclassification error risks can rise to as much as 50%. So when 

we make an assessment, we have three options to account for the sampling error: 

1. Ignore it, in which case we take an even-handed approach (“face-value”) to misclassification 

error risks, so they are uncontrolled. In this case percentiles of samples are taken directly as 

percentiles of time. 

2. Take a permissive approach, by assuming that a NOF threshold has not been exceeded and only 

abandoning that assumption if data become sufficiently convincing (controlling the risk of 

inferring a lesser state than is actually the case). This approach can also be given the labels: 

“proof of hazard”, “slipping through the net”, “letting the guilty go free” or “benefit of doubt”. 

In this case a sample percentile is lower than the even-handed result. 

3. Take a precautionary approach, by assuming that a NOF threshold has been exceeded and only 

abandoning that assumption if data become sufficiently convincing (controlling the risk of 

inferring a higher state than is actually the case). This approach can also be given the labels: 

“proof of safety” or “fail-safe”. In this case a sample percentile is higher than the even-handed 

result. 

It is not clear if development of the current NOF tables gave any attention to this issue,27 so most 

readers will assume the even-handed approach and take data at face-value, interpreting percentiles 

as percentiles of samples, and ignoring or accepting uncontrolled misclassification error risks. But if 

the NOF percentiles are interpreted as percentiles of time then we need to use data to make 

inferences about those values, using one of the three burdens-of-proof listed above. I imagine few 

would advocate a permissive approach but some may favour more emphasis on the precautionary 

approach.  

2.2 Design  

2.2.1 Statement of intent—target population 

This is essentially covered in section 2.1.3. So, for example, if lake samples are always taken in deep 

water, that should be stated in appropriate protocols, to alert others to the fact that inferences 

made from that site may not validly translate to samples taken from shallow waters at the lake 

margins. Or, as earlier, since many sampling runs result in samples being collected at the same-time-

of-day, that too needs to be stated, especially for variables that can vary substantially over the day-

night cycle (e.g., DO, pH, water temperature).  

2.2.2 How many samples? 

Various formulae can be adduced for this question. An earlier report (McBride 2014) suggested an 

alternative approach: 

Estimates of medians and 95%iles become more precise as the number of samples is increased, assuming 

that the sampling programme is bias-free. One can calculate the number of samples needed to meet 

nominated particular confidence limits, and so select a particular "sample size". While this approach has 

the attraction of apparent objectivity, it is also rather arbitrary—depending on the particular chosen 

confidence level. 

                                                           
27 Most NOF tables do not make a distinction between sample percentiles and population percentiles. The only one that does is river 
periphyton, where sample percentiles are mandated. 
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Another (semi-quantitative) approach is to examine the overall properties of the confidence limit curve, as 

a function of the number of samples. Such curves are given in the figures below.28 They indicate that 

somewhere in the region of 20–40 samples, one reaches an area of rapidly diminishing returns. Whilst 

being semi-quantitative (appealing to the general shape of the confidence limit curves) this seems a more 

informed manner in which to decide on an appropriate sample size. 

 

Figure 2-5: Lognormal confidence limits for the median and 95%ile. Source: McBride (2005), Figures 3.1 and 
3.4. (Without loss of generality, these figures were prepared for enterococci concentrations.) 

Such a presentation implies that once 40–60 samples have been obtained, precision may be 

satisfactory. WHO (2003, page 83) suggests a minimum of 60 samples for microbial water quality 

assessment. Such numbers may be taken as a useful guide to selecting a desirable sample size.  

Another consideration when deciding on an appropriate sample size is “state switching frequency”, 

where once again we have to consider the effects of statistical sampling error. This topic is analysed 

in section 3.1. 

2.2.3 Sampling and analysis protocol 

Good documentation of sampling sites is vital. For example, when interpreting river data, readers 

should be alerted to the fact that sampling is from the midpoint of a bridge spanning the river, and is 

taken at the surface, or at some stated depth. Details of the field and laboratory records should also 

be listed. Many aspects of what could and should be included in such a protocol have been covered 

elsewhere (Ward et al. 1990, Davies-Colley et al. 2012).  

2.2.4 Should we use sample percentiles, tolerance limits or a look-up table? 

If an even-handed approach is taken when assessing Attribute States, sample percentiles should be 

used directly, ideally using the Hazen formula. This is the simplest approach. 

                                                           
28 Without loss of generality, these graphs are for enterococci concentrations, distributed as lognormal. More-or-less the same pattern can 
be expected for other water quality variables. 
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If a precautionary approach is taken, necessarily interpreting percentiles as percentiles of time (not 

percentiles of samples), one-sided tolerance limits could be used,29 but with one exception: Primary 

contact recreation is already based on a precautionary approach, as discussed later (section 5.1.2).  

However this tolerance limit approach requires assumptions about the distribution of the Attribute 

(normal, lognormal, gamma,…) and it can be simpler, and possibly more powerful, to take a non-

parametric approach, such as is taken in assessing the state of drinking-water supplies.30 This uses 

“look-up” tables, presenting the permissible number of exceedances of a threshold in a given 

number of samples, keeping the precautionary misclassification error risk below 5%. The theory 

behind this approach is reported in McBride & Ellis (1991), and discussed in McBride (2014). Results 

for 95%iles are shown on Table 2-1. 

2.2.5 Look-up tables for the precautionary approach 

The following three tables display lookup tables for the precautionary approach. 

Table 2-1: Look-up table for allowable exceedances in a precautionary approach to 95%ile assessment.  

e  n 

0  38–76 

1  77–108 

2  109–138 

Note: ‘e’ is the maximum permissible number of exceedances of a 95 percentile threshold for the stated range of samples ‘n’, 
with maximum misclassification error risk of 5%. Calculations have been made using the theory stated in McBride and Ellis 
(2001), using ‘Jeffreys' prior’. (See also McBride 2005, Table 8.1.) These numbers are little changed when assuming different 
prior distributions or more elaborate parametric models (McBride 2003). Note that if there are less than 38 samples it is not 
possible to keep misclassification error risks below 5% when assessing a 95%ile standard. 

 

In this Table we see the effect of the precautionary approach. There can be no exceedances if there 

are less than 77 samples, and so the Numeric Attribute State is effectively a maximum. If the true 

proportion of time that the 95%ile threshold was exceeded was indeed 5%, at most 1.8% of samples 

could exceed this threshold (i.e., 2/109). That’s because a precautionary approach has been taken. 

Were a permissive approach to be taken, more than 5% of samples could exceed the threshold (e.g., 

with 100 samples it is 9%—see Table 2-4.  

Table 2-2 displays the look-up table for 80%iles (used in the NOF table for cyanobacteria) and Table 

2-3 gives the table for medians (used in a number of NOF tables).  

  

                                                           
29 And as noted in Appendix B, one-sided tolerance limits on percentiles are identical to confidence limits on percentiles. (This is not the 
case for two-sided intervals.) 
30 See section 6.2.2 at http://www.health.govt.nz/system/files/documents/publications/guidelines-drinking-water-quality-management- 
for-new-zealand-2015-oct15.pdf.  

http://www.health.govt.nz/system/files/documents/publications/guidelines-drinking-water-quality-management-%20for-new-zealand-2015-oct15.pdf
http://www.health.govt.nz/system/files/documents/publications/guidelines-drinking-water-quality-management-%20for-new-zealand-2015-oct15.pdf
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Table 2-2: Look-up table for allowable exceedances in a precautionary approach to 80%ile assessment  

e n  e n  e n 

0 9–17  3 33–39  6 53–59 

1 18–25  4 40–46  7 60–65 

2 26–32  5 47–52  8 66–71 

Note: ‘e’ is the maximum permissible number of exceedances of a 80%ile threshold for the stated range of samples ‘n’ with 
maximum misclassification error risk of 5%. Calculations have been made using the theory stated in McBride and Ellis (2001). 
using ‘Jeffreys' prior’. Note that with fewer than 9 samples it is not possible to achieve 95% confidence that the 80%ile has been 
met, even if there were no exceedances. These numbers have not been published previously; they were calculated using the 
author’s Fortran program “Concom”. Note that if there are less than 9 samples it is not possible to keep misclassification error 
risks below 5% when assessing a 80%ile standard. 

 

Table 2-3: Look-up table for allowable exceedances in a precautionary approach to 50%ile assessment  

e n  e n  e n 

0 3–5  8 25–26  16 43–44 

1 6–8  9 27–28  17 45–47 

2 9–11  10 29–31  18 48–49 

3 12–14  11 32–33  19 50–51 

4 15–16  12 34–35  20 52–54 

5 17–19  13 36–38  21 55–56 

6 20–21  14 39–40  22 57–58 

7 22–24  15 41–42  23 59–60 

Note: ‘e’ is the maximum permissible number of exceedances of a median threshold for the stated range of samples ‘n’ with 
maximum misclassification error risk of 5%. Calculations have been made using the theory stated in McBride and Ellis (2001), 
using ‘Jeffreys' prior’. These numbers have not been published previously; they were calculated using the author’s Fortran 
program “Concom”. Note that if there are less than 3 samples it is not possible to keep misclassification error risks below 5% 
when assessing a 50%ile standard. 
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2.2.6 Look-up tables for the permissive approach 

The following three tables display lookup tables for the permissive approach. 

Table 2-4: Look-up table for allowable exceedances in a permissive approach to 95%ile assessment.  

e n  e n  e n 

0 1–3  3 23–34  6 61–74 

1 4–11  4 35–46  7 75–88 

2 12–22  5 47–60  8 89–102 

Note: ‘e’ is the maximum permissible number of exceedances of a 95 percentile threshold for the stated range of samples ‘n’, 
with maximum misclassification error risk of 5%. Calculations have been made using the theory stated in McBride and Ellis 
(2001), using ‘Jeffreys' prior’. (See also McBride 2005, Table 8.1, but note that the above table contains slight differences.) 
These numbers are little changed when assuming different prior distributions or more elaborate parametric models (McBride 
2003). They were calculated using the author’s Fortran program “Concom”. 

 

In this Table we see the effect of the permissive approach. If only one sample is to hand, exceeding 

the threshold, it may not be inferred that the threshold has been exceeded for 95% of the time!  

Table 2-5 displays the permissive look-up table for 80%iles (used in the NOF table for cyanobacteria) 

and Table 2-6 gives the table for medians (used in a number of NOF tables).  

Table 2-5: Look-up table for allowable exceedances in a permissive approach to 80%ile assessment  

e n  e n  e n 

0 1  9 28–30  18 64–67 

1 2–3  10 31–34  19 68–71 

2 4–6  11 35–38  20 72–75 

3 7–9  12 39–42  21 76–79 

4 10–12  13 43–46  22 80–84 

5 13–16  14 47–50  23 85–88 

6 17–19  15 51–54  24 89–92 

7 20–23  16 55–58  25 93–96 

8 24–27  17 59–63  26 97–101 

Note: ‘e’ is the maximum permissible number of exceedances of a 80%ile threshold for the stated range of samples ‘n’ with 
maximum misclassification error risk of 5%. Calculations have been made using the theory stated in McBride and Ellis (2001). 
using ‘Jeffreys' prior’. These numbers have not been published previously; they were calculated using the author’s Fortran 
program “Concom”.  
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Table 2-6: Look-up table for allowable exceedances in a permissive approach to 50%ile assessment  

e n  e n  e n 

0 1  10 14–15  20 31–32 

1 1  11 16–17  21 33–34 

2 2–3  12 18  22 35–36 

3 4  13 19–20  23 37 

4 5–6  14 21–22  24 38–39 

5 7  15 23  25 40–41 

6 8–9  16 24–25  26 42–43 

7 10  17 26–27  27 44–45 

8 11–12  18 28–29  28 46 

9 13  19 30  29 47–48 

Note: ‘e’ is the maximum permissible number of exceedances of a median threshold for the stated range of samples ‘n’ with 
maximum misclassification error risk of 5%. Calculations have been made using the theory stated in McBride and Ellis (2001), 
using ‘Jeffreys' prior’. These numbers have not been published previously; they were calculated using the author’s Fortran 
program “Concom”.  

 

These tables dramatically demonstrate why one eminent statistician has titled his paper: “Why proof 

of safety is much more difficult than proof of hazard” (Bross 1985). Most spectacularly, if 60 samples 

were to be obtained, even if only one of them exceeded a threshold we cannot be confident (at the 

95% level) that the true 95%ile was below that threshold. For the median assessment once we get 24 

or more exceedances out of 60 samples (≥40%) we cannot be confident that the true median was 

below the threshold. The tables can be recalculated for different misclassification error risks. 

2.3 Implementation 

2.3.1 Flexibility in the NOF tables?  

Most of the current NOF tables do not explicitly require percentiles of samples. The exception is the 

Table for periphyton in rivers: “Exceeded in no more than 8% of samples” (Default Class) and 

“Exceeded in no more than 17% of samples” (Productive Class). Less straightforwardly, the 

cyanobacteria table can also be interpreted as requirements on percentiles of samples (see the 

footnote to that Table). So there is flexibility in the interpretation of most of the NOF percentiles. 

2.3.2 State-switching 

This is discussed at some length in section 3.1, where it is concluded that an assessment period of 

one year is insufficient. It seems preferable to use a five-year period with rolling annual assessments. 

2.3.3 Implications for testing for progress assessment  

As an example we again consider trends in total phosphorus concentration (TP) in a lake. Traditional 

trend hypothesis tests can propose that there has been no change in the lake’s median TP over time. 
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That is, no change whatsoever. Samples are taken from that lake and used in a prescribed calculation 

procedure to see if the hypothesis should be rejected. If it is, a “statistically significant” result is 

announced, as a consequence of the test’s calculated P-value being less than 0.05. If the hypothesis 

is not rejected one cannot go on to accept the hypothesis as being probably true, or that the 

situation is ‘stable’. All one can say as a matter of inference is that the hypothesis is ‘not rejected’. A 

major problem with this procedure is that it tests a hypothesis that is always false! There is always 

change, even if only “small”. That is why a recent New Zealand analysis (McBride et al. 2015) has 

developed a new assessment procedure in place of a traditional hypothesis test, considering the 

trend direction.31 Three outcomes are possible: (i) Confidence that the trend is upward; (ii) 

Confidence that the trend is downward; (iii) There are not enough data to infer the trend’s direction, 

or the trend may have reversed during the period of record. Many communities, including Maori, 

want to know if we can confidently infer the trend direction, which is much more informative 

information than a poorly-understood and not-very-relevant notion of statistical significance.  

The direction-of-trend assessment procedure in McBride et al. (2015) is relatively straightforward to 

implement.32  

  

                                                           
31 The fundamental ideas for this approach are presented in McBride et al. (2014) and follow from an insightful paper by Jones & Tukey 
(2000). 
32 It consists of calculating 100(1–2α)% confidence limits about a trend slope estimate. If both limits are positive an upward trend has been 

confidently inferred (with (1–α)% confidence—not (1–2α)% confidence), and vice versa. If the upper limit is positive but the lower is 
negative then there are not enough data to confidently infer the trend direction or the trend has reversed. 
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3 Interpreting current NOF statistics 
In order to examine the effects of sample imprecision, it is appropriate to first consider how “State 

switching” may arise. 

3.1 State switching and the assessment period 

A major purpose of sampling a water body, making measurements of concentrations, and using the 

date in an assessment, is to communicate its state. Where a state assessment indicates changes over 

time it is desirable that this be a reflection of real changes in the water body’s status and not due to 

inadequate sample size. This has implications for assessment periods and assessment frequency.  

Consider the true course of total nitrogen concentration at a polymictic lake site over a period of a 

year, and imagine that over that time its true median concentration was 400 mg/m3. This would 

qualify the lake for Attribute State B (because the annual median is between 300 and 500 mg/m3). Of 

course we never know that true (population) value; all we may have is a set of 12 monthly samples 

and so the effect of ‘statistical sampling error’ must be considered. Therefore the median of the 

twelve samples will not necessarily lie between 300 and 500 mg/m3. It is entirely feasible for the 

sample median to be below 300 mg/m3, in which case it would qualify as Attribute State A. It is also 

entirely feasible for the sample median to be above 500 mg/m3 (but less than 800 mg/m3), in which 

case it would qualify as Attribute State C. It is even possible (but highly unlikely) for that median to 

be above 800 mg/m3, in which case it would qualify as Attribute State D. 

It follows that a series of annual assessments of lake medians could involve some “switching” when 

the true median was always, in fact, reflecting Attribute State B. For example, consider the case 

where the true (but unknown) annual median was around 350 mg/m3 for each of ten years. Over a 

ten-year period we could obtain the sequence B-B-A-B-C-B-B-B-B-B which presents four switches.  

Now imagine that the true median total nitrogen concentration over the ten years was much closer 

to the A/B boundary, say 310 mg/m3. Statistical sampling error means that switching between States 

A and B is rather more likely. For example, we could have B-B-A-B-A-A-B-A-B-A, which presents seven 

switches. 

Remedies for this situation include increasing the sampling frequency, lengthening the assessment 

period (e.g., to three years, or even to five years33) and performing rolling assessments. Note that 

even though rolling assessments can only be performed if the assessment period is greater than one 

year, the assessment frequency can still be annual. For example, if the assessment period is five years 

then the annual assessment would be based on the preceding five years’ data. So as a new year’s 

data is added to the dataset, the oldest year’s data (now six years old) is deleted and a reassessment 

is made, as depicted in Table 3-1. 

  

                                                           
33 In “grading” recreational water sites the MfE/MoH (2003) water quality guidelines use a period of five years with weekly sampling during 
the bathing season. 
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Table 3-1: Data selection regime for annual assessments using five years' data. The median is best 
calculated for all data in the five year period, rather than taking the median of each year’s median.34 

Year (since commencement of an assessment regime) 

1 2 3 4 5 6 7 8 9 

√ √ √ √ √     

x √ √ √ √ √    

x x √ √ √ √ √   

x x x √ √ √ √ √  

x x x x √ √ √ √ √ 

“√” denotes data to be used in the assessment; “x” denotes data that are available but are not used; blank 

cells denote “no data”. 

 

It is also possible to use ‘adjacent’ assessment periods. For example, if an assessment period of three 

years is selected, assessment would be done at:  

 year 3 (using data from years 1–3) 

 year 6 (using data from years 4–6), etc. 

The effect of these potential remedies can be addressed using numerical experiments in Monte Carlo 

modelling, in which we take 1000 repetitive samples from a known distribution for each of: 

 weekly and monthly sampling over a 15 year period 

 assessment periods of 1, 3 and 5 years  

 rolling annual assessments (necessarily for 3 and 5 year assessment periods only) 

 adjacent assessments (for each of the 15 years).  

These analyses have been carried out in an Excel-VBA programme developed specifically for this 

task.35 Results are presented below. 

3.1.1 Normal (symmetric) distribution results 

Table 3-2 presents results for a normal distribution using lake TN as an example.36 As expected from 

the discussion above, the closer the true median is to the A/B or B/C boundaries, the higher the 

switching frequency. In the middle of the Attribute State (400 mg/m3) there is practically no 

switching. We also see that, apart from this middle-of-the-range result, annual assessments have the 

highest frequencies as is also the case for monthly sampling (cf. weekly sampling). Rolling 

assessments confer lower switching frequencies (cf. adjacent frequencies). 

                                                           
34 The median of medians is not (quite) the same result as the median of all data. 
35 Latest version: file State Switching in the NOF, 4 July 2016.xlsm, developed by the author.  
36 Examination of various lake datasets collected by Dr Noel Burns (Burns & Rutherford 1998) reveals that some lakes TN concentration 
may be adequately described by a normal distribution (e.g., Lake Rotorua), with CoV rather less than 50% (e.g., ~30% for Lake Rotorua). 
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Table 3-2: Mean switching frequencies (%) for a lake whose TN concentration confers Attribute State B 
(annual median between 300 and 500 mg/m3), where increasing colour intensity denotes proximity to the A/B 
and B/C Attribute State boundaries.  

Caseb 
True median polymictic lake TN (mg/m3)a 

310 320 340 360 400 440 460 480 490 

NW1A 39 20 2 0 0 1 9 33 46 

NW3A 23 4 0 0 0 0 0 14 38 

NW3R 14 3 0 0 0 0 0 9 22 

NW5A 15 1 0 0 0 0 0 8 33 

NW5R 7 1 0 0 0 0 0 4 15 

NM1A 47 39 22 10 3 17 32 46 49 

NM3A 43 26 6 0 0 3 14 37 48 

NM3R 25 17 5 1 0 3 11 22 27 

NM5A 37 17 2 0 0 0 6 34 46 

NM5R 16 9 1 0 0 0 4 14 19 

a Lake TN concentration is assumed to follow a normal distribution with 30% coefficient of variation. 
b Case codes: “N” denotes Normal distribution; “W” or “M” denotes Weekly or Monthly sampling; “1”, “3” or “5” denotes 

assessment period; “A” or “R” denotes Adjacent or Rolling assessments 

Given that weekly sampling may be impractical, an optimum regime for normally distributed data 

appears as annual assessments using monthly sampling in a rolling five-year assessment window. 

3.1.2 Lognormal (asymmetric) distribution results 

Table 3-3 presents results for a lognormal distribution using river E. coli concentration as an 

example.37 This time, because of the presence of asymmetry (strong right skew), the patterns are a 

little more complex.  

Annual assessment period is again the worst performer. For weekly sampling the switching 

frequencies are again minimal in the middle of the Attribute State range, but this is nowhere as 

evident for monthly sampling. Indeed for annual assessment period with monthly samples the 

switching frequencies slightly increase from left to right, as more “C” State medians are encountered. 

Rolling assessments again produce lower switching frequencies (cf. adjacent assessments). 

                                                           
37 The two-parameter lognormal distribution (Gilbert 1987) has the remarkable property that its coefficient of variation (η) is a function 
only of the standard deviation of the natural logarithms of the concentration data (σy, where the y subscript denotes logged data). It is 
independent of the mean (or median). So a 150% coefficient of variation (i.e., η = 1.5) gives rise to σy = √{ℓn[(1+ η2)]} = 1.09. This is rather 
lower (and hence presents a less skewed distribution) than the observed value for the all sites in the 1998–2000 FMRP data (i.e., σy =1.87, 
see footnote 8). Nevertheless, some FRMP sites displayed lower σy values, as do wider datasets (e.g., for the Wairua, Mangakahia and 
Hoteo rivers, https://data.mfe.govt.nz/table/2533-river-water-quality-raw-data-by-site-2009-2013/). Furthermore, in recent years higher 
river concentrations of E. coli can be expected to have been reduced in magnitude and frequency, with implementation of the ‘Clean 
Streams Accord’. Hence the adoption of η = 1.5 as a typical coefficient of variation. 

https://data.mfe.govt.nz/table/2533-river-water-quality-raw-data-by-site-2009-2013/
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Table 3-3: Mean switching frequencies (%) for a river whose E. coli concentration confers Attribute State 
B (annual median between 260 and 540 mg/m3) where increasing colour intensity denotes proximity to the A/B 
and B/C Attribute State boundaries. a 

Caseb 
True median river E. coli (#/100 mL)a 

274 288 316 344 400 456 484 512 526 

LW1A 48 42 26 14 12 30 41 48 50 

LW3A 43 29 7 1 1 10 26 44 48 

LW3R 24 17 5 1 0 7 16 23 26 

LW5A 40 19 2 0 0 4 17 40 46 

LW5R 17 10 1 0 0 2 9 17 19 

LM1A 52 56 60 62 63 65 65 66 66 

LM3A 45 49 52 46 42 49 52 53 53 

LM3R 27 29 31 31 29 32 33 33 33 

LM5A 41 48 47 35 26 44 50 50 49 

LM5R 17 20 20 17 13 19 20 21 21 

a River E. coli concentration is assumed to follow a lognormal distribution with 150% coefficient of variation 
b Case codes: “L” denotes Lognormal distribution; “W” or “M” denotes Weekly or Monthly sampling; “1”, “3” or “5” denotes 

assessment period; “A” or “R” denotes Adjacent or Rolling assessments 

Again, given that weekly sampling may be impractical, an optimum regime for normally distributed 

data appears as annual assessments using monthly sampling in a rolling five-year assessment 

window. 

3.2 Implications 

Annual assessment period and frequency carries substantial risks of false state-switching. Adopting a 

rolling regime performing annual assessments on the previous five years of data seems desirable, 

reducing these risks. It is also in harmony with the NOF’s periphyton and cyanobacteria Tables, which 

call for at least three years of data. 

Note however that for rare occurrences (e.g., when a lake hypolimnion goes anoxic, releasing a high 

spike of phosphorus and ammonia from the sediments, or when there has been a large accidental 

overflow from a WWTP causing a high E. coli spike), adjacent assessments may be preferred over 

rolling assessments. This may be particularly appropriate for high percentiles of any ‘spiky’ attribute. 

For example, say that this rare event occurred just once in five years. For rolling assessments (over 

five years) that spike ‘penalises’ the results for the other four subsequent years—because such 

extremes did not then occur. In such a case it may be better to accept a higher risk of state-switching 

(by choosing adjacent multi-year assessments) in order to avoid the penalty, although this would 

mean that assessments could not be carried out annually. Or, one could use multi-year rolling 

assessments for medians and single-year assessments for 95%iles and maxima. 

3.3 Include an “Unknown” category? 

An Australian reviewer (Dr Rob Goudey) has suggested as follows: 
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The "state switching" problem results from an insistence on routine two-alternative outcomes hypothesis 

testing. It shows what can happen when we insist on making clear-cut yes/no decisions based on very 

small samples.  

If the two-one-sided test (TOST) approach described for trend testing (p15 of document) could be used for 

testing percentiles, this would result in three possible outcomes (i.e., A, U, B where U = act as if undecided 

so far). Sequences of years in which water quality is close to the threshold of A and B, rather than exhibiting 

switching behaviour, might then consist of series of "U". This would make more explicit the indecision in 

assessing water quality against a percentile limit using small sample sizes. The need to pool several 

adjacent years of observations before a clear inference is possible might become more obvious.  

Adopting a three–alternatives decision approach would also place a burden of proof on the monitoring 

program itself, i.e., the sampling frequency needs to be adequate to allow a decision and to minimise the 

probability of a directional (Type III) error. If assessed using a confidence interval approach, then the width 

of the confidence interval can provide a measure of quality of the monitoring program to allow decisions. 

This is a topic worthy of consideration. Its implementation would be as outlined by McBride et al. 

(2014). 
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4 Consistent approach to future attributes 
To some extent the formulation of NOF criteria will be dependent on peculiarities of the different 

attributes. Uniform consistency of approach is therefore not to be expected.  

The issues that do need addressing when aiming for at least some consistency are: 

1. Explicit account of whether percentile metrics in the NOF Tables should be considered as 

percentiles of sample results or percentiles of time over the assessment period.  

2. If the latter, the appropriate burden-of-proof and misclassification error risks should be 

identified, including examination of practicable sampling regimes (in terms of sample size and 

sampling frequency). 

3. Adoption of rolling multi-year assessment periods and an annual assessment frequency—to 

substantially reduce the misclassification errors that will arise when using single-year 

assessment periods. Note that so long as rolling assessments are employed, adopting multi-year 

assessment periods is not inconsistent with ‘annual median’ or ‘annual 95th percentile’ as used 

in the NOF tables. Under a rolling regime assessment frequency can be annual even though a 

multi-year assessment period is adopted. Furthermore, rolling assessments pose lower “state 

switching” frequencies cf. adjacent non-overlapping assessment periods. 

One item that will be inconsistent, and probably desirably so, is the future inclusion of sediment 

aspects into the NOF, where there is some prospect of stating Numeric Attribute States and a 

percentage change from a reference or upstream value (as in the MfE 1994 Guidelines for water 

colour and clarity). The statistical implications of such an approach should be considered before 

finalising the form of these additions. In particular, the feasibility of detecting a percentage change 

should be examined given the potential for statistical sampling error to frustrate the ability to detect 

it.  

In this context it is helpful to further consider the clarity attribute. Were the reference state to be 

“declared” (e.g., Wet-Hills clarity bottom line is a median of 1.6 m) we would only be concerned 

about imprecision from one source of data (the measurement made). But when considering 

percentage change from an upstream value (sampling on a case by case basis) there are two sources 

of uncertainty—the upstream and downstream datasets, in which case the influence of statistical 

sampling error will be greater.  

The usual approach to these issues uses point-null hypotheses (no difference between the states) 

and so is subject to the same objections as apply to trend testing. Instead one could adopt the 

approach advocated for trend testing, inferring the direction of difference (which, after all, is what 

we want to know). This will offer a more powerful method of detecting change compared to the 

standard testing of a nil hypothesis (that the distributions’ parameters are identical). 
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5 Human health Value 

5.1 Rationale for sample 95%iles for E. coli 

5.1.1 Assessment period 

The E. coli table in the National Objectives Framework uses annual medians for secondary contact. So 

the considerations in section 3.1.2 apply, as E. coli in rivers and lakes is expected to follow a 

lognormal distribution. That is, it may be best to interpret “Annual median” as a rolling annual 

assessment, using the previous five years of data. 

For primary contact (“…undertaking activities likely to involve full immersion…”) the 95%ile is used as 

the assessment metric, and no particular assessment period is stated. So, in this case, it is a simple 

matter to adopt a rolling five-year assessment period, with an annual assessment frequency. Note 

however that the MfE/MoH (2003) guidelines do not explicitly call for rolling assessments, though 

they are contemplated.38 

5.1.2 Assessment metric 

As to the adoption of the 95%ile as the assessment metric, it must be noted that there are two 

separate paths by which such a criterion may be developed for recreational waters, both depending 

on the distribution of results of a prior Quantitative Microbial Risk Assessment (QMRA). It all 

depends on how that distribution is incorporated. First is the adoption of a distribution descriptor the 

second refers to a precautionary descriptor. 

Distribution descriptor 

The distribution descriptor approach was used to develop the coastal water component of the 

international recreational water quality guidelines (WHO 2003), about which a substantial literature 

is available: Kay et al. (2004), Wymer et al. (2005), Kay et al. (2006). In this approach a probability 

density function is identified for the probability of illness, versus concentration of a faecal indicator,39 

based on a series of epidemiological studies. As stated by its major developers (Kay et al. 2004):  

Using this novel approach, it is possible for the policy community to specify an acceptable excess 

probability of illness and then to define the parameters of the pdf required (i.e., a geometric 

mean value, or a 95th percentile value given the knowledge of the standard deviation of log10 

transformed values) to limit the likely symptom incidence to this level or lower. 

The important point to note is that in this approach a geometric mean (or the equivalent median 

value40) and the 95%ile are different numbers. (Typically, in water pollution studies, the 95%ile is at 

least twice the median—Ellis 1996—and for a lognormal distribution with a coefficient of variation of 

1.5 the ratio is as high as 6:1.41) The median and 95%ile are different numbers because one describes 

central-tendency and the other describes extreme attributes of the same distribution, i.e., the 

(lognormal) distribution of swimmer’s risk of becoming ill, in excess of the risk faced by non-

                                                           
38 In MfE/MoH (2003) at page E5, “Step 8: Reassessment” we have: “Reassess on a five-yearly basis, or sooner if significant change occurs. 
Such changes will be reflected in new information…. Examples of significant change would be: altered catchment characteristics or land 
use; significantly higher or lower microbiological indicator levels; major infrastructure works affecting water-quality parameters”. 
39 The indicator is intestinal enterococci.  
40 For a lognormal population the median and the geometric mean are identical values. 
41 Using parameter equations given by Gilbert (1987) the 95%ile:median ratio is calculated as exp{1.645*√ℓn[(1 + η2)]} where η is the 
coefficient of variation. Results of this formula agree with examples given by Ellis (1996). 
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swimmers at the same beach. This is addressed by way of a diagram (Figure 5-1), after first discussing 

the alternative precautionary descriptor. 

 

Precautionary descriptor 

In this approach the median and 95%ile in the freshwater guidelines (MfE/MoH 2003) are the same 

number, because they refer to different distributions.  

To explain this note that a New-Zealand-specific approach to this matter was adopted because the 

international guidelines do not include explicit numerical guideline values for freshwater. As noted in 

the equivalent Australian guidelines (NHMRC 2008): 

It is not possible to directly derive microbial assessment categories for freshwater because of a lack 

of data. 

It is for that reason that the New Zealand freshwater guidelines (MfE/MoH 2003) were derived from 

a national QMRA study of water-related campylobacteriosis (this country’s major reported notifiable 

disease), using a dose-response relationship derived from a clinical trial (as described by Till et al. 

2004, 2008; McBride 2012). In this approach, ‘best guesses’ were calculated for the critical value of E. 

coli concentration for given values of excess illness. Essentially the values are medians of a risk 

profile.42 So setting these E. coli values as median sample metrics inherently adopts an ‘even-handed’ 

approach to the burden-of-proof. That risk, as always, has to do with statistical sampling error. So, 

for example, consider what happens if the thresholds were set as annual medians. If the median at a 

river site was truly stable at 538 per 100 mL (qualifying it as Attribute State B) the chances of 

obtaining an annual median value greater than 540 per 100 mL (inferring Attribute State C) is about 

50%, a high misclassification error risk. Requiring that this threshold be assessed as a 95%ile reduces 

this risk to about 5%. In effect the risk distribution is then shifted to the left such that its 95%ile now 

lies at the value of the median before shifting, as depicted in Figure 5-1. 

That is, as the lower part of Figure 5-1 shows, a precautionary approach was taken in developing the 

freshwater component of the 2003 guidelines; not because this mimicked the international approach 

(for coastal waters) but in order to implement a precautionary stance to the assessments. 

Therefore the 95%ile in the WHO (2003) guidelines has a different rationale than their New Zealand 

equivalent. The former are the more permissive. They are based on the upper part of Figure 5-1. 

 

 

                                                           
42 They were developed using ‘percentile matching’, as described by McBride (2012, 2014). 
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Figure 5-1: Shifted (lognormal) distributions such that the lower distribution has been shifted to the left (a 
precautionary approach) to make its 95%ile numerically equal to the upper distribution’s median. (The cross-
hatched right tail in the distribution has an area of 0.05.) 

5.2 Accounting for seasonality and flow? 

Seasonality applies to both lakes and rivers, but the issue of whether to restrict sampling 

programmes according to flow arises of course for rivers, rather than lakes. 

5.2.1 Secondary contact, rivers 

Secondary contact is defined in the National Objectives Framework as “…contact with water during 

activities with occasional immersion and some ingestion of water (such as wading and boating).” 

Such activities can take place year round. Even when rivers are in flood, there can be some water 

contact by people in the proximity, such as may occur from splashing. It seems therefore undesirable 

that seasonality and flow adjustments be made for this activity.  

Furthermore, a major proportion of the load of faecal indicator bacteria can be delivered during 

flooding events (McKergow and Davies-Colley 2010), so that elevated concentrations of pathogenic 

material is likely (at least on the rising limb of a flood hydrograph, Stott et al. 2011). Therefore, with 

one possible caveat, it seems undesirable to exclude seasonality or flood events from monitoring for 

secondary contact. That exception concerns sampling on the falling limb of a hydrograph. Both 

McKergow and Davies-Colley (2010, Figure 6) and Stott et al. (2011, Figure 3) present evidence that 

concentrations of faecal indicator E. coli and a pathogen (Campylobacter) are elevated on the rising 

hydrograph limb. However, there is strong hysteresis in that these concentrations on the rising limb 
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at elevated flow are often much higher than the concentrations on the falling limb at the same flow. 

Given that assessment metric is the median, the presence of these falling limb low concentrations 

may not adequately reflect the presence of the risk occurring at rising flows when water contact may 

be more prevalent, given that their duration is typically longer that for the rising limb.  

5.2.2 Primary contact, rivers 

For primary contact recreation the National Objective Framework’s requirements are essentially 

based on the 2003 water quality guidelines for recreational water contact (MfE/MoH 2003). Those 

guidelines consist of two strands: site grading and site surveillance. The former is relevant here 

because it uses sample 95%iles over a five year period, with weekly sampling over the bathing 

season.  

The fundamental requirement of sampling timing is given in section E.2 of MfE/MoH (2003)43, viz.:  

Samples should be collected during the bathing season, or when the water body is used for contact 

recreation. For rivers this may exclude periods of high flow, during which hazardous river conditions 

would prohibit bathing. The bathing season will vary according to location, but will generally extend 

from 1 November to 31 March. Sampling should take place between 8 am and 6 pm. 

Therefore sampling can (indeed, should) often be restricted to the bathing season and to non-flood 

flows. But the manner in which that should be done will vary from one flow regime to another so it is 

difficult to conceive of a general rule that would exclude flood conditions adequately. The same is 

true for the exposure season; water contact may be happening throughout the year (e.g., boating, 

primary contact during waka-based cultural water activities (pers. comm. Hannah Rainforth, June 

2016). 

In addressing this issue, there needs to be a trade-off between loss of precision and the exclusion of 

elevated flows. That is, if there were no exclusion of elevated flows, then the guidelines’ 

recommended sampling regime would furnish about 100 results, giving good precision in the 

estimation of a 95%ile. If half of those data were for a flow that exceeded some criterion precision 

becomes somewhat diminished (as discussed in section 2.2.2). 

 

  

                                                           
43 See also Section H(i) of MfE/MoH (2003) for more detail on sampling times and periods. 
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6 Conclusions and Recommendations 
The most important outcome of these considerations should be a heightened awareness of the 

pervasive and at-times troublesome role of sampling variability, sometimes denoted as ‘statistical 

sampling error’. In particular, this means that we never know the true Attribute State (as a percentile 

of time), because we only ever have an estimate of that and such an estimate is influenced by the 

variability components we happen to capture in our samples. Sometimes it will be higher than the 

true value, sometimes lower. It will seldom if ever be the true value. Hence the proposed motto: 

“Always be wary of the influence of ‘statistical sampling error’”. 

For the most part the NOF is silent on the burden-of-proof that underlies the various percentile 

requirements, seemingly because they have been regarded as percentiles of samples rather than 

percentiles of time. If the latter is intended, after all aquatic flora and fauna “see” contamination and 

its effects over time, then there will need to be a direct consideration of the burden-of-proof and 

misclassification error risks when assessing Numeric Attribute States. The implications for sampling 

effort are revealed through look-up tables for medians, 80%iles and 95%iles. It is noted that adopting 

a precautionary approach generally increases considerably the needed number of samples. 

Primary contact recreation human health Numeric Attribute State is already based on a 

precautionary approach to the burden of proof. 

The propensity for “State Switching” (e.g., inferring states A-B-A-B in four successive years when in 

fact the waterbody was always in State B) under annual assessments using only that year’s data 

seems unacceptably high. Instead it is suggested that optimally a five-year assessment period be 

adopted with rolling annual assessment frequency, with three years as the minimum. 

A recently-developed (and implemented) direction-of-trend assessment procedure is recommended 

for progress assessment for the various attributes, after a few years of data have been analysed. 

For the secondary contact in the human health value it is seems largely unnecessary to restrict 

sampling to seasons and lower flows, with one possible exception. That is, consideration should be 

given to (if possible) sampling for E. coli only on the rising limb of a flood hydrograph. For primary 

contact there should be sampling stratification based on season and on flow (when conditions may 

be unsafe for swimming). The identification of what elevated flows and seasons should be so-treated 

will vary from location to location. 

Consistency of approach should be aimed for with future Attributes (or revisions of the current set), 

but may not always be achievable. Issues that may arise with a percentage change approach for 

sediment attributes will need careful consideration in the light the findings in this study. In particular, 

the feasibility of detecting a percentage change should be examined given the potential for statistical 

sampling error to frustrate the ability to detect it. 
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6.1 Recommendations 

 In order to minimise risks of false state-switching, annual assessments of attribute state 

attainment using medians should generally be conducted using a rolling window of at least three 

year’s data, preferably five. However adjacent annual assessments may be appropriate for high 

percentiles (95%ile or maxima). 

 In cases where rare events may occur (e.g., lake hypolimnion hypoxia, E. coli spikes resulting 

from a WWTP failure) it may be appropriate to use multi-year rolling assessments for medians 

and single-year adjacent assessments for 95%iles and maxima. 

 Identify the appropriate burden-of-proof for assessing attainment of desired attribute states, 

between the choices of “precautionary”, “permissive“ or “even-handed”. 

 If precautionary or permissive stances are adopted state rules for inferring percentile 

attainment, use simple already-published “lookup” tables. 

 Consider using three-outcome “two one sided” tests for the influence of statistical sampling 

error on state-switching in which, in the case of A versus B states, there could be three 

outcomes A, B, or U (undecided). 

 For future attributes such as sediment where percentage changes from some reference value is 

contemplated, the feasibility of detecting a percentage change should be examined given the 

potential for statistical sampling error to frustrate the ability to detect it. 

 For assessing primary contact recreation sites samples should be collected during the bathing 

season, or when the water body is used for contact recreation. For rivers this may exclude 

periods of high flow, during which hazardous river conditions would prohibit bathing. But the 

manner in which that exclusion should be done will vary from one flow regime to another so it is 

difficult to conceive of a general rule that would exclude flood conditions adequately. The same 

is true for the exposure season; at some sites water contact may be happening throughout the 

year (e.g., rafting). In addressing this issue, there needs to be a trade-off between loss of 

precision and the exclusion of elevated flows.  

 Changes to the wording of some of the existing Attribute State’s assessment metrics should be 

contemplated. Currently some are described as “Annual Median”, “Annual Maximum”, “Annual 

95th Percentile” or just “95th percentile”. For example, “Annual” will generally be interpreted as 

referring to only one year of data but this analysis has demonstrated that annual assessment 

using the last three or (better still) five years’ data will minimise the role of sampling error, as 

seen in false “state switching”. So the minimum number of samples and minimum duration 

should be specified. For example, “based on a minimum of a monthly sampling regime and a 

minimum record length of [e.g., 3 years]”. 
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6.2 A decision template 

A three-step consideration is suggested when grappling with these issues. 

6.2.1 Choosing a time period and assessment regime 

Annual assessments using data collected monthly over one year carries considerable uncertainty and 

therefore the risk of common false state-switching. Consider using at least three year’s data in a 

rolling window of annual assessments for median thresholds but retain adjacent annual assessments 

for high percentiles. Also consider the merits of increasing sampling frequency for sensitive water 

bodies. 

6.2.2 Deciding on the burden-of-proof 

What burden? Considerations for policy and decision-making Attribute considerations 

Precautionary   

Prior assumption: Assume NOF 
threshold has been exceeded 
until convinced otherwise, e.g., 
human health protection. 

Appropriate when the consequences of wrongly 
concluding something is ‘safe’ outweigh the 
implications of unnecessarily declaring it ‘unsafe’. 
Appropriate if the consequences of the following are 
too high: 

 Concluding a popular swimming spot is safe, when 
in truth there is a high infection risk and people 
become sick 

 Concluding the condition of a waterbody is 
suitable for sustaining a valuable species, when in 
truth it was not and the species is lost. 

While the assessment metric 
is properly a percentile (of 
time) its implementation may 
be most efficient, timely and 
simple using the look-up 
tables presented herein. 

Permissive   

Prior assumption: Assume a 
NOF threshold has not been 
exceeded, unless convinced 
otherwise.  

Appropriate when the consequences of wrongly 
concluding something is ‘unsafe’ outweigh the 
implications of mistakenly declaring it ‘safe’. 
Appropriate if the consequences of the following are 
too high: 

 Deciding to close a popular swimming spot, when 
in truth it was safe and could have been used. 

 Implementing costly mitigation measures on the 
basis of a valuable freshwater species being 
harmed, when in truth it was not, and the 
mitigation was unnecessary. 

As above, while the 
assessment metric is properly 
a percentile (of time) its 
implementation may be most 
efficient, timely and simple 
using look-up tables. 

Even-handed   

Take the data at face-value, 
making no prior assumption 
about whether a threshold has 
been exceeded. 

Appropriate when wishing to make attainment 
assessments ‘on the balance of probabilities’ (as 
used in civil law proceedings). But be aware that this 
stance carries enhanced misclassification risks 
(because the effects of statistical sampling error 
have been set aside). 

Use direct calculation of 
sample percentiles, 
disregarding the pluses and 
minuses caused by sampling 
variability. 
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6.2.3 Choosing a comparison reference? 

Make an explicit choice about whether any new Numeric Attribute States (such as sediments) should 

be described relative to an environmental condition (e.g., an instream value) versus a reference or 

control state, bearing in mind that the latter option will possess less inherent statistical sampling 

error. 

6.3 Examples using the template 

Three examples are described below: total phosphorus in lakes; E. coli in rivers; visual clarity in rivers. 

6.3.1 Total phosphorus attribute table for lakes  

1. Time period and assessment regime 

This report finds that an annual assessment using only one year of data (e.g., sampled monthly 

as may be typical for lakes) does not confer satisfactory precision of attainment of attribute 

state, assessed using sample medians. At least three years of monthly data should be included in 

a rolling assessment regime, to minimise the occurrence of false state-switching. Using adjacent 

assessments seems inappropriate in this case even if large spikes in TP are thought to be rare: 

they would occur as the result of long-term processes and so a large TP spike is suggestive of 

future spikes occurring more frequently. 

2. Burden of proof 

Decisions about the acceptable or tolerable degree of precaution or permissiveness depend on 

the communities’ or decision makers’ tolerance to the risks and tradeoffs. For example, unlike 

chlorophyll a, spikes in lake TP are not obvious to the eye. If we were to incorrectly conclude 

that TP levels are acceptable, when in reality they were not, we would be unaware of impacts 

on lake ecology and would not undertake a management response. The implication is that the 

problem would become advanced before it would be detected, and may be expensive to 

address (if possible). If we assume this is unacceptable, a precautionary approach should be 

taken for the implementation of the NOF’s TP Table (the NOF’s TP table’s formulation was based 

on an even-handed stance, cf. precautionary, so there would be no precautionary ‘double-up’). 

Instead of calculating the median of the dataset and comparing that with the “Annual Median” 

thresholds in the NOF TP table, the appropriate look-up table should be used (Table 2-3). So for 

36 samples, in order to be assessed as Attribute State A only 13 of them can exceed a TP 

concentration of 10 mg/m3, i.e., 36%. Were an even handed stance to be taken, 18 samples 

could exceed that threshold. Similar considerations arise for the other thresholds in the NOF 

Attribute table. 

3. Choosing a comparison reference? 

Not relevant in this case. 

6.3.2 E. coli attribute table for rivers 

1. Time period and assessment regime 

Annual assessment using only one year of data (sampling monthly or weekly during a defined 

bathing season) does not confer satisfactory precision of attainment of Attribute state. This 

situation is made even worse when some intended sampling dates are abandoned (because of 

high flows). Annual rolling assessment over the most recent three to five years of data is 

preferable, for bother medians (secondary contact) and 95%iles (primary contact). 
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2. Burden of proof 

As discussed in the text, a precautionary approach to the burden-of-proof was taken in the 

formulation of the MfE/MoH 2003 Guidelines, and therefore the NOF E. coli Attribute table. This 

was achieved by setting the table thresholds as 95%iles (see section 5.1.2). It is therefore 

undesirable to double-up this precaution by also adopting a precautionary approach in the 

implementation of the NOF Table. It follows that the sample 95%ile (from the three or five years 

of data, using the Hazen calculation method) could be calculated at face-value and compared 

with thresholds. Note that it may be more desirable (and understandable to the public) to 

simply state that up to 5% of the samples can exceed the 95%ile threshold value (Hunter 2002).  

3. Choosing a comparison reference? 

Not relevant in this case. 

6.3.3 Future visual clarity attribute table for rivers? 

1. Time period and assessment regime 

It is likely that there will be both median and high percentile thresholds, as there is for nitrate in 

rivers, in which case rolling annual assessments, based on three to five years data, could be used 

for the median. Adjacent annual assessments should be contemplated for the high percentile. 

There may need to be some consideration of whether assessment of attribute states should be 

restricted  

2. Burden of proof 

In contrast to the TP example above, changes in visual clarity are (by definition!) obvious to the 

eye. Therefore it seems more appropriate to use an even-handed approach to the both the 

setting of the thresholds and the subsequent assessments of attainment. Note that this bears on 

the question of whether the high percentile should be set as a 95%ile or as a maximum (i.e., a 

100%ile). If sampling is monthly an even-handed approach could be argued to permit one 

exceedance per year (if 12 samples are obtained).44 Certainly one exceedance could be allowed 

under fortnightly sampling. But no exceedances of a 100%ile can be allowed, regardless of 

sampling frequency.45  

3. Choosing a comparison reference 

If the comparison is to a ‘gold standard’ the influence of statistical sampling error will be 

confined to the sampling effort at the site for which an assessment is to be made. But if the 

comparison is to be for a change from upstream conditions (as in ‘Guideline 1’ in MfE 1994) that 

variance will be inflated because natural variability at both upstream and downstream sites will 

need to be considered. This increases uncertainty in assessments. The degree to which this is 

important could be considered as a separate study. 

 

  

                                                           
44 That is because 5% of 12 is 0.6 which is closer to 1 than it is to zero. But if restrictions to lower flows only are imposed there would be 
less than 12 samples and so the case for permitting one exceedance per year is weakened. 
45 It should be noted that the nitrate (toxicity) table has thresholds for annual 95%ile whereas the ammonia (toxicity) table has thresholds 
for annual maxima. Under a precautionary approach both would forbid any exceedances of their thresholds but, as noted above, under an 
even-handed approach arguably one exceedance per year of a 95%ile threshold (under monthly sampling) could be entertained (and under 
a permissive approach two exceedances could be allowed—see Table 2-4.) 
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9 Glossary of abbreviations and terms 

Accuracy High precision, low bias. 

Assessment frequency The time between adjacent assessments, typically one year. 

Assessment metric A sample statistic, such as a median or a 95%ile. 

Assessment period The number of years of data to be included in each assessment. 

Bias A tendency to be ‘off the mark’. 

Confidence interval Ranges within which a parameter may lie most of the time, under repetitive 
sampling. 

Even-handed Taking the sample estimate as the true population value, ignoring statistical 
sampling error. Same as “face-value”. 

Percentile  Same as “quartile” or “centile”. A value below which a given percentage of data 
fall. Can refer to either samples of populations. 

Precision Lack of scatter of estimates about a true value. 

Probability density 
function (pdf) 

The shape of a histogram were an infinite number of samples to be taken and 
measured accurately. It is not a probability; probabilities are areas under pdf 
(the total area under a pdf is 1). 

Progress assessment Tracking movement of an attribute’s sample statistic(s) toward (or away from) a 
desired attribute state. 

Proof of hazard A testing procedure that assumes the hazard does not exist which is only 
rejected if new data strongly indicate to the contrary. Also called the permissive 
approach, “slipping through the net”, “letting the guilty go free”, or “benefit of 
doubt”. 

Proof of safety A testing procedure that assumes the hazard does exist which is only rejected if 
new data strongly indicate to the contrary. Also called the precautionary 
approach, or “fail-safe”. 

QMRA Quantitative Microbial Risk Assessment, in calculations are made from data or 
assumptions concerning human exposure to pathogens (or their indicators) in 
water, calculating risk profiles from dose-response relationships. 

Statistical sampling 
error 

The difference between a sample statistic used to estimate a population 
parameter and the actual, but unknown, value of that parameter. Here “error” 
does not imply that there has been a mistake; it is a technical term in statistical 
parlance relating to accuracy. 

Tolerance interval 
(one-sided) 

A percentile inflated or deflated a little to take account of statistical sampling 
error. 
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Appendix A Interpreting confidence intervals 
Strictly, a confidence interval with numeric limits should be interpreted in a frequency sense, the so-
called ‘classical perspective’.49 In particular, if an analyst were to conduct a sampling effort many 
times and on each occasion computed a 95% confidence interval, then on average 95% of those 
intervals would contain the estimated parameter (Mood and Graybill 1963). In other words, the 
frequency approach to probability only allows us to calculate probabilities of obtaining a given range 
of data, under repetitive sampling.  
 
These considerations are depicted in the following figure (guided by Mood & Graybill 1963, p. 253). 
In this figure ten 90% confidence intervals for an estimate of the mean value of a water quality 
variable are depicted, one of which (the blue line) does not contain the true value.50 This figure 
depicts the ‘correct’ frequentist interpretation of a confidence interval. 
 
 

True value of the estimated mean

 

Figure A-1: Ten 90% confidence intervals for estimating the mean where the blue line does not include the 
true value but the red lines do. 

 
However most workers interpret a single confidence interval as confidence that the interval actually 
obtained contains the true value of the parameter. That’s not surprising, given that no-one has the 
resources to gather multiple datasets (and the population will be changing over time). But one 
should be aware that this interpretation invokes the Bayesian view of probability: expressing a ‘prior’ 
degree of belief about the parameter (Reckhow & Chapra 1983, p. 76). These authors have noted 
that: 
 

                                                           
49 ‘Classical’ is something of a misnomer given that it only really emerged in the early 20th century whereas the earlier (Bayesian) approach 
dates back to the 18th century.  
50 Of course sometimes more than one of these intervals would not contain the true mean, sometimes none would; that’s the vagaries of 
statistical sampling error! 
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It is interesting that most researchers are taught statistics from a classical perspective, yet 

confidence intervals are often interpreted in a Bayesian sense. When the Bayesian 

interpretation is adopted, the analyst should realize that this implies a subjective 

interpretation for probability, and this should be specified in the analysis … the prior 

probability distribution must be stipulated if the Bayesian interpretation for confidence 

intervals is adopted…. 

Few heed this advice, but more may be expected to do so in years to come, especially with the 

advance of Bayesian software (including freeware, such as the R package).51  

Note that in a Bayesian interpretation, new data are used to modify prior distributions into posterior 

distributions, using Bayes rule. The rule itself is not controversial but its application to confidence 

intervals and hypothesis testing is (McGrayne 2011). That’s because different analysts will often hold 

different degrees of belief before considering new data, and so their results (as posterior intervals 

and distributions) will diverge, particularly for small datasets. Referring back to confidence intervals 

(section 2.1.6) we observe that the prior belief unwittingly invoked when making their common 

Bayesian interpretation is generally “non-informative”, in that it posits that all possible values of the 

parameter are equally likely: it is “flat” or “vague”. In many cases this could be considered too 

extreme and the prior distribution could be given some shape whereby some parts of the possible 

data range are considered to be more likely than others. In that case the resulting Bayesian 

confidence interval—called a credible interval”—will be narrowed. This possibility is not pursued 

here, but seems worthy of more detailed consideration in the future. 

 

                                                           
51 ‘R’ is a Kiwi initiative, now implemented world-wide. It was developed at the University of Auckland (Ihaka & Gentleman 1996). 
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Appendix B Tolerance intervals 
As noted in section 2.1.8, a tolerance interval limit is effectively a percentile inflated or deflated a 

little to take account of statistical sampling error. 

To be more precise, tolerance intervals are ranges covering a stated proportion of the population 

most of the time, under repetitive sampling. In particular, they are intervals in which, with a stated 

confidence level, a specified proportion of a sampled population falls (the proportion is denoted as 

β). We commonly use "β-content" intervals, constructed so that they contain at least 100β% of the 

population, with a given confidence.52 The interval's "coverage" is 100β%. Like confidence intervals 

they can be one-sided or two-sided. See below for an example. 

If used in NOF assessments these intervals should be taken as one-sided, because our interest is 

whether or not a breakpoint has been exceeded (cf. two-sided intervals). One-sided β-content 

tolerance intervals are calculated from the same formula as is used for one-sided confidence 

intervals53—but that is not the case for two-sided intervals (Conover 1980, Millard & Neerchal 2001, 

McBride 2005).  

In contrast to confidence intervals, two-sided tolerance intervals do not shrink to zero width at 

infinite sample size. One-sided tolerance limits shrink only to the percentile value. 

Example  

For a year of monthly E. coli sampling, say we had these twelve results: 450, 220, 124, 222, 421, 

1020, 311, 222, 222, 355, 622, 490 E. coli per 100 mL. Using formulae presented by McBride (2014, 

Appendix D) we calculate an upper one-sided 95% tolerance limit as 1595 per 100 mL, whereas the 

Hazen formula for direct calculation of the 95%ile is 980 per 100 mL. But were these data to be 

repeated exactly for each of the next four years (so the sample size increases to 60), the Hazen 

percentile estimate rises slightly to 1020 per 100 mL but the tolerance limit reduces to almost exactly 

the Hazen result (it is 1019 per 100 mL). This example demonstrates that the tolerance limit shrinks 

to the appropriate percentile as the sample size increases, because there is less uncertainty at larger 

sample size. 

                                                           
52 The alternative "β-expectation" intervals are constructed so that they contain on average 100β% of the population, with a given 
confidence. These are not appropriate in this context. 
53 The probability statement for an upper one-sided confidence limit (X) is: Prob(the β percentile ≤ X) = 1 – α, where "1 – α" is the 
confidence level. Although not straightforward, this equation can be solved for X. The probability statement for an upper one-sided β-
content tolerance limit is: Prob(at least a percentage β of a population ≤ X) = 1 – α. It too can be solved for the same value, i.e., X. As noted 
by Conover (1980, p. 120), "These two statements are merely different ways of stating the same idea."  


