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Executive Summary 

The concentration of Escherichia coli (E.coli) is an indicator of human or animal faecal 

contamination and the risk of infectious human disease from waterborne pathogens. Many 

planktonic cyanobacteria produce toxins (cyanotoxins) that are a health risk to humans 

during recreational activities. Total cyanobacterial biovolume is used to assess the degree of 

risk they pose. 

In this study, three datasets were obtained from regional council state of environment 

monitoring (SOE) and other water quality monitoring programmes; E.coli concentrations in 

rivers, water quality parameters in lakes, and four water quality variables and their concurrent 

planktonic cyanobacterial biovolumes in lakes. E coli also indicate risks to human health in 

lakes, however, current datasets are temporally and spatially limited preventing their 

inclusion in the current study. A number of analyses were undertaken that aimed to provide a 

strategic assessment of New Zealand’s freshwaters for recreational use from a human health 

perspective. 

Monthly E.coli measurements from 753 sites on rivers with durations from between 5 and 24 

years were analysed to extract several types of summary information. First, the relationship 

between flow and E.coli concentration was quantified using linear regression models. 

Second, the timing of E.coli exceedances was assessed by counting the proportion of 

samples in each month that exceed concentration thresholds of 260 and 540 E.coli 100 mL-1. 

These thresholds define attribute bands in the National Policy Statement for Freshwater 

Management (NPS-FM). Third, the median and 95th percentile E.coli concentrations for each 

site were calculated over all observations. The NPS-FM uses these summary statistics and 

the attribute band thresholds to define the E. coli attribute state for a water body. Fourth, the 

percentage of samples that exceeded 260 and 540 E.coli 100 mL-1 (PercGT260 and 

PercGT540) were calculated for each site over all observations. The four site summary 

statistics (median, 95th percentile, PercGT260 and PercGT540) were combined with 

environmental data describing river catchments to make national scale spatial predictions of 

these values. 

Quarterly SOE measurements of lake water quality variables comprising chlorophyll a (total 

phytoplankton biomass), total nitrogen (TN), total phosphorus (TP), Secchi depth, and the 

trophic level index (TLI3) were obtained for up to 99 lakes (differed by variable) over the 

period 2009 to 2013. The median values of these variables were extracted for each lake. In 

addition, concurrent observations of cyanobacterial biovolume, chlorophyll a, TN, TP, and 

Secchi depth were obtained for 37 lakes from various regional councils and research 

programme datasets. The site median values of the water quality variables pertaining to the 

SOE data were combined with environmental data describing lakes and their catchments to 

make spatial predictions of these values for all of New Zealand’s 3,821 lakes larger than 1 

hectare. Multiple linear regression was used to establish the relationship between 

cyanobacterial biovolume (80th percentile) and median chlorophyll a, TN, TP, and Secchi 

depth using datasets from 37 lakes.  Predicted values of chlorophyll a, TN, TP, and Secchi 

depth from the spatial models were included as ‘new data’ in the cyanobacterial biovolume 

multiple linear regression equation and used to estimate cyanobacterial biovolume for all 

New Zealand lakes. 

The analysis indicated that relationships between E.coli concentrations and flow are 

generally weak. While relationships were stronger at some sites, the broad conclusion was 

that exceedance of E.coli threshold values is not strongly determined by flow state. The 
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analysis of timing of exceedances of E.coli thresholds indicated that exceedance of E.coli 

thresholds can occur at any time of the year. Exceedances of thresholds tend to be more 

frequent in autumn and spring in lowland rivers. However, the frequency of E.coli 

exceedances was not strongly predicted by month or season. These analyses indicate that 

broad scale patterns of the four E.coli statistics (site median, 95th percentile, PercGT260 and 

PercGT540) are relevant descriptions for assessing human health risk and that accounting 

for flow state or time of the year would not strongly influence conclusions drawn from these 

statistics. 

Good performance was achieved for the four spatial models of the E.coli statistics (median, 

95th percentile, PercGT260 and PercGT540). Predicted values of all statistics described 

similar spatial patterns when mapped. Values were high in low-elevation parts of rivers on 

the east coasts of the North and South Island, and in the inland Waikato, Ruamahunga 

Valley, Rangitikei-Manawatu coastal plain, Taranaki Ring Plain, and Auckland and Northland 

regions. Values were generally low in rivers rising in major mountain ranges (e.g. Southern 

Alps, Kahurangi, Kaimanawa, and Tararua Ranges), in large areas of the Department of 

Conservation estate (e.g. Fiordland, Westland, Te Urewera, Egmont, Whanganui and 

Tongariro National Parks), and in smaller, native forest-dominated areas of Northland and 

the Coromandel Peninsula. Rivers with catchments in low elevation areas that were 

characterised by high values of the E.coli variables coincided with land used for intensive 

agriculture and areas associated with urban centres.  

Satisfactory to good performance was achieved for the five lake spatial models (chlorophyll 

a, TN, TP, Secchi depth and TLI3) and predictions were made for all lakes with an area 

greater than 1 hectare. Because of the limited number of lakes represented in the dataset 

used to develop the models there is a likelihood that values are over predicted in lowland 

areas with native catchments e.g., West Coast South Island. The mapped predictions for all 

five variables had similar spatial patterns, with high values of chlorophyll a, TN, TP and TLI3 

and low values of Secchi depth, in low-elevation areas on the coasts of the North and South 

Island. Values of chlorophyll a, TN, TP and TLI3 were also high in inland areas of both 

islands that are dominated by agricultural land use such as Southland, parts of Otago, 

Hawkes Bay, Bay of Plenty, Waikato and Northland. Values of chlorophyll a, TN, TP and 

TLI3 were generally low and Secchi depth was high in the inland areas of the South Island. 

Strong statistical relationships were established between the 80th percentile cyanobacterial 

biovolume measured in 37 lakes and chlorophyll a, TN, TP and Secchi depth. The most 

parsimonious multiple linear regression model included chlorophyll a, TP, and Secchi depth 

and had a R2 of 0.64. When the data from spatial models was transformed into 

cyanobacterial biovolume, spatial patterns were similar to those observed for the other lake 

water parameters described above.  

The predictions made using the spatial models provide a description of regional to national 

scale patterns in E.coli in rivers and cyanobacterial biovolume in lakes. The predictions are 

uncertain at the site-scale and actual data should be used in preference to the modelled 

predictions. However, the broader-scale predictions will be useful for strategic purposes such 

as quantifying the proportion of New Zealand’s rivers and lakes that have high and low 

human health risks and identifying areas of most concern. 
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1 Introduction 

River and lake water quality across New Zealand was characterised by a recent national 

analysis of state and trends at over 1000 monitoring sites (Larned et al., 2015). The sites are 

monitored as part of the State of Environment (SOE) programmes operated by regional 

councils, unitary authorities and the national river water quality network operated by NIWA. 

Larned et al. (2015) provided information on several monitored water quality variables that 

are measured at 844 river sites and 156 lakes. The datasets underlying these analyses 

contained quarterly or monthly measurements of physical, chemical, and biological variables 

over time periods from as early as 1990 to 2013.  

In the current report, the river E.coli and lake water quality monitoring data underlying the 

Larned et al. (2015) study were utilised. The temporal variability in the key indicator of 

human health in rivers, the faecal indicator bacterium Escherichia coli (E.coli) was 

investigated. The data were then used to develop spatial models that predicted E.coli in all 

New Zealand’s rivers and water quality in all lakes with an area greater than 1 hectare. The 

benefit of spatial modelling is that it provides a large-scale assessment of water quality that 

is more representative than assessments based on aggregating raw monitoring site data. 

The latter approach can lead to conclusions about water quality patterns that are biased by 

the non-random locations of monitoring sites (Larned and Unwin, 2012).  

The water quality variables that are routinely measured by SOE monitoring of lakes are 

focussed on understanding the impacts of nutrients. Although E.coli is a relevant indicator of 

human health risks in lakes it has often not been included SOE monitoring programmes. 

However, nutrients in lakes can stimulate growth of planktonic cyanobacteria, which can 

reach high densities, form blooms, and some species produce toxins that are harmful to 

humans. The presence of cyanobacteria in lakes is known to be related to water quality 

variables that characterise lake trophic status. In this study, an additional dataset was 

collated consisting of cyanobacterial biovolumes (a measure of total cyanobacterial biomass) 

and four water quality variables. We investigated the relationship between cyanobacterial 

biovolume and the water quality variables. These relationships were then used to transform 

water quality predictions, made using the lake spatial models, into predictions of 

cyanobacterial biovolume for all New Zealand lakes. The E. coli in rivers and cyanobacterial 

biovolume in lakes spatial models provide a broad scale assessment of New Zealand’s 

freshwaters for recreational use, from a human health perspective. 

This report provides a detailed description of the methods used to extract variables from 

available data and to produce spatial predictions at unmonitored locations. The methods 

used to prepare the water quality variables data, make assessments of the 

representativeness of the monitoring sites, and to undertake the spatial modelling are 

described. The results provide national maps of river E.coli, lake water quality and 

cyanobacterial biovolume. Measures of model performance and the important relationships 

between water quality variables and predictors are described and discussed.  

2 Data 

2.1 River water quality data 

We used the SOE data for rivers analysed by Larned et al. (2015) for the current study. 

Detailed methods for obtaining and grooming these data are provided by Larned et al. 

(2015). In this study we were only interested in the microbiological measure E. coli. The 
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concentration of the bacterium E.coli is used as an indicator of human or animal faecal 

contamination and the risk of infectious human disease from waterborne pathogens in 

contact-recreation and drinking water. There is a National Policy Statement for Freshwater 

Management (NPS-FM; Ministry for the Environment, 2014) attribute based on E. coli 

concentrations that is related to the management of human health for recreation. The 

national bottom line for E. coli concentrations for secondary contact recreation is 1000 E. coli 

100 mL-1 (as an annual median). The NPS-FM also stipulates that the “minimum acceptable 

state” for waters managed for primary contact recreation is an E. coli concentration of 540 

E.coli 100 mL-1, as a 95th percentile. The minimum acceptable state is consistent with an 

exposure to a moderate risk of infection (less than 5% risk) when undertaking activities likely 

to involve full immersion (Ministry for the Environment, 2014). The NPS-FM stipulates the “A-

band” as a concentration of 260 E.coli 100 mL-1 as a 95th percentile. The A-band is 

consistent with an exposure to a low risk of infection (up to 1% risk) when undertaking 

activities likely to involve full immersion (Ministry for the Environment, 2014). 

The E.coli data in the Larned et al. (2015) dataset comprised monthly or quarterly samples 

that extended from 1990 at some sites to the end of 2013. In this study we used these data 

to assess relationships between E.coli and flow, the timing of E.coli exceedances of the 

thresholds described above, and the proportion of samples for which E.coli concentrations 

exceeded thresholds. The robustness of these assessments increases with the number of 

samples. We therefore maximised the number of samples by retaining the entire time series 

for each site and applied the single filtering rule that sites be associated with at least 30 

samples to ensure the data were representative of each site. The potential issue with this 

approach is that the data can be influenced by trends. This can mean that analyses carried 

out on the entire time series is not representative of the more recent past. This study 

assumed that broad scale (i.e. aggregated analyses) were not strongly affected by trends 

based on the results of Larned et al. (2015). They found that very few sites in the national 

dataset had important (i.e. meaningful) trends in E.coli over the last 10 or 20 years.  

E.coli measurements can be too high to be measured with precision. These are recorded in 

the data as greater than the “reporting limit” and are referred to as right-censored data. All 

right-censored data were replaced with values estimated using a procedure based on 

“survival analysis” (Helsel, 2012). In this approach a parametric distribution is fitted to the 

uncensored values data using maximum likelihood. The values for the censored 

observations are then estimated by randomly sampling values larger than the censored 

values from this distribution (see Larned et al., 2015 for details). A final criterion was that 

fewer than 50% of the observations were censored (i.e. below the detection limit). This 

resulted in a dataset comprising 753 sites (Figure 1). 

Approximately 25% of samples in our dataset were associated with flow measurements that 

were either obtained from a water level (flow) recorded or were provided by the monitoring 

organisation. There was no flow data provided for 65% of the sites and 75% of all samples. 

For these samples, flow estimates were obtained from the TopNet national hydrological 

model (see Larned et al., 2015 for details).  
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Figure 1. Location of the river state of environment sites that were the source of the 

Escherichia coli data used in this study. 

2.2 Lake water quality data 

Lake water quality data were derived from two sources. First, the SOE data for lakes 

analysed by Larned et al. (2015) were used in the current study for spatial modelling. 

Detailed methods for obtaining and grooming these data are provided by Larned et al. 

(2015). The lake SOE data analysed by Larned et al. (2015) included five water quality 

variables that correspond to physical, chemical and biological conditions (Table 1). The 

variables included total nitrogen (TN) and total phosphorus (TP), the visual clarity indicator 
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Secchi depth, phytoplankton biomass as chlorophyll a, and the trophic level index (TLI3, 

comprising TN and TP and chlorophyll a; Burns et al., 2000). 

This study used only lake SOE data for the five-year period from 2009 to 2013. Two filtering 

rules were applied to ensure that the SOE data were representative of each lake and 

variable. First, at least eight samples were available for the five-year period. Second, less 

than 50% of the observations of each variable were censored (i.e. below the detection limit). 

This was a relaxation of the inclusion rule of Larned et al. (2015) who required 18 samples in 

the five-year period. This relaxation of the inclusion rules increased the number of sites used 

in this study compared to Larned et al. (2015) (Figure 2). 

Measurements of some of the lake variables can be too low to be measured with precision. 

These are recorded as less than the “detection limit” and are referred to as left-censored 

data. We imputed replacement values for the left censored data using Regression on Order 

Statistics (ROS) (Helsel, 2012). The ROS procedure produces a separate replacement value 

for each censored datum. This procedure accommodates multiple censoring limits, which 

typically occurs when detection limits change over time. Briefly, the ROS method develops 

probability plotting positions for each data point (censored and uncensored) based on the 

ordering of the data. A relationship between data values and the uncensored probability 

plotting positions is fitted by least-squares regression, and this relationship is then used to 

predict the concentrations for the censored values based on their plotting positions. The 

ROS procedure produces estimated values for the censored data that are consistent with the 

distribution of the uncensored values, when distribution of these values in time is unknown. 

We randomised the predicted values to avoid inducing trends that would be associated with 

sequential plotting positions, which for the censored values is their order of appearance in 

time-series (see Larned et al., 2015 for details). 

Table 1. Lake water quality variables included in this study.

Variable type Variable Abbreviation Units 
Number of 

lakes 

Physical Secchi depth SECCHI m 64 

Chemical 
Total nitrogen  TN mg/m3 82 

Total phosphorus  TP mg/m3 99 

Phytoplankton Chlorophyll a CHLA mg L-1 92 

Water quality 
index 

Trophic Level Index TLI3 unitless 76 

 

Although E.coli has been sampled in 37 lakes nationally as part of SOE programmes (Martin 

Unwin, pers comm), the samples are sporadic and insufficient for robust spatial modelling. 

We therefore focussed on a national assessment of planktonic cyanobacteria in lakes. An 

increasing number of cyanobacterial species are known to include toxin-producing strains. 

These natural toxins, known as cyanotoxins, are a threat to humans during recreational 

activities and the risk to humans is estimated by measuring planktonic cyanobacterial 

biovolumes. The NPS-FM defines an attribute for cyanobacteria in lakes based on 

biovolumes that is related to the management of human health for recreation. Cell size 

varies among cyanobacterial species and the use of biovolumes as an NPS-FM attribute 

allows these differences to be accounted for. Additionally, toxin concentration per cell is 

thought to be more closely related to cyanobacterial biovolume than to total cell number. The 

national bottom line for total cyanobacterial biovolume is >1.8 mm3 L-1 of potentially toxic 

cyanobacteria, or >10 mm3 L-1 when no known toxin producing species or no toxins are 

detected. The suggested statistic to make this assessment is an 80th percentile, using a 
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minimum of 12 samples collected over three years.  Concentrations of >0.5-1.8 mm3 L-1 and 

>0.5 mm3 L-1 of potentially toxic cyanobacteria as 80th percentile defines the C and A 

attribute bands respectively (note: there is no B band for planktonic cyanobacteria). The 

same values are used to trigger the action, alert and surveillance mode levels in the New 

Zealand Guidelines for Managing Cyanobacteria in Recreational Fresh Waters (Wood et al., 

2009). 

Cyanobacterial biovolumes are not routinely measured as part of SOE monitoring and were 

not included in the dataset analysed by Larned et al. (2015). However, a dataset comprising 

cyanobacterial biovolume data and all, or a subset of chlorophyll a, TN, TP, and Secchi 

depth was obtained for 66 lakes. Our approach was therefore based on the assumption that 

cyanobacterial biovolume would be related to trophic state as represented by one or more of 

the variables in the SOE dataset (i.e. chlorophyll a, TN, TP, TLI3, Secchi depth; Wood et al., 

2016, Smith et al., 2016). Our strategy was to first develop a relationship between these 

water quality variables and cyanobacterial biovolume and then to use the spatial predictions 

developed from the SOE data to extrapolate the relationship nationally. 

 

Figure 2. Locations of lake state of environment monitoring sites associated with the 

five water quality variables. The locations shown on each panel correspond to the sites 

that were included in this study for each variable listed in Table 1. 
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We obtained the dataset comprising cyanobacterial biovolume data and chlorophyll a TN, 

TP, and Secchi depth from various sources including regional council monitoring 

programmes and research projects (Appendix 1 and 2). The per lake sample numbers in our 

cyanobacterial biovolume dataset ranged from 1 to 475 (Appendix 1 and 2). When data were 

provided as cell concentrations these were converted to biovolumes using values given in 

Appendix 4 of Wood et al. (2009). When genera or species data was not available in this 

document, values were obtained from the ‘biovolume calculator’ at 

http://www.depi.vic.gov.au/water/rivers-estuaries-and-wetlands/blue-green-algae/blue-green-

algae-resources.  

Lakes where sample size was less than seven were excluded from further analysis. This 

value was chosen based on our expert judgement to maintain as many datasets as possible 

while avoiding biases caused by low or only targeted (e.g. during a bloom event) sampling 

effort (Appendix 1 and 2). This left a total of 37 lakes in the dataset (Figure 3; Appendix 1). 

These datasets were biased geographically, for example, useable data were only available 

from three lakes in the South Island (Figure 3). However, because these datasets were only 

used to establish relationships between cyanobacterial biovolumes and water quality 

variables (see Section 3.1.2) this was not considered problematic. Although some 

geographic (altitudinal, latitudinal and longitudinal) patterns have been observed in 

planktonic cyanobacteria at a national scale, trophic state is considerably more important in 

structuring cyanobacterial communities (Wood et al., In review). Additionally, in general the 

dominant and bloom forming taxa are found nationwide (Wood et al., In review) and were all 

represented in the dataset used in this study. 

 

Figure 3. Locations of lake sites with corresponding cyanobacterial biovolume and 

water quality variables where n ≥ 7. 

http://www.depi.vic.gov.au/water/rivers-estuaries-and-wetlands/blue-green-algae/blue-green-algae-resources
http://www.depi.vic.gov.au/water/rivers-estuaries-and-wetlands/blue-green-algae/blue-green-algae-resources
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2.3 River predictor data 

The Freshwater Ecosystems of New Zealand database (FENZ) provides a database of 

characteristics of the 550,000 segments of the digital river network that represents the 

streams and rivers of New Zealand (Wild et al., 2005). The characteristics of the upstream 

catchment of all segments have been successfully used as predictors in spatial models of 

various water quality variables (Unwin et al., 2010). For each of the river SOE sites we 

obtained the same suite of predictors used by Unwin et al. (2010) for use in the spatial 

models (Table 2).  

Table 2. Predictor variables used in spatial models of river Escherichia coli. 

Predictor Abbreviation Description Unit 

Geography 
and 
topography 

usArea Catchment area m2 

usLake Proportion of upstream catchment occupied by lakes % 

usCatElev Catchment mean elevation m ASL 

usAveSlope Catchment mean slope degrees 

segAveElev Segment mean elevation degrees 

Climate and 
flow 

usAvTWarm Catchment averaged summer air temperature degrees C x 10 

usAvTCold Catchment averaged winter air temperature degrees C x 10 

usAnRainVar Catchment average coefficient of variation of annual 
rainfall 

mm y-1r 

usRainDays10 Catchment average frequency of rainfall > 10 mm days month-1 

usRainDays20 Catchment average frequency of rainfall > 20 mm days month-1 

usRainDays100 Catchment average frequency of rainfall > 100 mm days month-1 

segAveTCold Segment mean minimum winter air temperature degrees C x 10 

usFlow Estimated mean flow m3 s-1 

Geology* usHard Catchment average induration or hardness value Ordinal* 

usPhos Catchment average phosphorous Ordinal* 

usParticleSize Catchment average particle size Ordinal* 

Land cover usPastoral Proportion of catchment occupied by combination of high 
producing exotic grassland, short-rotation cropland, 
orchard, vineyard and other perennial crops (LCDB3 
classes 40, 30, 31, 33) 

Proportion 

usIndigForest Proportion of catchment occupied by indigenous forest 
(LCDB3 class 69) 

Proportion 

usUrban Proportion of catchment occupied by built-up area, urban 
parkland, surface mine, dump and transport 
infrastructure (LCDB3 classes 1,2,6,5) 

Proportion 

usScrub Proportion of catchment occupied by scrub and shrub 
land cover (LCDB3 classes 50, 51, 52, 54, 55, 56, 58) 

Proportion 

usWetland Proportion of catchment occupied by lake and pond, 
river and estuarine open water (LCDB3 classes 20, 21, 
22) 

Proportion 

usBare Proportion of catchment occupied by bare ground 
(LCDB3 classes 10, 11, 12,13,14, 15) 

Proportion 

usExoticForest Proportion of catchment occupied by exotic forest 
(LCDB3 class 71) 

Proportion 

usGlacial Proportion of catchment occupied by ice (LCDB3 
classes 14) 

Proportion 

*Geological variables are based on regolith, using averages of ordinal values assigned to LRI top-rock categories 

by (Leathwick et al., 2003). The variables usHard and usPsize characterise physical regolith conditions; and 

usPhos characterises regolith fertility. 

 

The digital river network is also the spatial framework for the River Environment 

Classification (REC; Snelder and Biggs, 2002). River monitoring sites were grouped into 

environmental classes to aid in summarising the results of analyses, and to account for 

some variation in water quality associated with environmental heterogeneity. River sites 
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were grouped by REC Source-of-flow classes which are defined by the combination of 

climate and topography categories shown in Table 3. 

Table 3. Levels, categories, and notation for the river environment classification. 

Classification 
level 

Defining 
characteristics Categories Notation Category membership criteria 

1 Climate 
(103 – 104 km2) 

Warm-extremely-
wet 
Warm-wet 
Warm-dry 
Cool-extremely-wet 
Cool-wet 
Cool-dry 

WX 
 
WW 
WD 
CX 
CW 
CD 

Warm: mean annual temperature ≥ 12°C 
Cool: mean annual temperature < 12°C  
Extremely Wet: mean annual effective 
precipitation1 ≥1500 mm 
Wet: mean annual effective precipitation > 500 
and < 1500 mm  
Dry: mean annual effective precipitation ≤ 500 
mm 

2 Topography 
(102 – 103 km2) 

Glacial-mountain  
Mountain 
 
Hill 
 
Low-elevation 
Lake 

GM 
M 
 
H 
 
L 
Lk 

GM: M and % permanent ice > 1.5% 
M: > 50% annual rainfall volume above 1000 m 
ASL 
H: 50% rainfall volume between 400 and 1000 m 
ASL 
L: 50% rainfall below 400 m ASL 
Lk: Lake influence index2 > 0.033 

1. Effective precipitation = annual rainfall – annual potential evapotranspiration 

2. See Snelder and Biggs (2002) for description. 

 

2.4 Lake predictor data 

The FENZ database provides characteristics of 3821 lakes greater than one hectare in area 

occurring across the North and South Islands, and some of the smaller outlying islands. 

Details of these variables and their derivation are provided by Snelder et al. (2006). 

Characteristics include descriptors of climatic, geological, topographic, bathymetric, land 

cover, and hydrological conditions in New Zealand lakes and their catchments. 

The FENZ dataset includes estimates of average lake depth that were made using a 

geospatial statistical model (Snelder et al., 2006). We also had measured maximum depth 

for all monitored lakes. We tested including maximum lake depth in our spatial models. 

However, because we used our models to make predictions for all lakes, we used the 

estimated average lake depth in our spatial models.  
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Table 4. Predictor variables used in the spatial models of lake water quality. 

Predictor Abbreviation Description Unit 

Lake lkArea Lake surface area m2 
lkDistCoast Straight line distance to coast km 
lkDepth Estimated average lake depth m 
lkElev Lake elevation  m ASL 

Catchment 
topography 

catSlope Catchment average slope Degrees 
catArea Catchment area m2 
catElev Catchment elevation m ASL 

Climate and 
flow 

lkDecSolRad Lake summer (December) solar radiation  W m-2 
lkJuneSolRad Lake winter (June) solar radiation  W m-2 
lkDecTemp Lake average summer (December) air temperature Degrees 
lkJunTemp Lake average winter (June) air temperature Degrees 
lkFetch Lake wind fetch m 
lkSumWind Lake summer (December) wind speed m s-1 
lkWinWind Lake winter (June) wind speed m s-1 
catSumTemp Catchment average summer (December) air 

temperature 
Degrees 

catWinTemp Catchment average winter (June) air temperature Degrees 
catFlow Catchment average annual discharge m3 yr-1 

Geology catPhos Catchment average phosphorous Ordinal* 
catCalc Catchment average calcium Ordinal* 
catHard Catchment average induration or hardness value Ordinal* 
catPsize Catchment average particle size Ordinal* 
catPeat Proportion of catchment occupied by peat Proportion 
catAlluv Proportion of catchment occupied by alluvium Proportion 

Land cover catGlacial Proportion of catchment occupied by permanent Proportion 

catIndigForest Proportion of catchment occupied by indigenous forest Proportion 

catBare Proportion of catchment occupied by bare ground Proportion 

catExoticForest Proportion of catchment occupied by exotic forest Proportion 

catPastoral Proportion of catchment occupied by pasture Proportion 
*Geological variables are based on regolith, using averages of ordinal values assigned to LRI top-rock categories 

by (Leathwick et al., 2003). The variables catHard and catPsize characterise physical regolith conditions; and 

catPhos and catCalc characterises regolith fertility. 

 

3 Methods 

3.1 Analysis of water quality data 

3.1.1 Rivers 

For each site we first calculated four annual descriptor variables for each site; the median 

and 95th percentile E.coli concentrations and the percentage of samples that exceeded 260 

and 540 E.coli 100 mL-1 (referred to as PercGT260 and PercGT540). These four descriptors 

of E.coli at the SOE sites were used as the response variables for the spatial models. 

We assessed the relationship between flow and E.coli concentration and the timing of 

exceedance of E.coli thresholds at each site. Strong and consistent patterns of E.coli with 

flow or with the timing of exceedances would be important information to include in a 

strategic assessment of freshwaters from a human health perspective. Conversely weak 

and/or inconsistent patterns would indicate that annual statistics (i.e. the median and 95th 

percentile E.coli concentrations and PercGT260 and PercGT540) do not obscure 

strategically important temporal patterns in the indicator organism.  
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For each site we investigated relationships between E.coli and flow by fitting linear models to 

the log10-transformed E.coli values and their corresponding flow observations. We extracted 

the coefficients of determination (i.e. R2 values) and the slope parameter from these models 

for each site and used these as measures of the strength of the relationship and its direction 

respectively. We plotted these data to visualise the relationships and investigated spatial 

patterns in these by parsing the results by REC Source-of-flow class. 

For each site we assessed the timing of exceedance of E.coli thresholds by first identifying 

the month corresponding to each sample. We then counted the proportion of samples in 

each month that exceed concentration thresholds of 260 and 540 E.coli 100 mL-1. We 

expressed the number of samples exceeding the threshold as a percentage of the total 

samples for each month. We plotted these data to visualise the seasonal pattern of 

exceedances and investigated spatial patterns in these by parsing the results by REC 

Source-of-flow class. We tested if month, within REC classes, explained the proportion of 

samples exceeding the threshold using Kruskal–Wallis tests. The Kruskal–Wallis test is a 

non-parametric test of whether the medians of data representing different groups are equal. 

In our analysis, significant results indicate that the median of site values of exceedances 

varies between months.  

3.1.2 Lakes 

Our analysis aimed to estimate cyanobacterial biovolume in lakes nationally. Our strategy to 

do this was to 1) use the SOE dataset and spatial modelling to predict chlorophyll a, TN, TP, 

Secchi depth, and TLI3 for all lakes nationally, and 2) to establish relationships between 

cyanobacterial biovolumes and their concurrent water quality parameters that could be used 

to transform the spatial model predictions into national estimates of cyanobacterial 

biovolume. To do this we required robust spatial model predictions (i.e. predictions from 

models that had satisfactory performance) and a robust model relating cyanobacterial 

biovolume to one or more of the predicted values (chlorophyll a, TN, TP, Secchi depth and 

TLI3). We did not know a priori which combination of SOE variables would satisfy these 

criteria and therefore proceeded with spatial models of all five SOE variables. For each lake 

and variable in the SOE dataset we calculated the median of the sampled values. These 

median values were used as the response variables for the spatial models.  

For all cyanobacterial biovolume datasets, except Bay of Plenty (see below), we only 

maintained data points where concurrent cyanobacterial biovolume and water quality 

variable samples were available. In some instances, biovolume and water quality sample 

collection dates varied by up to one week. In these cases, biovolume values were matched 

with the closest available water quality data. When water quality parameters were below 

analytical detection limits, half the value was used. 

Cyanobacterial biovolume and water quality data obtained from Bay of Plenty Regional 

Council were not collected at the same location (water quality – mid lake, and cyanobacterial 

biovolumes – at multiple sites around the lake edge) or date. For this dataset a mean water 

quality and cyanobacterial biovolume per lake was calculated and aligned for each month.  

The median chlorophyll a, TN, TP, and Secchi depth and 80th percentile of cyanobacterial 

biovolumes were calculated for each lake. Relationships between log-transformed 

cyanobacterial biovolume + 0.001, and log-transformed median TP, TN, chlorophyll a and 

Secchi depth water quality variables were investigated using linear and multiple linear 

regressions. We checked that predictor variables were not collinear based on the variance 
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inflation factor < 5 (Zuur et al., 2010). Models were selected using a stepwise procedure 

based on the Akaike Information Criteria and were validated by inspecting residuals.  

Predicted values of chlorophyll a, TN, TP, and Secchi depth made using spatial models were 

included as ‘new data’ in the cyanobacterial biovolume multiple linear regression equation 

and used to predict cyanobacterial biovolumes for all New Zealand lakes. Back-

transformation (by exponentiation) was required to convert the predicted biovolume values 

back to the original units (mm3 L-1). When these values are back-transformed, the model 

error term no longer has a mean of zero. Ignoring this results in retransformation bias, i.e. 

predictions that systematically underestimate the response. We corrected the 

retransformation bias using the smearing estimate (S; Duan, 1983): 

𝑆 =  
1

𝑛
∑ 𝑒𝜀𝑖̂𝑛

𝑖=1       (Equation 1),  

 

where 𝜀̂ are the residuals of the cyanobacterial biovolume model. The predictions were 

back-transformed by exponentiation, then corrected for retransformation bias by multiplying 

by S.  

3.2 Spatial modelling 

3.2.1 Random forest models 

We defined spatial models for the four descriptors of the river SOE sites (median, and 95th 

percentile E.coli concentrations and percentage of samples exceeding 540 and 260 E.coli 

100 mL-1) and the median values of the five water quality variables for the lake SOE sites. 

Models were fitted to each variable as a function of predictor variables using Random Forest 

(RF) models (Breiman, 2001; Cutler et al., 2007).  

An RF model is an ensemble of individual classification and regression trees (CART). In a 

regression context, CART partitions observations (in this case the individual water quality 

variables) into groups that minimise the sum of squares of the response (i.e. assembles 

groups that minimise differences between observations) based on a series of binary rules or 

splits that are constructed from the predictor variables. CART models have several desirable 

features including requiring no distributional assumptions and the ability to automatically fit 

non-linear relationships and high order interactions. However, single regression trees have 

the limitations of not searching for optimal tree structures, and of being sensitive to small 

changes in input data (Hastie et al., 2001). RF models reduce these limitations by using an 

ensemble of trees (a forest) and making predictions based on the average of all trees 

(Breiman, 2001). An important feature of RF models is that each tree is grown with a 

bootstrap sample of the fitting data (i.e. the observation dataset). In addition, a random 

subset of the predictor variables is made available at each node to define the split. 

Introducing these random components and then averaging over the forest increases 

prediction accuracy while retaining the desirable features of CART. 

An RF model produces a limiting value of the generalization error (i.e. the model maximises 

its prediction accuracy for previously unseen data; Breiman, 2001). The generalization error 

converges asymptotically as the number of trees increases, so the model cannot be over-

fitted. The number of trees needs to be set high enough to ensure an appropriate level of 

convergence, and this value depends on the number of variables that can be used at each 

split. We used default options that included making one third of the total number of predictor 

variables available for each split, and 500 trees per forest. Some studies report that model 
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performance is improved by including more than  50 trees per forest, but that there is little 

improvement associated with increasing the number of trees beyond 500 (Cutler et al., 

2007). Our models took less than a minute to fit when using the default of 500 trees per 

forest. 

Unlike linear models, RF models cannot be expressed as equations. However, the 

relationships between predictor and response variables represented by RF models can be 

represented by importance measures and partial dependence plots (Breiman, 2001; Cutler 

et al., 2007). During the fitting process, RF model predictions are made for each tree for 

observations that were excluded from the bootstrap sample; these excluded observations 

are known as out-of-bag (OOB) observations. To assess the importance of a specific 

predictor variable, the values of the response variable are randomly permuted for the OOB 

observations, and predictions are obtained from the tree for these modified data. The 

importance of the predictor variable is indicated by the degree to which prediction accuracy 

decreases when the response variable is randomly permuted. Importance is defined in this 

study as the loss in model performance (i.e. the increase in the mean square error; MSE) 

when predictions are made based on the permuted OOB observations compared to those 

based on the original observations. The differences in MSE between trees fitted with the 

original and permuted observations are averaged over all trees, and normalized by the 

standard deviation of the differences (Cutler et al., 2007).  

A partial dependence plot is a graphical representation of the marginal effect of a predictor 

variable on the response variable, when the values of all other predictor variables are held 

constant. The benefit of holding the other predictors constant (generally at their respective 

mean values) is that the partial dependence plot effectively ignores their influence on the 

response variables. Partial dependence plots do not perfectly represent the effects of each 

predictor variable, particularly if predictor variables are highly correlated or strongly 

interacting, but they do provide an approximation of the modelled predictor-response 

relationships that are useful for model interpretation (Cutler et al., 2007). 

RF models include any of the original set of predictor variables that are chosen during the 

model fitting process. However, marginally important predictor variables may be redundant 

(i.e. their removal does not affect model performance) and their inclusion complicates model 

interpretation. We used a backward elimination procedure to remove redundant predictors 

from the initial ‘saturated’ models (i.e. models that included any of the original predictor 

variables). The procedure first assesses the model mean square error (MSE) using a 10-fold 

cross validation process. The predictions made to the hold out observations during cross 

validation are used to estimate the MSE and its standard error. The model’s least important 

predictor variables are then removed in order, with the MSE and its standard error being 

assessed for each successive model. The final, ‘reduced’ model is defined by the “one 

standard error rule” as the model with the fewest predictor variables whose error is within 

one standard error of the best model (i.e. the model with the lowest cross validated MSE) 

(Breiman et al., 1984). Importance levels for predictor variables were not recalculated at 

each reduction step to avoid over-fitting (Svetnik et al., 2004). 

Although RF models do not depend on distributional assumptions, transformation of the 

response variable to an approximately symmetric distribution can improve model 

performance. We investigated transformations of the modelled water quality (i.e. response) 

variables on the model performance. Where performance was improved we made 

predictions using these models.  
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All calculations were performed in the R statistical computing environment (R Development 

Core Team 2009) using the randomForest package and other specialised packages. 

3.2.2 Model performance 

Model performance was assessed by comparing observations with independent predictions 

(i.e. sites that were not used in fitting the model), which were obtained from the OOB 

observations. We summarised the model performance using five statistics; regression R2, 

Nash-Sutcliffe efficiency (NSE), percent bias (PBIAS) and the relative root mean square 

error (RSR) and the root mean square deviation (RMSD). The regression R2 value is the 

coefficient of determination derived from a regression of the observations against the 

predictions. The R2 value indicates the proportion of the total variance explained by the 

model but is not a complete description of model performance (Piñeiro et al., 2008). NSE 

indicates how closely the observations coincide with predictions (Nash and Sutcliffe, 1970). 

NSE values range from −∞ to 1. An NSE of 1 corresponds to a perfect match between 

predictions and the observations. An NSE of 0 indicates the model is only as accurate as the 

mean of the observed data and values less than 0 indicate the model predictions are less 

accurate than using the mean of the observed data. Bias measures the average tendency of 

the predicted values to be larger or smaller than the observed values. Optimal bias is zero, 

positive values indicate underestimation bias and negative values indicate overestimation 

bias (Piñeiro et al., 2008). PBIAS is computed as the sum of the differences between the 

observations and predictions divided by the sum of the observations (Moriasi et al., 2007). 

RSR is calculated as the ratio of the root mean square error to the standard deviation of the 

observations a measure of the characteristic model uncertainty and is estimated as the 

mean deviation of predicted values with respect to the observed values divided by the 

standard deviation of the observations (Moriasi et al., 2007). The normalization associated 

with PBIAS and RSR allowed the performance of models to be compared across all the 

modelled water quality variables. A rule of thumb is that model predictions are satisfactory if 

NSE > 0.50, RSR < 0.70, and if PBIAS < ±25% and are good if 0.65 < NSE > 0.75, 0.5 < 

RSR < 0.60, and if 25% < PBIAS < ±40% (Moriasi et al., 2007). 

The RMSD is a measure of the characteristic model statistical error or uncertainty. RMSD is 

mean deviation of predicted values with respect to the observed values (distinct from the 

standard error of the regression model).  

3.2.3 Representativeness of monitoring sites used in RF models 

A graphical comparison was used to gauge how well the monitoring sites used to fit the RF 

models represented environmental variation at the national scale. Here, representativeness 

refers to the degree to which the distribution of monitoring sites over the range of an 

environmental predictor variable matches the distribution of all network segments over the 

range of the same environmental variable. Poor representativeness can reduce the reliability 

of the model predictions because certain sets of environmental conditions are not 

represented in the fitting data.  

Histograms of the proportions of monitoring site numbers over the ranges of the most 

important predictor variables in the RF models (i.e. the predictors with the greatest 

explanatory power) were visually compared with histograms of the proportions of all network 

segments over the same predictor variables. Note that representativeness of monitoring 

sites is different from model bias, which is defined in Section 3.2.2. 
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3.2.4 Model predictions 

Predictions are made with RF models by “running” new cases down every tree in the fitted 

forest and averaging the predictions made by each tree (Cutler et al., 2007). Some of the 

models in this study were fitted to log10-transformed data and when the model predictions 

were back-transformed, we corrected for retransformation bias using the smearing estimate 

(Duan, 1983; Equation 1, but using base 10, not base e). The back-transformed predictions 

were used to produce national maps depicting the variation in each water quality variable 

and the predictions were exported so that they could be displayed in a geographic 

information system (GIS). 
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4 Results - Rivers 

4.1 Escherichia coli data 

4.1.1 Site E.coli variables 

The values of E.coli variables differed markedly between sites (Figure 4). The values were 

generally high in low-elevation REC Source-of-flow classes (CD/L, CW/L, CX/L, WD/L, 

WW/L,WX/L), were low in the mountain Source-of-flow classes (CD/M, CW/M, CX/GM, 

CX/M) and were intermediate in the hill Source-of-flow classes (CD/H, CW/H, CX/H, WW/H, 

WX/H).  

 

Figure 4. Distributions of the site values of the Escherichia coli variables. The plots 

show for each REC Source-of-flow class, the Median and 95th percentile E.coli 

concentrations (Median and Q95) and the percentage of samples that exceeded 260 and 

540 E.coli 100 mL-1 (PercGT260 and PercGT540). The top and bottom lines of the rectangle 

represent the 3rd and 1st quartiles and the solid dot represents the median. The whiskers 

extend to the 3rd and 1st quartiles plus and minus 1.5 times the interquartile range. The open 

circles represent data beyond 1.5 times the interquartile range. REC classes are defined in 

Table 3. 
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4.1.2  Relationships with flow  

Relationships between E.coli concentrations and flow were generally weak (i.e. R2 values 

were low) (Figure 5). Only 6% of sites had R2 values greater than 0.3 and 69% of sites had 

R2 values less than 0.1. The direction of the relationships between E.coli concentrations and 

flow were variable (positive or negative; Figure 5). The slope of the E.coli concentration - 

flow relationship was positive at 71% of sites and negative for the remaining 29%. No 

obvious spatial patterns in the E.coli concentrations and flow relationships were revealed by 

the REC Source-of-flow classification (Figure 5). 

 

Figure 5. Relationships between Escherichia coli and flow. The plots show the R2 and 

slope values for regression between E. coli and flow for each REC Source-of-flow class. 

REC classes are defined in Table 3. 

 

4.1.3 Timing of exceedances of the E.coli threshold value 

The analysis of timing of exceedances of the E.coli thresholds indicated that exceedances 

were generally higher in low-elevation REC Source-of-flow classes (as also shown in Figure 

4). The Kruskal–Wallis tests indicated that the proportion of exceedances differed 

significantly by month in some REC classes (Figure 6, Table 5). In those classes with 

significant differences in the proportion of exceedances by month, there was a seasonal 

trend. Exceedances tended to be a highest in the autumn (March-May) followed by spring 

(Oct -Nov) (Figure 6). Although there were seasonal trends associated with the median 

values of site exceedance in class, there was also considerable variation between sites 

within classes. For example, in many classes there were sites in each month that had either 
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no samples exceeding the threshold or 100% exceeding. The patterns associated with a 

threshold of 540 E.coli 100 mL-1 were similar but less pronounced (data not shown).  

 

Figure 6. Results of analysis of timing of exceedances of the Escherichia coli 

threshold value. The plots show the distributions of the site proportions of samples that 

exceed 260 E. coli 100 mL-1 in each month. The data have been plotted separately for each 

REC Source-of-flow class. The top and bottom lines of the rectangle represent the 3rd and 1st 

quartiles and the solid dot represents the median. The whiskers extend to the 3rd and 1st 

quartiles plus and minus 1.5 times the interquartile range. The open circles represent data 

beyond 1.5 times the interquartile range. REC classes are defined in Table 3. 
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Table 5. Results of Kruskal–Wallis tests of timing of exceedances of the Escherichia 

coli threshold of 260 E. coli 100 mL-1. Bold P-values indicate the tests that were significant 

at the 5% level. REC classes are defined in Table 3. 

REC Source–of- 
flow class 

Number of sites Kruskal–Wallis 
statistic 

P value 

CD/H 53 84 <0.0001 

CD/L 107 180 <0.0001 

CD/Lk 1 9 0.437 

CD/M 3 11 0.450 

CW/H 155 74 <0.0001 

CW/L 122 74 <0.0001 

CW/Lk 23 6 0.884 

CW/M 16 11 0.458 

CX/GM 8 16 0.133 

CX/H 28 14 0.237 

CX/L 25 69 <0.0001 

CX/Lk 10 20 0.050 

CX/M 3 9 0.639 

WD/L 39 15 0.171 

WD/Lk 1 11 0.443 

WW/H 4 19 0.065 

WW/L 140 82 <0.0001 

WW/Lk 5 11 0.431 

WX/H 2 8 0.684 

WX/L 8 9 0.623 

 

4.2 Escherichia coli spatial models  

4.2.1 Model performance 

We used a log10-transformation of median and Q95 to make the distributions of these 

variables more symmetric and improved model performance. We tried logit transforming the 

PercGT260 and PercGT540, which had values between zero and one. While the logit 

transformation produced more symmetric distributions for these variables, it did not improve 

model performance and we left these variables untransformed. 

The E.coli RF models of median, Q95 and PercGT260 had generally good performance as 

indicated by the following statistics: R2 > 0.65, NSE > 0.65, RSR < 0.60 (Table 6 and Figure 

7; Moriasi et al., 2007). The E.coli RF models of PercGT540 had satisfactory performance 

with a slightly higher RSR and lower NSE than the other three models (Table 6; Moriasi et 

al., 2007). All four models had very low bias (PBIAS; Table 6).  
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Table 6. Performance of the Escherichia coli spatial models. Performance was 

determined using independent predictions (i.e. sites that were not used in fitting the models) 

generated from the out-of-bag observations. Regression R2 = coefficient of determination of 

observation versus predictions, NSE = Nash-Sutcliffe efficiency, PBIAS = percent bias, RSR 

= relative root mean square error, RMSD = root mean square deviation. Units for RMSD for 

Median and Q95 are the log10-transformed units of the respective water quality variables. 

Model (E.coli variable) Regression R2 NSE PBIAS RSR RMSD 

Median 0.73 0.72 -0.40 0.53 0.35 

Q95 0.70 0.69 -0.09 0.55 0.38 

PercGT260 0.67 0.67 -1.02 0.58 0.16 

PercGT540 0.58 0.58 -2.07 0.65 0.13 

 

 

Figure 7. Comparison of observed Escherichia coli descriptor variable versus values 

predicted by the Random Forest models. Note that the observed values are plotted on the 

Y-axis and predicted values on the X-axis, following Piñeiro et al. (2008). Red dashed line: 

best fit linear regression of the observed and predicted values. The solid black line is one-to-

one. Units for the variables Median and Q95 are the log10-transformed units and for 

PercGT260 and PercGT540 are non-transformed values. 
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4.2.2 Modelled relationships  

A large number of predictor variables were retained in the reduced E.coli models (Table 7). 

The models of PercGT260 and median retained all 24 predictors and the PercGT540 and 

Q95 models retained 17 predictors (Table 7).  

The retained predictor variables with high importance in all RF models reflected associations 

between E.coli and catchment elevation and slope (usCatElev, usAveSlope), the proportion 

of the catchment occupied by high producing exotic grassland and bare ground (usPastoral 

and usBare) and climatic variables (usAveTCold, usAveTWarn and usAnnRainVar) (Figure 

8). These relationships were consistent with expectations. For example, the values of all four 

E.coli response variables increased with increasing pastoral land cover and decreased with 

increasing catchment elevation and slope (Figure 8). The association of the E.coli variables 

with pastoral land cover and elevation are consistent with recent evaluations of 

environmental patterns in river water quality (e.g., Larned et al., 2016, 2004; Unwin et al., 

2010). 

Some relationships may represent correlations rather than causative processes. For 

example, there were strong relationships between E.coli and annual variability in rainfall 

(usAnRainVar). The usAnRainVar predictor strongly differentiates between the western (low 

values) and eastern (high values) aspects of New Zealand. The modelled relationships 

between E. coli and usAnRainVar may reflect differences in the temporal distribution of 

rainfall, or some other climatic factor, that are correlated with this pattern, rather than annual 

variability in rainfall per se.  
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Table 7. Predictors retained by the reduced Random Forest models of Escherichia 

coli. The values indicate the rank importance of the predictor for the individual models. NA 

indicates that the predictor was not included in the reduced model. Predictor variables are 

defined in Table 2. 

Predictor PercGT540 PercGT260 Median Q95 

usCatElev 1 1 1 2 

usPastoral 2 2 2 1 

usAveSlope 3 3 3 3 

usBare NA 7 7 NA 

usAnRainVar 4 4 5 4 

usAvTWarm 6 5 6 8 

usAvTCold 5 6 9 6 

segAveElev 9 9 4 5 

usParticleSize NA 10 13 16 

usHard 8 15 10 7 

usIndigForest 10 8 12 11 

usLake NA 23 8 10 

usScrub NA 21 22 NA 

usFlow 11 18 15 NA 

usWetland NA 22 23 NA 

usArea 12 17 18 NA 

usGlacial NA 24 24 NA 

usPhos 13 13 11 15 

segAveTCold NA 20 19 13 

usUrban 7 12 17 17 

usRainDays20 15 11 16 12 

usExoticForest 16 16 14 9 

usRainDays100 17 19 21 NA 

usRainDays10 14 14 20 14 
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Figure 8. Partial plots for the eight most important predictor variables in Random 

Forest models of the Escherichia coli variables. Each panel corresponds to one 

predictor. The Y-axis is the standardised value of the marginal response for each of the eight 

modelled variables. In each case, the original marginal responses over all eight predictors 

were standardised to have a range between zero and one. Plot amplitude (the range of the 

marginal response on the Y-axis) is directly related to a predictor variable’s importance; 

amplitude is large for predictor variables with high importance. Legend in top left panel 

applies to all panels. Predictor variable are defined in Table 2. 
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4.2.3 Representativeness of E.coli monitoring sites 

The distributions of E.coli monitoring sites across the environmental gradients defined by the 

12 most important predictor variables were generally consistent with the distribution of all 

segments in the river network across the same gradients (Figure 9). The predictor variables 

shown in the histograms in Figure 9 were those that were important in the RF models.  

For some environmental gradients, there was moderate over- and under-representation of 

monitoring sites compared to the river network. E.coli monitoring sites were over-

represented in environments characterised by low segment elevations (segAveElev), low 

catchment elevations (usCatElev) and low catchment slopes (usAveSlope) (Figure 9). E.coli 

monitoring sites were under-represented in catchments with very high proportions of 

indigenous forest land cover (usIndigForest), and catchments with low proportions of 

intensive agricultural land cover (usPastoral). There was also under-representation of sites 

with low catchment average summer air temperature (usAvTWarm),low values of catchment 

average variation of annual rainfall (usAnRainVar) and sites in high altitude catchments 

(usCatElev). The under-represented parts of these three predictor gradients reflect locations 

on the southern parts of the West Coast of the South Island in particular (Figure 1).  

 

Figure 9. Histograms comparing the distributions of predictor variable values for all 

river segments nationally and the Escherichia coli monitoring sites. The national pool 

of river segments is represented by the grey histograms and the monitoring sites used for 

Random Forest (RF) models are represented by the red histograms. Similarities in the 

distributions shown in the two histograms in each panel provide an indication of the degree 

to which environmental variation across the monitoring sites represents environmental 

variation across all river segments in New Zealand; complete representativeness would be 

indicated by exact matches between the histograms. The 12 predictor variables shown in the 

figure were the most important overall predictors in the RF models. Predictor variable are 

defined in Table 2. 
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4.2.4 Model predictions 

The mapped predictions for all four E.coli variables (Median, Q95, PercGT260, PercGT540) 

had similar spatial patterns, with high values in low-elevation areas on the east coasts of the 

North and South Island, and in the inland Waikato, Ruamahunga Valley, Rangitikei-

Manawatu coastal plain, Taranaki Ring Plain, and Auckland Region (Figure 10). Predicted 

values for all four E.coli variables were generally low in major mountain ranges (e.g. 

Southern Alps, Kahurangi, Kaimanawa, and Tararua Ranges), in large areas of the 

Department of Conservation estate (e.g. Fiordland, Westland, Te Urewera, Egmont, 

Whanganui and Tongariro National Parks), and in smaller, native forest-dominated areas of 

Northland and the Coromandel Peninsula.  

The low elevation areas characterised by high values of the E.coli variables coincide with 

land used for intensive agriculture and with most of New Zealand’s urban centres. High-

intensity agricultural and urban land currently account for 60% of the land area below 350 m 

elevation (Larned et al., 2016). Within these areas, there are some finer scaled differences in 

predicted values of all four E.coli variables. For example, the Canterbury Plains were 

characterised by slightly lower Q95 concentrations, than similarly intensively farmed regions 

such as Southland and the Waikato-Hauraki Plains area (Figure 10). These differences 

reflect regional variation in the important predictor variables that were included in the models 

other than usPastoral. 
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Figure 10. Predicted Escherichia coli response variables in New Zealand rivers. Order 

1 to 3 rivers have been omitted to make river networks distinguishable but predictions for all 

network segments have been made. Note that concentration scales vary between each map. 

Q50 = median.  
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5 Results - Lakes 

5.1 Lake data 

The median values of the lake SOE data are described by Larned et al. (2015).  

A significant positive relationship was observed among cyanobacterial biovolume and 

chlorophyll a (R2 = 0.60, P < 0.001), TP (R2 = 0.46, P < 0.001), and TN (R2 = 0.41, P < 

0.001) (Figure 11a, b, d) and a significant negative relationship with Secchi depth (R2 = 0. 

23, P < 0.01) (Figure 11c). 

 

Figure 11. Individual relationships between total cyanobacterial biovolumes (80th 

percentile) explanatory variables in 37 New Zealand lakes. The explanatory variables are 

median (a) chlorophyll a (Chl a), (b) total phosphorus (TP), (c) total nitrogen (TN), and (d) 

Secchi disk. The blue line is a linear regression, and grey shading represents pointwise 95% 

confidence interval of the fitted values. The green and red horizontal lines indicate the NPS-

FM thresholds of 0.5 (band C above line) and 1.8 (band D above line) mm3 L-1. 
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The most parsimonious multiple regression model included chlorophyll a, TP, and Secchi 

depth, and had a R2 of 0.64 (P < 0.001, Equation 2). 

  

log  (cyanobacterial volume + 0.001)

=  0.964 +  1.467 ∗ log  (chlorophyll 𝑎) +  1.389 ∗ log  (TP)

+  1.290 ∗ log (Secchi depth) 

(Equation 2) 

 

5.2 Lake spatial models 

5.2.1 Model performance 

The performance of all models were improved by log10-transformation of the site median 

values of the water quality variables (the model responses). The raw variable distributions 

were strongly right skewed and the transformations made these more symmetric. 

The RF models of CHLA, SECCHI, TN, TP and TLI3 had satisfactory to good performance 

as indicated by the following statistics: NSE > 0.5, RSR < 0.7 (Table 8, Figure 12; Moriasi et 

al., 2007). All five of these models had very low bias (PBIAS; Table 8, Figure 12).  

Table 8. Performance of the lake water quality models. Performance was determined 

using independent predictions (i.e. sites that were not used in fitting the models) generated 

from the out-of-bag observations. R2 = coefficient of determination of observation versus 

predictions, NSE = Nash-Sutcliffe efficiency, PBIAS = percent bias, RSR = relative root 

mean square error, RMSD = root mean square deviation. RMSD units are the log10-

transformed original units. 

Model N R2 NSE PBIAS RSR RMSD 

CHLA 92 0.57 0.56 -1.11 0.66 0.37 

SECCHI 64 0.61 0.60 -2.19 0.63 0.30 

TLI3 76 0.63 0.61 0.77 0.62 0.09 

TN 82 0.68 0.66 0.22 0.58 0.25 

TP 99 0.55 0.55 1.22 0.67 0.33 
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Figure 12. Comparison of observed water quality versus values predicted by the 

Random Forest models. Note that the observed values are plotted on the Y-axis and 

predicted values on the X-axis, following Piñeiro et al. (2008). Red dashed line: best fit linear 

regression of the observed and predicted values. The solid black line is one-to-one. Units for 

the variables are the log10 of the original units. 

5.2.2 Modelled relationships 

The reduced RF models retained only a small subset of the original set of predictors (Table 

9). The eleven retained predictors reflected associations between water quality and lake and 

catchment elevation, geological and climatic factors (Table 9). 

The lake water quality variables had logical relationships with many of the individual 

predictor variables included in the reduced RF models (Figure 13). Nutrient concentrations 

and chlorophyll a decreased and Secchi depth increased with increasing lake and catchment 

elevation (lkElev, catElev) and decreasing wintertime catchment air temperature 

(catWinTemp). This is consistent with an observed gradient in trophic conditions for lakes 

that is associated with altitude and climate (Sorrell et al., 2006). Predictors describing 

catchment land cover were not retained in any of the RF models that had satisfactory 
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performance (Figure 13). Some relationships may represent correlations rather than 

causative processes. For example, the strong relationship between elevation and catchment 

climate probably indicates that the inclusion of these predictors is partly because they are 

correlated with increased nutrient supply from agriculture. TLI3 and TN decreased with lake 

fetch (lkFetch), which may be a reflection of the generally lower trophic status of larger lakes 

rather the effect of wind mixing on lakes. 

Table 9. Predictors retained by the reduced Random Forest models of lake water 

quality variables. The values indicate the rank importance of the predictor for the individual 

models. NA indicates that the predictor was not included in the reduced model. Predictor 

variables are defined in Table 4. 

Predictor CHLA SECCHI TLI3 TN TP 

lkElev 1 1 2 1 1 

catWinTemp 2 2 3 2 4 

catElev 3 3 1 3 3 

catCalc NA NA NA NA 2 

lkFetch NA NA 4 4 NA 

lkDistCoast 4 NA 6 NA 8 

catSlope NA NA 5 NA 6 

lkSumWind 5 NA NA NA 7 

catAlluv NA NA 8 5 NA 

catPhos NA NA 9 NA 5 

lkDecSolRad NA NA 7 NA 9 
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Figure 13. Partial plots for the ten most important predictor variables in the Random 

Forest models of lake water quality. Each panel corresponds to one predictor. The Y-axis 

is the standardised value of the marginal response for each of the ten modelled variables. In 

each case, the original marginal responses over all ten predictors were standardised to have 

a range between zero and one. Plot amplitude (the range of the marginal response on the Y-

axis) is directly related to a predictor variable’s importance; amplitude is large for predictor 

variables with high importance. Legend in top left panel applies to all panels. 

5.3 Representativeness of monitored lakes 

The distributions of monitored lakes across the environmental gradients retained in the 

reduced RF models (CHLA, SECCHI, TN, TP and TLI3) were generally consistent with the 

distribution of all lakes nationally across the same gradients (Figure 14). For some 
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environmental gradients, there was moderate over- and under-representation. Monitored 

lakes were slightly over-represented in environments characterised by low elevations 

(lkElev, catElev), and low catchment slopes (catSlope) and catchments with high alluvium 

(catAlluv) (Figure 14). Monitored lakes were under-represented in lakes with low fetch 

(lkFetch) and high altitude (lkElev). They were also under-represented in lake catchments 

with very low wintertime temperature (catWinTemp). For example, there were no lakes in our 

dataset with values of catWinTemp < -3.2 oC, however, 11% of lakes nationally have values 

of catWinTemp in this category. In addition, the monitored lakes were over represented in 

lake catchments with very high wintertime temperature. 

 

Figure 14. Histograms comparing the distributions of predictor variables for all lakes 

and the monitored lakes used to build the Random Forest models. The national pool of 

lakes is represented by the grey histograms and the monitored lakes used for RF models 

that had satisfactory performance (CHLA, SECCHI, TN, TP and TLI3) are represented by 

the red histograms. Similarities in the distributions shown in the two histograms in each 

panel provide an indication of the degree to which environmental variation across the 

monitoring sites represents environmental variation across all lakes in New Zealand; 
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complete representativeness would be indicated by exact matches between the histograms. 

The figure shows the 11 predictors (defined in Table 4) retained in the reduced RF models. 

5.4 Model predictions 

Predictions for CHLA, SECCHI, TN, TP and TLI3 are shown in Figure 15 and Figure 16. The 

figures show only the 895 lakes with shoreline length greater than 1500 m for clarity however 

predictions were made for the 3802 lakes that had complete data in the FENZ dataset. The 

mapped predictions for all five variables had similar spatial patterns, with high values of 

CHLA, TN, TP and TLI3 and low values of SECCHI, in low-elevation areas on the coasts of 

the North and South Island, apart from areas with little or no pastoral land cover (e.g., 

Fiordland). Values of CHLA, TN, TP and TLI3 were also high and values of SECCHI were 

low further inland in areas of both islands that are dominated by agricultural land use such 

as Southland, parts of Otago, Hawkes Bay, Bay of Plenty, Waikato and Northland (Figure 15 

and Figure 16). Values of all of CHLA, TN, TP and TLI3 were generally low and SECCHI 

high in inland areas of the South Island. 

 

There was an apparent geographical trend with high predicted cyanobacterial biovolume in 

lakes closer to the coastline of both South and North Island (Figure 17). High cyanobacterial 

biovolume values were also predicted in some inland areas, such as Otago, parts of 

Southland, Hawkes Bay and Manawatu (Figure 17).  Otherwise, predicted cyanobacterial 

biovolume was generally low or medium in the inland areas of both the South and North 

Island.   
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Figure 15. Predicted water quality for New Zealand lakes.  The 895 lakes with shoreline 

length greater than 1500 m are indicated by points located at the lake centre. 
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Figure 16. Predicted Trophic Level Index 3 for New Zealand lakes. The 895 lakes with 

shoreline length greater than 1500 m are indicated by points located at the lake centre. 
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Figure 17. Predicted cyanobacterial biovolumes for New Zealand lakes. The 895 lakes 

with shoreline length greater than 1500 m are indicated by points located at the lake centre. 
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6 Discussion 

6.1 Escherichia coli temporal behaviour and relationships with flow 

The generally weak and inconsistent relationships between E.coli concentrations and flow 

(Figure 5) is probably due to at least three factors. First, there are likely to be differences in 

the dominant processes driving E.coli concentrations at different sites. For example, dilution 

of concentrations with increasing flows may occur at some sites and spikes in concentrations 

associated with wash off of E.coli sources with increasing flows at others. Second, at 

individual sites the relationships between concentration and flow may be inconsistent due to 

hysteresis2. This occurs when concentrations increase with flow during rising flows but are 

considerably lower at the same flow during reducing flows (sometimes referred to as first 

flush concentrations). The third reason for the lack of consistent relationships is likely to be 

the poor representation of high flows at most sites in the SOE dataset. Most samples were 

taken at flow close to the median with few samples representing high flows. 

Strong relationships between flow and E.coli concentrations have been shown for some sites 

in New Zealand (Davies-Colley, 2013). However, these studies have been based on 

sampling at much higher temporal resolution and have indicated that relationships are 

complex. For example McBride (2011) showed that E.coli relationships with flow in some 

rivers is associated with hysteresis such that concentrations reach a maximum value ahead 

of the peak flow. In another study, Wilkinson et al. (2011) showed that it was more difficult to 

model E.coli response to storm flows in smaller catchments. That study suggests that spatial 

heterogeneity in rainfall-run-off and faecal sources probably contribute to considerable 

variability in relationships between flow and E.coli concentrations in small catchments in 

particular. The analysis of the timing of E.coli exceedances of the NPS-FM thresholds (260 

E.coli 100 mL-1 and 540 E.coli 100 mL-1) indicated there was significant spread in the data 

such that, in any REC class and month, there were sites with both very large proportion of 

exceedances and those with no exceedances (Figure 6). It is likely that site scale analysis 

might reveal that exceedance of E.coli thresholds at specific sites is more reliably seasonal. 

However, the analysis indicates that, at broad scales (i.e. national scale to the regional 

scales associated with REC Source-of-flow classes), exceedance of E.coli thresholds can 

occur in any month.  

The conclusion from these two analyses is that, given SOE data and at the national scale to 

regional scales associated with REC Source-of-flow classes, the frequency of E.coli 

exceedances, and therefore risk to human health, cannot be determined by flow state or 

timing (i.e. does not depend on month or season). This indicates that the four E.coli statistics 

(site median, 95th percentile, PercGT260 and PercGT540), which are calculated from all 

observations, are relevant descriptions of human health risk. Using the SOE data available 

for the present study, accounting for flow or time of the year would not strongly influence 

conclusions about broad scale patterns drawn from these statistics. 

6.2 Predictions of river E.coli  

The monitoring sites used for fitting our E.coli spatial models were reasonably representative 

of the full range of environmental characteristics of New Zealand’s rivers (Figure 9). The 

E.coli dataset was also relatively large and covered a significant proportion of the geographic 

domain (Figure 1). The good representation of the rivers of New Zealand, coupled with the 

                                                
2 Hysteresis is the time-based dependence of a system's state based on the present and past. For example, the concentration 

of E.coli at a given flow may depend on whether the flow at the time is increasing or decreasing. Therefore, to predict the E.coli 

concentration at a point in time it is not only necessary to know the flow, but also to know what the flow was previously. 
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good performance of the spatial models, means the predictions provide a useful description 

of regional to national scale patterns in E.coli for strategic purposes such as quantifying the 

proportion of New Zealand’s rivers that have high and low human health risks associated 

with different types of activities.  

There was a lack of SOE sites on the southern parts of the west coast of the South Island 

and in high altitude locations generally (Figure 1). This lead to under-representation of some 

environmental gradients that were important in the E. coli models, in particular sites with low 

values of catchment average summer air temperature (usAvTWarm) and catchment average 

variation of annual rainfall (usAnRainVar) (Figure 9). There are also likely to be other parts of 

the national environmental space that are poorly represented by the monitoring data. 

Prediction error in these poorly represented environments may be larger than the quantified 

uncertainties for the models and therefore, it is important to be aware of this limitation when 

using model predictions.  

Lack of fit of the model may, in part, also reflect locations that are affected by point sources. 

These locations may have predictions that are inconsistent with observed concentrations 

because they are based on the characteristics of the catchment and do not explicitly account 

for point sources of faecal contamination. Site data, rather than model predictions are 

therefore the best basis for identifying specific locations with E.coli issues, and for assessing 

the effectiveness of response actions such as improving treatment of point source 

discharges.  

6.3 Predictions of lake water quality 

The lake dataset was smaller and had a restricted geographic coverage compared to the 

E.coli data set (Figure 2). In particular there was no or very limited data available for the 

Taranaki and Gisborne regions in the North Island, the top and west coast of the South 

Island and Southland. Monitored lakes were slightly over-representative of low elevations 

and lakes in regions with warmer climates and were under-representative of lakes in regions 

with colder climates (Figure 14). A somewhat surprising result was that the lake models 

included no predictors that directly described catchment land cover. It is well established that 

the proportion of the catchment occupied by pastoral land cover is strongly associated with 

magnitude of nutrient loads from agricultural source at the national scale (Larned et al., 

2016). However, the elevation predictors (catElev and lkElev) and the mean wintertime 

temperature predictor (catWinTemp) are likely included in the models partly because they 

are correlated with the catchment land use. Low elevation catchments and those in warmer 

regions are commonly associated with greater pastoral land use intensity than catchments at 

higher elevations and in colder regions.  

The correlative rather than causative nature of the relationships between these predictors 

and nutrient loads to lakes is not relevant when considering the statistical measures of 

predictive performance of the models. However, it does mean that the lake model 

predictions are unrealistic in situations where the relationship between catElev, lkElev and 

catWinTemp and the actual causative variables (catchment nutrient loads) is significantly 

different to the fitting dataset. The most obvious situations where this is likely are lakes at 

low elevations whose catchments are largely unmodified, and lakes with cold climates (i.e. 

low catWinTemp) but low elevation. The model predictions are therefore likely to be less 

reliable in geographic regions that have low elevation lakes and lake catchments with 

relatively unmodified catchment land cover such as the West Coast of the South Island, 

Fiordland and Stewart Island.  
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6.4 Uncertainties associated with the spatial predictions 

RF model performance differed between modelled variables and this variation may be 

attributable to differences in the biophysical processes that control the variables. Some 

biophysical processes may be poorly represented by our catchment-averaged spatial 

predictor variables. For example, concentrations of TN and TP in lakes are influenced to 

differing degrees by adsorption-desorption processes, deposition and suspension, and 

biological assimilation, transformation and removal; these mechanisms are not explicitly 

represented in the RF models. The absence of predictors that account for these and other 

processes means that some level of unexplained variation is inevitable.  

All of the E.coli models and lake water quality models performed acceptably well to be used 

to make national scale predictions. Because the processes determining water quality at any 

location are complex, some unexplained variation in our models is to be expected. 

Predictions made for individual locations are associated with uncertainties that are 

characterised by model RMSD values (Table 6, Table 8). These uncertainties mean that 

predictions for individual river segments and lakes can be quite large. However, the level of 

model bias (i.e. systematic error) was low. This indicates that the predicted patterns are 

reliable descriptions of broad scale relative differences in the modelled variables between 

locations.  

6.5 Cyanobacteria  

Cyanobacteria are one component of lake plankton. While in eutrophic systems they are 

usually volumetrically dominant, eukaryotic algae such as chlorophytes (green algae) and 

bacillariophytes (diatoms), are often more abundant in mesotrophic and oligotrophic systems 

(Paul et al., 2012). These other organisms contribute to total nutrient and chlorophyll a 

concentrations in lakes. The water quality parameters related to cyanobacterial biovolume in 

the present study (chlorophyll a, TN, TP, Secchi depth) can’t be used to distinguish 

cyanobacteria from other organisms. Despite this caveat we observed significant 

relationships among cyanobacterial biovolumes and chlorophyll a, TN, TP and Secchi depth 

using samples collected from lakes spanning a range of trophic categories (Figure 11). 

These patterns are consistent with previous national and international studies. For example, 

Smith et al. (2016) showed a strong (R2=0.66) relationship between TP and cyanobacterial 

biovolume in 71 Northern Hemisphere temperate lakes and four New Zealand lakes.  

Because of these strong relationships, when the modelled lake water quality data was 

transposed into cyanobacterial biovolumes using the multiple linear regression equation, 

eutrophic lakes were predicted to have the highest cyanobacterial biovolumes. This aligns 

with current knowledge, with many studies both nationally and internationally showing that 

high cyanobacterial biomass in lakes is strongly associated with eutrophication (e.g., Paerl 

and Otten, 2013; Wood et al. 2016). A recent New Zealand study that assessed samples 

from 143 lakes found that cyanotoxins were only detected in water samples from eutrophic 

lakes (Wood et al., In review). This was largely due to the presence of specific 

cyanobacterial species in the eutrophic lakes, which differ from those found in mesotrophic 

or oligotrophic lakes. This knowledge adds further evidence to support the predictions of the 

present study that eutrophic lakes are likely to pose the highest risk to human health. 

 

Both the cyanobacteria attribute specified by the NPS-FM and New Zealand Guidelines for 

Recreational waters suggest a two-tiered approach to trigger a D band (80th percentile over 

12 samples for three years) or alert mode. When potentially toxic species are present a 

threshold of >1.8 mm3 L-1 is suggested. A second threshold of >10 mm3 L-1 of total 
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cyanobacteria can be used when no toxins are detected, or no known toxin producing 

species are present. For the purpose of this study we have taken the conservative approach 

and assumed that all cyanobacterial species are toxic. We recommend this approach when 

assigning human health risk to lakes where there is high biovolumes. Many bloom forming 

taxa (which will be abundant when biovolumes are high) in New Zealand lakes are known 

toxin producers e.g. Cylindrospermopsis, Anabaena, Aphanizomenon and Microcystis 

(Wood et al., 2006). 

 

For the reasons discussed in Section 6.3, it is likely cyanobacterial biovolumes in lakes are 

over estimated in some areas of New Zealand. This is particularly likely to apply to the 

coastal regions of the West Coast of the South Island and Southland. However, we note that 

there is very little available cyanobacterial data for these regions. This highlights a need for 

more routine monitoring of lakes in these regions. Additionally, many water quality 

monitoring programmes do not include cyanobacteria/algal identification and enumeration. 

Although this is unlikely to have affected the cyanobacterial analysis undertaken in this study 

(see Section 2.2), it should be an essential part of lake monitoring programmes and would 

improve knowledge on national algal/cyanobacterial distribution patterns and therefore assist 

in improved predictions of potential health risk to humans.  

 

The cyanobacterial dataset used to develop the multiple recreation equation was in some 

cases biased towards summer values and hence may overestimate cyanobacterial 

biovolumes. To establish the relationship between cyanobacterial biovolumes and water 

quality parameters we only used data points with corresponding year-month-site data. In 

many New Zealand lakes cyanobacterial analysis is only undertaken during summer when 

biomass is usually highest and there is greatest human contact. This may have resulted in 

an overestimation of cyanobacterial biovolumes, because the relationship was established 

during periods when cyanobacterial biovolume was likely to be highest, and not using long-

term median values. As more frequent and consistent cyanobacterial datasets are obtained 

this approach could be revisited. 

 

6.6 Escherichia coli in lakes 

As noted in Section 2.2 data on E. coli in lakes in the SOE dataset were limited and 

prevented statistical analysis in this study. We are aware that there are other datasets, in 

particular samples collected as part of recreational monitoring programmes. Unlike 

cyanobacteria we do not anticipate E. coli concentration will be solely related to water quality 

variables due to the influence of other variables such as localised point sources, e.g. leaking 

septic tanks, rainfall, wind and inflows (Dada and Hamilton 2016). We recommend collation 

and analysis of available E. coli datasets to further understand the risks posed by this 

organism to human health in New Zealand lakes.  
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Appendices 

Appendix 1. List of lakes where biovolume data was obtained and number of observations 
for each variable. TP = total phosphorus, TN = total nitrogen, Chl-a = chlorophyll a. 
 

Lake Region Biovolume TP Chl-a TN Secchi Total 

Alice Manawatu 7 7 7 7 0 7 

Ellesmere Canterbury 475 473 473 473 431 475 

Forsyth  Canterbury 122 95 94 95 0 122 

Hakanoa Waikato 58 39 58 38 37 58 

Heaton Manawatu 8 7 7 7 0 8 

Horowhenua Manawatu 18 11 11 11 0 18 

Kainui Waikato 10 10 10 10 0 10 

Koputara Manawatu 8 7 7 7 0 8 

Kuwakatai Auckland 12 12 12 1 11 12 

Lower Karori Reservoir Wellington 58 58 58 58 0 58 

Maraetai Waikato 84 84 84 84 82 84 

Ohakuri Waikato 85 85 85 85 85 85 

Oingo Hawkes Bay 12 8 8 7 8 12 

Okaro Bay of Plenty 103 89 90 88 102 103 

Okawa Bay Bay of Plenty 113 111 112 108 105 113 

Omanuka Lagoon Manawatu 7 6 6 6 0 7 

Omapere Northland 113 99 0 101 76 113 

Opouahi Hawkes Bay 12 7 7 7 7 12 

Ototoa Auckland 8 8 8 0 7 8 

Pounui Wellington 22 22 21 22 22 22 

Rotoehu Bay of Plenty 113 113 112 110 110 113 

Rotoiti Bay of Plenty 115 115 111 109 115 115 

Rotorua Canterbury 90 90 37 90 0 90 

Rotorua Bay of Plenty 115 111 109 109 108 115 

Runanga Hawkes Bay 13 9 9 9 9 13 

Spectacle Auckland 14 14 14 2 14 14 

Swan Northland 7 0 0 0 7 7 

Tarawera Bay of Plenty 33 32 32 31 32 33 

Taupo Waikato 27 0 27 0 0 27 

Tomarata Auckland 10 10 10 2 10 10 

Tutira Hawkes Bay 87 58 49 58 50 87 

Waahi Waikato 63 63 63 63 52 63 

Waikare Waikato 49 49 49 49 49 49 

Waikaremoana Hawkes Bay 12 9 9 9 8 12 

Waikopiro Hawkes Bay 13 9 9 9 9 13 

Waitawa  Wellington 23 23 23 23 23 23 

Whangape Waikato 58 58 58 58 58 58 
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Appendix 2. List of lakes where biovolume data was obtained but the data was not used in 
this study as the number of observation was considered too low. 

 

Lake Region Number of samples 

Dudding Manawatu 5 

Hatuma Hawkes Bay 5 

Herbert Manwatu 5 

Horseshoe Hawkes Bay 2 

Kohata Manawatu 3 

Koitata Manawatu 3 

Manapouri  Southland 1 

Ngaroto Waikato 6 

Opunake Taranaki 3 

Pauri Manwatu 6 

Pukepuke Lagoon Manawatu 4 

Pupuke Auckland 1 

Ratapiko Taranaki 3 

Rotokare Taranaki 4 

Rotomanu Taranaki 3 

Te Anau Southland 1 

The Reservoir Southland 3 

Vincent  Southland 3 

Waihoropita Northland 1 

Waikareiti Hawkes Bay 6 

Wainamu Auckland 5 

Waiparera Northland 1 

Waipu Manawatu 3 

Westmere Manawatu 2 

Whakaki  Hawkes Bay 4 

Whakaki  Hawkes Bay 2 

Whakaki First Bluff Hawkes Bay 6 

William Manawatu 3 

Wiritoa Manawatu 5 


